summaryrefslogtreecommitdiff
path: root/openEMS/FDTD/operator_cylinder.cpp
blob: 342415fdaedcd26c79f21e05d734acb95c4ee601 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
/*
*	Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
*	This program is free software: you can redistribute it and/or modify
*	it under the terms of the GNU General Public License as published by
*	the Free Software Foundation, either version 3 of the License, or
*	(at your option) any later version.
*
*	This program is distributed in the hope that it will be useful,
*	but WITHOUT ANY WARRANTY; without even the implied warranty of
*	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*	GNU General Public License for more details.
*
*	You should have received a copy of the GNU General Public License
*	along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "engine.h"
#include "engine_cylinder.h"
#include "Common/processfields.h"
#include "operator_cylinder.h"
#include "extensions/operator_extension.h"
#include "extensions/operator_ext_cylinder.h"
#include "tools/useful.h"

Operator_Cylinder* Operator_Cylinder::New(unsigned int numThreads)
{
	cout << "Create cylindrical FDTD operator" << endl;
	Operator_Cylinder* op = new Operator_Cylinder();
	op->setNumThreads(numThreads);
	op->Init();
	return op;
}

Operator_Cylinder::Operator_Cylinder() : Operator_Multithread()
{
	m_MeshType = CYLINDRICAL;
	m_Cyl_Ext = NULL;
}

Operator_Cylinder::~Operator_Cylinder()
{
}


Engine* Operator_Cylinder::CreateEngine()
{
	//! create a special cylindrical-engine
	m_Engine = Engine_Cylinder::New(this, m_numThreads);
	return m_Engine;
}

void Operator_Cylinder::Init()
{
	CC_closedAlpha = false;
	CC_R0_included = false;
	Operator_Multithread::Init();
}

double Operator_Cylinder::GetRawDiscDelta(int ny, const int pos) const
{
	if (CC_closedAlpha && ny==1 && pos==-1)
		return (discLines[1][numLines[1]-2] - discLines[1][numLines[1]-3]);
	if (CC_closedAlpha && ny==1 && (pos==(int)numLines[ny]-1))
		return (discLines[1][2] - discLines[1][1]);

	return Operator_Multithread::GetRawDiscDelta(ny,pos);
}

double Operator_Cylinder::GetMaterial(int ny, const double* coords, int MatType, vector<CSPrimitives*> vPrims, bool markAsUsed) const
{
	double l_coords[] = {coords[0],coords[1],coords[2]};
	if (CC_closedAlpha && (coords[1]>GetDiscLine(1,0,false)+2*PI))
		l_coords[1]-=2*PI;
	if (CC_closedAlpha && (coords[1]<GetDiscLine(1,0,false)))
		l_coords[1] += 2*PI;
	return Operator_Multithread::GetMaterial(ny,l_coords,MatType,vPrims,markAsUsed);
}

int Operator_Cylinder::CalcECOperator( DebugFlags debugFlags )
{
	// debugs only work with the native vector dumps
	bool natDump = g_settings.NativeFieldDumps();
	g_settings.SetNativeFieldDumps(true);
	int rc = Operator_Multithread::CalcECOperator(debugFlags);
	// reset original settings
	g_settings.SetNativeFieldDumps(natDump);
	return rc;
}

double Operator_Cylinder::CalcTimestep()
{
	if (discLines[0][0]==0.0)
		// use conservative timestep for a mesh including the r==0 singularity
		m_TimeStepVar = 1;

	return Operator::CalcTimestep();
}

inline unsigned int Operator_Cylinder::GetNumberOfLines(int ny, bool full) const
{
	if (full)
		return Operator_Multithread::GetNumberOfLines(ny, full);

	//this is necessary for a correct field processing... cylindrical engine has to reset this by adding +1
	if (CC_closedAlpha && ny==1)
		return Operator_Multithread::GetNumberOfLines(ny, true)-2;

	return Operator_Multithread::GetNumberOfLines(ny, full);
}

string Operator_Cylinder::GetDirName(int ny) const
{
	if (ny==0) return "rho";
	if (ny==1) return "alpha";
	if (ny==2) return "z";
	return "";
}

bool Operator_Cylinder::GetYeeCoords(int ny, unsigned int pos[3], double* coords, bool dualMesh) const
{
	bool ret = Operator_Multithread::GetYeeCoords(ny,pos,coords,dualMesh);

	if (CC_closedAlpha && (coords[1]>=GetDiscLine(1,0,false)+2*PI))
		coords[1]-=2*PI;
	if (CC_closedAlpha && (coords[1]<GetDiscLine(1,0,false)))
		coords[1]+=2*PI;

	return ret;
}

double Operator_Cylinder::GetNodeWidth(int ny, const unsigned int pos[3], bool dualMesh) const
{
	if ((ny<0) || (ny>2)) return 0.0;
	if (pos[ny]>=numLines[ny]) return 0.0;
	double width = Operator_Multithread::GetEdgeLength(ny,pos,!dualMesh);
	if (ny==1)
		width *= GetDiscLine(0,pos[0],dualMesh);
	return width;
}

double Operator_Cylinder::GetNodeWidth(int ny, const int pos[3], bool dualMesh) const
{
	if ( (pos[0]<0) || (pos[1]<0 && CC_closedAlpha==false) || (pos[2]<0) )
		return 0.0;

	unsigned int uiPos[]={(unsigned int)pos[0],(unsigned int)pos[1],(unsigned int)pos[2]};
	if (pos[1]<0 && CC_closedAlpha==true)
		uiPos[1]+=numLines[1]-2;

	return GetNodeWidth(ny, uiPos, dualMesh);
}

double Operator_Cylinder::GetNodeArea(int ny, const unsigned int pos[3], bool dualMesh) const
{
	if (pos[ny]>=numLines[ny]) return 0.0;
	if (pos[0]>=numLines[0]) return 0.0;
	if (ny==2)
	{
		double da = Operator_Multithread::GetEdgeLength(1,pos,dualMesh)/gridDelta;
		double r1,r2;

		if (dualMesh)
		{
			r1 = GetDiscLine(0,pos[0],false)*gridDelta;
			r2 = r1 + GetEdgeLength(0,pos,false);
		}
		else
		{
			r2 = GetDiscLine(0,pos[0],!dualMesh)*gridDelta;
			r1 = r2 - GetEdgeLength(0,pos,true);
		}

		if (r1<=0)
			return da/2 * pow(r2,2);
		else
			return da/2* (pow(r2,2) - pow(r1,2));
	}

	return Operator_Multithread::GetNodeArea(ny,pos,dualMesh);
}

double Operator_Cylinder::GetNodeArea(int ny, const int pos[3], bool dualMesh) const
{
	if ( (pos[0]<0) || (pos[1]<0 && CC_closedAlpha==false) || (pos[2]<0) )
		return 0.0;

	unsigned int uiPos[]={(unsigned int)pos[0],(unsigned int)pos[1],(unsigned int)pos[2]};
	if (pos[1]<0 && CC_closedAlpha==true)
		uiPos[1]+=numLines[1]-2;

	return GetNodeArea(ny, uiPos, dualMesh);
}

double Operator_Cylinder::GetEdgeLength(int ny, const unsigned int pos[3], bool dualMesh) const
{
	double length = Operator_Multithread::GetEdgeLength(ny,pos,dualMesh);
	if (ny!=1)
		return length;
	return length * GetDiscLine(0,pos[0],dualMesh);
}

double Operator_Cylinder::GetCellVolume(const unsigned int pos[3], bool dualMesh) const
{
	return GetEdgeArea(2,pos,dualMesh)*GetEdgeLength(2,pos,dualMesh);
}

double Operator_Cylinder::GetEdgeArea(int ny, const unsigned int pos[3], bool dualMesh) const
{
	if (ny!=0)
		return GetNodeArea(ny,pos,dualMesh);

	return GetEdgeLength(1,pos,!dualMesh) * GetEdgeLength(2,pos,!dualMesh);
}

double Operator_Cylinder::FitToAlphaRange(double a_coord, bool fullMesh) const
{
	double min = GetDiscLine(1,0);
	double max = GetDiscLine(1,GetNumberOfLines(1, fullMesh)-1);
	if ((a_coord>=min) && (a_coord<=max))
		return a_coord;
	while (a_coord<min)
	{
		a_coord+=2*PI;
		if (a_coord>max)
			return a_coord-2*PI;
		if (a_coord>min)
			return a_coord;
	}
	while (a_coord>max)
	{
		a_coord-=2*PI;
		if (a_coord<min)
			return a_coord+2*PI;
		if (a_coord<max)
			return a_coord;
	}
	// this cannot happen
	return a_coord;
}

int Operator_Cylinder::MapAlphaIndex2Range(int pos) const
{
	if (!CC_closedAlpha)
		return pos;
	if (pos<0)
		return (int)numLines[1]+pos-2;
	else if (pos>=(int)numLines[1]-2)
		return pos-(int)numLines[1]+2;
	else
		return pos;
}

bool Operator_Cylinder::GetCellCenterMaterialAvgCoord(const int pos[3], double coord[3]) const
{
	if (!CC_closedAlpha || ((pos[1]>=0) && (pos[1]<(int)numLines[1]-2)))
	{
		return Operator_Multithread::GetCellCenterMaterialAvgCoord(pos, coord);
	}
	if ((pos[0]<0) || (pos[2]<0))
		return false;
	int l_pos[3] = {pos[0], 0, pos[2]};
	l_pos[1] = MapAlphaIndex2Range(pos[1]);
	return Operator_Multithread::GetCellCenterMaterialAvgCoord(l_pos, coord);
}

unsigned int Operator_Cylinder::SnapToMeshLine(int ny, double coord, bool &inside, bool dualMesh, bool fullMesh) const
{
	if (ny==1)
		coord=FitToAlphaRange(coord);
	return Operator_Multithread::SnapToMeshLine(ny, coord, inside, dualMesh, fullMesh);
}

int Operator_Cylinder::SnapBox2Mesh(const double* start, const double* stop, unsigned int* uiStart, unsigned int* uiStop, bool dualMesh, bool fullMesh, int SnapMethod, bool* bStartIn, bool* bStopIn) const
{
	double a_min = GetDiscLine(1,0);
	double a_max = GetDiscLine(1,GetNumberOfLines(1,fullMesh)-1);

	double a_size = stop[1] - start[1];
	double a_center = FitToAlphaRange(0.5*(stop[1]+start[1]));
	double a_start = a_center-a_size/2;
	double a_stop = a_start + a_size;
	if (a_stop>a_max)
		a_stop=a_max;
	if (a_stop<a_min)
		a_stop=a_min;
	if (a_start>a_max)
		a_start=a_max;
	if (a_start<a_min)
		a_start=a_min;

	double l_start[3] = {start[0], a_start, start[2]};
	double l_stop[3]  = {stop[0] , a_stop , stop[2] };
	return Operator_Multithread::SnapBox2Mesh(l_start, l_stop, uiStart, uiStop, dualMesh, fullMesh, SnapMethod, bStartIn, bStopIn);
}

int Operator_Cylinder::SnapLine2Mesh(const double* start, const double* stop, unsigned int* uiStart, unsigned int* uiStop, bool dualMesh, bool fullMesh) const
{
	int ret = Operator_Multithread::SnapLine2Mesh(start, stop, uiStart, uiStop, dualMesh, fullMesh);

	if ((stop[1]>start[1]) && (uiStop[1]<uiStart[1]) && (uiStop[1]==0))
		uiStop[1] = GetNumberOfLines(1, fullMesh)-1-(int)CC_closedAlpha;
	if ((stop[1]<start[1]) && (uiStop[1]>uiStart[1]) && (uiStop[1]==GetNumberOfLines(1, fullMesh)-1-(int)CC_closedAlpha))
		uiStop[1] = 0;

	return ret;
}


Grid_Path Operator_Cylinder::FindPath(double start[], double stop[])
{
	double l_start[3];
	double l_stop[3];

	for (int n=0;n<3;++n)
	{
		l_start[n] = start[n];
		l_stop[n] = stop[n];
	}

	while (fabs(l_stop[1]-l_start[1])>PI)
	{
		if (l_stop[1]>l_start[1])
			l_stop[1]-=2*PI;
		else
			l_stop[1]+=2*PI;
	}

	double help=0;
	if (l_start[1]>l_stop[1])
	{
		for (int n=0;n<3;++n)
		{
			help = l_start[n];
			l_start[n] = l_stop[n];
			l_stop[n] = help;
		}
	}

	double a_start = FitToAlphaRange(l_start[1]);
	double a_stop = FitToAlphaRange(l_stop[1]);

	if (a_stop >= a_start)
	{
		l_start[1] = a_start;
		l_stop[1] = a_stop;
		return Operator_Multithread::FindPath(l_start, l_stop);
	}

	// if a-stop fitted to disc range is now smaller than a-start, it must step over the a-bounds...

	Grid_Path path;
	for (int n=0;n<3;++n)
	{
		if ((l_start[n]<GetDiscLine(n,0)) && (l_stop[n]<GetDiscLine(n,0)))
			return path; //lower bound violation
		if ((l_start[n]>GetDiscLine(n,GetNumberOfLines(n,true)-1)) && (l_stop[n]>GetDiscLine(n,GetNumberOfLines(n,true)-1)))
			return path; //upper bound violation
	}

	if (g_settings.GetVerboseLevel()>2)
		cerr << __func__ << ": A path was leaving the alpha-direction mesh..." << endl;

	// this section comes into play, if the line moves over the angulare mesh-end/start
	// we try to have one part of the path on both "ends" of the mesh and stitch them together

	Grid_Path path1;
	Grid_Path path2;

	// calculate the intersection of the line with the a-max boundary
	double p0[3],p1[3],p2[3];
	for (int n=0;n<3;++n)
	{
		p0[n] = GetDiscLine(n,0);
		p1[n] = p0[n];
		p2[n] = p0[n];
	}
	p0[1] = GetDiscLine(1,GetNumberOfLines(1,true)-1-(int)CC_closedAlpha);
	p1[1] = p0[1];
	p2[1] = p0[1];
	p1[0] = discLines[0][numLines[0]-1];
	p2[2] = discLines[2][numLines[2]-1];

	TransformCoordSystem(p0,p0,m_MeshType,CARTESIAN);
	TransformCoordSystem(p1,p1,m_MeshType,CARTESIAN);
	TransformCoordSystem(p2,p2,m_MeshType,CARTESIAN);

	double c_start[3],c_stop[3];
	TransformCoordSystem(l_start,c_start,m_MeshType,CARTESIAN);
	TransformCoordSystem(l_stop,c_stop,m_MeshType,CARTESIAN);
	double intersect[3];
	double dist;
	int ret = LinePlaneIntersection(p0,p1,p2,c_start,c_stop,intersect,dist);
	if (ret<0)
	{
		cerr << __func__ << ": Error, unable to calculate intersection, this should not happen!" << endl;
		return path; // return empty path;
	}

	if (ret==0)
	{
		TransformCoordSystem(intersect,intersect,CARTESIAN,m_MeshType);
		intersect[1] = GetDiscLine(1,GetNumberOfLines(1,true)-1-(int)CC_closedAlpha);
		l_start[1] = FitToAlphaRange(l_start[1]);
		path1 = Operator::FindPath(l_start, intersect);
		if (g_settings.GetVerboseLevel()>2)
			cerr << __func__ << ": Intersection top: " << intersect[0] << "," << intersect[1] << "," << intersect[2] << endl;
	} //otherwise the path was not intersecting the upper a-bound...

	if (CC_closedAlpha==false)
	{
		for (int n=0;n<3;++n)
		{
			p0[n] = GetDiscLine(n,0);
			p1[n] = p0[n];
			p2[n] = p0[n];
		}
		p1[0] = discLines[0][numLines[0]-1];
		p2[2] = discLines[2][numLines[2]-1];

		TransformCoordSystem(p0,p0,m_MeshType,CARTESIAN);
		TransformCoordSystem(p1,p1,m_MeshType,CARTESIAN);
		TransformCoordSystem(p2,p2,m_MeshType,CARTESIAN);

		TransformCoordSystem(l_start,c_start,m_MeshType,CARTESIAN);
		TransformCoordSystem(l_stop,c_stop,m_MeshType,CARTESIAN);

		ret = LinePlaneIntersection(p0,p1,p2,c_start,c_stop,intersect,dist);
		TransformCoordSystem(intersect,intersect,CARTESIAN,m_MeshType);
	}

	if (ret==0)
	{
		intersect[1] = GetDiscLine(1,0);
		l_stop[1] = FitToAlphaRange(l_stop[1]);
		path2 = Operator::FindPath(intersect, l_stop);
		if (g_settings.GetVerboseLevel()>2)
			cerr << __func__ << ": Intersection bottom: " << intersect[0] << "," << intersect[1] << "," << intersect[2] << endl;
	}

	//combine path
	for (size_t t=0; t<path1.dir.size(); ++t)
	{
		path.posPath[0].push_back(path1.posPath[0].at(t));
		path.posPath[1].push_back(path1.posPath[1].at(t));
		path.posPath[2].push_back(path1.posPath[2].at(t));
		path.dir.push_back(path1.dir.at(t));
	}
	for (size_t t=0; t<path2.dir.size(); ++t)
	{
		path.posPath[0].push_back(path2.posPath[0].at(t));
		path.posPath[1].push_back(path2.posPath[1].at(t));
		path.posPath[2].push_back(path2.posPath[2].at(t));
		path.dir.push_back(path2.dir.at(t));
	}

	if (CC_closedAlpha==true)
		for (size_t t=0; t<path.dir.size(); ++t)
		{
			if ( ((path.dir.at(t)==0) || (path.dir.at(t)==2)) && (path.posPath[1].at(t)==0))
				path.posPath[1].at(t) = numLines[1]-2;
		}

	return path;
}

bool Operator_Cylinder::SetupCSXGrid(CSRectGrid* grid)
{
	unsigned int alphaNum;
	double* alphaLines = NULL;
	alphaLines = grid->GetLines(1,alphaLines,alphaNum,true);

	double minmaxA = fabs(alphaLines[alphaNum-1]-alphaLines[0]);
	if (fabs(minmaxA-2*PI) < OPERATOR_CYLINDER_CLOSED_ALPHA_THRESHOLD)
	{
		if (g_settings.GetVerboseLevel()>0)
			cout << "Operator_Cylinder::SetupCSXGrid: Alpha is a full 2*PI => closed Cylinder..." << endl;
		CC_closedAlpha = true;
		grid->SetLine(1,alphaNum-1,2*PI+alphaLines[0]);
		grid->AddDiscLine(1,2*PI+alphaLines[1]);
	}
	else if (minmaxA>2*PI)
	{
		cerr << "Operator_Cylinder::SetupCSXGrid: Alpha Max-Min must not be larger than 2*PI!!!" << endl;
		Reset();
		return false;
	}
	else
	{
		CC_closedAlpha=false;
	}

	CC_R0_included = false;
	if (grid->GetLine(0,0)<0)
	{
		cerr << "Operator_Cylinder::SetupCSXGrid: r<0 not allowed in Cylinder Coordinates!!!" << endl;
		Reset();
		return false;
	}
	else if (grid->GetLine(0,0)==0.0)
	{
		if (g_settings.GetVerboseLevel()>0)
			cout << "Operator_Cylinder::SetupCSXGrid: r=0 included..." << endl;
		CC_R0_included = CC_closedAlpha;  //needed for correct ec-calculation, deactivate if closed cylinder is false... --> E_r = 0 anyways
	}

#ifdef MPI_SUPPORT
		// Setup an MPI split in alpha direction for a closed cylinder
		CC_MPI_Alpha = false;
	if ((m_NeighborUp[1]>=0) || (m_NeighborDown[1]>=0)) //check for MPI split in alpha direction
	{
		double minmaxA = 2*PI;// fabs(m_OrigDiscLines[1][m_OrigNumLines[1]-1]-m_OrigDiscLines[1][0]);
		if (fabs(minmaxA-2*PI) < OPERATOR_CYLINDER_CLOSED_ALPHA_THRESHOLD) //check for closed alpha MPI split
		{
			CC_MPI_Alpha = true;
			if (m_OrigDiscLines[0][0]==0)
			{
				cerr << "Operator_Cylinder::SetupCSXGrid: Error: MPI split in alpha direction for closed cylinder including r==0 is currently not supported! Exit!" << endl;
				exit(-2);
			}

			if (m_NeighborUp[1]<0) //check if this process is at the alpha-end
			{
				grid->SetLine(1,alphaNum-1,2*PI+m_OrigDiscLines[1][0]);
				grid->AddDiscLine(1,2*PI+m_OrigDiscLines[1][1]);

				SetNeighborUp(1,m_ProcTable[m_ProcTablePos[0]][0][m_ProcTablePos[2]]);
			}

			if (m_NeighborDown[1]<0) //check if this process is at the alpha-start
			{
				SetNeighborDown(1,m_ProcTable[m_ProcTablePos[0]][m_SplitNumber[1]-1][m_ProcTablePos[2]]);
			}

			//Note: the process table will not reflect this up/down neighbors necessary for a closed cylinder
		}
	}
#endif

	if (Operator_Multithread::SetupCSXGrid(grid)==false)
		return false;

	if (CC_closedAlpha || CC_R0_included)
	{
		m_Cyl_Ext = new Operator_Ext_Cylinder(this);
		this->AddExtension(m_Cyl_Ext);
	}

	return true;
}

void Operator_Cylinder::ApplyMagneticBC(bool* dirs)
{
	if (dirs==NULL) return;
	if (CC_closedAlpha)
	{
		dirs[2]=0;
		dirs[3]=0; //no PMC in alpha directions...
	}
	if (CC_R0_included)
	{
		dirs[0]=0;  //no PMC in r_min directions...
	}
	Operator_Multithread::ApplyMagneticBC(dirs);
}

void Operator_Cylinder::AddExtension(Operator_Extension* op_ext)
{
	if (op_ext->IsCylinderCoordsSave(CC_closedAlpha, CC_R0_included))
		Operator_Multithread::AddExtension(op_ext);
	else
	{
		cerr << "Operator_Cylinder::AddExtension: Warning: Operator extension \"" << op_ext->GetExtensionName() << "\" is not compatible with cylinder-coords!! skipping...!" << endl;
		delete op_ext;
	}
}