summaryrefslogtreecommitdiff
path: root/openEMS/matlab/examples/waveguide/Coax_CylinderCoords.m
blob: 5e4606c62f172d5e0bf7690166e78d4be816426e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
%
% EXAMPLE / waveguide / coaxial cable using cylindrical coordinates
%
% This example demonstrates how to:
%  - use cylindrical coordinates
%  - setup a coaxial waveguide
%  - use analytic functions for waveguide excitations and voltage/current
%  calculations
% 
%
% Tested with
%  - Matlab 2009b
%  - openEMS v0.0.17
%
% (C) 2010 Thorsten Liebig <thorsten.liebig@uni-due.de>

close all
clear
clc

%% switches & options...
postprocessing_only = 0;
use_pml = 0;            % use pml boundaries instead of mur
openEMS_opts = '';
% openEMS_opts = [openEMS_opts ' --disable-dumps'];

%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
numTS = 1e5;            %number of timesteps
length = 1000;          %length of the waveguide
unit = 1e-3;            %drawing unit used
coax_rad_i  = 100;      %inner radius
coax_rad_a  = 230;      %outer radius
mesh_res = [10 nan 10]; %desired mesh resolution
N_alpha = 71;           %mesh lines in azimuth direction

physical_constants;

%excitation
f0 = 0.5e9;
epsR = 1;

%% create sim path %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Sim_Path = 'tmp';
Sim_CSX = 'coax.xml';

if (postprocessing_only==0)
    [status, message, messageid] = rmdir(Sim_Path,'s');
    [status, message, messageid] = mkdir(Sim_Path);
end

%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitCylindricalFDTD(numTS,1e-5);
FDTD = SetGaussExcite(FDTD,f0,f0);
BC = {'PEC','PEC','PEC','PEC','PEC','MUR'};
if (use_pml>0)
    BC = {'PEC','PEC','PEC','PEC','PEC','PML_8'};
end
FDTD = SetBoundaryCond(FDTD,BC);

%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX('CoordSystem',1);
mesh.x = coax_rad_i : mesh_res(1) : coax_rad_a;
mesh.y = linspace(0,2*pi,N_alpha);
mesh.z = 0 : mesh_res(3) : length;
CSX = DefineRectGrid(CSX, unit, mesh);

%% material
CSX = AddMaterial(CSX,'fill');
CSX = SetMaterialProperty(CSX,'fill','Epsilon',epsR);
start = [mesh.x(1) mesh.y(1) 0];
stop = [mesh.x(end) mesh.y(end) length];
CSX = AddBox(CSX,'fill',0 ,start,stop);

%% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddExcitation(CSX,'excite',0,[1 0 0]);
weight{1} = '1/rho';
weight{2} = 0;
weight{3} = 0;
CSX = SetExcitationWeight(CSX, 'excite', weight );
start = [coax_rad_i mesh.y(1)   0];
stop  = [coax_rad_a mesh.y(end) 0];
CSX = AddBox(CSX,'excite',0 ,start,stop);
 
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump(CSX,'Et_','DumpMode',0);
start = [mesh.x(1) , 0 , mesh.z(1)];
stop = [mesh.x(end) , 0 , mesh.z(end)];
CSX = AddBox(CSX,'Et_',0 , start,stop);

CSX = AddDump(CSX,'Ht_','DumpType',1,'DumpMode',0);
CSX = AddBox(CSX,'Ht_',0,start,stop);

%% define voltage calc boxes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%voltage calc
CSX = AddProbe(CSX,'ut1',0);
start = [ coax_rad_i 0 mesh.z(10) ];
stop  = [ coax_rad_a 0 mesh.z(10) ];
CSX = AddBox(CSX,'ut1', 0 ,start,stop);
CSX = AddProbe(CSX,'ut2',0);
start = [ coax_rad_i 0 mesh.z(end-10)];
stop  = [ coax_rad_a 0 mesh.z(end-10)];
CSX = AddBox(CSX,'ut2', 0 ,start,stop);

%current calc, for each position there are two currents, which will get
%averaged to match the voltage position in between (!Yee grid!)
CSX = AddProbe(CSX,'it1a',1);
mid = 0.5*(coax_rad_i+coax_rad_a);
start = [ 0   mesh.z(1)   mesh.z(9) ];
stop  = [ mid mesh.z(end) mesh.z(9) ];
CSX = AddBox(CSX,'it1a', 0 ,start,stop);
CSX = AddProbe(CSX,'it1b',1);
start = [ 0   mesh.z(1)   mesh.z(10) ];
stop  = [ mid mesh.z(end) mesh.z(10) ];
CSX = AddBox(CSX,'it1b', 0 ,start,stop);

CSX = AddProbe(CSX,'it2a',1);
start = [ 0   mesh.z(1)   mesh.z(end-11) ];
stop  = [ mid mesh.z(end) mesh.z(end-11) ];
CSX = AddBox(CSX,'it2a', 0 ,start,stop);
CSX = AddProbe(CSX,'it2b',1);
start = [ 0   mesh.z(1)   mesh.z(end-10) ];
stop  = [ mid mesh.z(end) mesh.z(end-10) ];
CSX = AddBox(CSX,'it2b', 0 ,start,stop);

%% Write openEMS
if (postprocessing_only==0)
    WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
    RunOpenEMS(Sim_Path, Sim_CSX, openEMS_opts);
end

%%
freq = linspace(0,2*f0,201);
U = ReadUI({'ut1','ut2'},[Sim_Path '/'],freq);
I = ReadUI({'it1a','it1b','it2a','it2b'},[Sim_Path '/'],freq);
Exc = ReadUI('et',Sim_Path,freq);

%% plot voltages
figure
plot(U.TD{1}.t, U.TD{1}.val,'Linewidth',2);
hold on;
grid on;
plot(U.TD{2}.t, U.TD{2}.val,'r--','Linewidth',2);
xlabel('time (s)')
ylabel('voltage (V)')
legend('u_1(t)','u_2(t)')

%% calculate incoming and reflected voltages & currents
ZL_a = ones(size(freq))*Z0/2/pi/sqrt(epsR)*log(coax_rad_a/coax_rad_i); %analytic line-impedance of a coax

uf1 = U.FD{1}.val./Exc.FD{1}.val;
uf2 = U.FD{2}.val./Exc.FD{1}.val;
if1 = 0.5*(I.FD{1}.val+I.FD{2}.val)./Exc.FD{1}.val;
if2 = 0.5*(I.FD{3}.val+I.FD{4}.val)./Exc.FD{1}.val;

uf1_inc = 0.5 * ( uf1 + if1 .* ZL_a );
if1_inc = 0.5 * ( if1 + uf1 ./ ZL_a );
uf2_inc = 0.5 * ( uf2 + if2 .* ZL_a );
if2_inc = 0.5 * ( if2 + uf2 ./ ZL_a );

uf1_ref = uf1 - uf1_inc;
if1_ref = if1 - if1_inc;
uf2_ref = uf2 - uf2_inc;
if2_ref = if2 - if2_inc;

% plot s-parameter
figure
s11 = uf1_ref./uf1_inc;
s21 = uf2_inc./uf1_inc;
plot(freq,20*log10(abs(s11)),'Linewidth',2);
xlim([freq(1) freq(end)]);
xlabel('frequency (Hz)')
ylabel('s-para (dB)');
% ylim([-40 5]);
grid on;
hold on;
plot(freq,20*log10(abs(s21)),'r','Linewidth',2);
legend('s11','s21','Location','SouthEast');

% plot line-impedance comparison
figure()
ZL = uf1./if1;
plot(freq,real(ZL),'Linewidth',2);
xlim([freq(1) freq(end)]);
xlabel('frequency (Hz)')
ylabel('line-impedance (\Omega)');
grid on;
hold on;
plot(freq,imag(ZL),'r--','Linewidth',2);
plot(freq,ZL_a,'g-.','Linewidth',2);
legend('\Re\{ZL\}','\Im\{ZL\}','ZL-analytic','Location','Best');