summaryrefslogtreecommitdiff
path: root/openEMS/python/Tutorials/Bent_Patch_Antenna.py
blob: ef2cb0ed78286e1fca5d3ba6d578ff0531c1d88e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# -*- coding: utf-8 -*-
"""
 Bent Patch Antenna Tutorial

 Tested with
  - python 3.4
  - openEMS v0.0.33+

 (C) 2016 Thorsten Liebig <thorsten.liebig@gmx.de>

"""

### Import Libraries
import os, tempfile
from pylab import *
from mpl_toolkits.mplot3d import Axes3D

from CSXCAD import CSXCAD

from openEMS.openEMS import openEMS
from openEMS.physical_constants import *


### Setup the simulation
Sim_Path = os.path.join(tempfile.gettempdir(), 'Bent_Patch')

post_proc_only = False

unit = 1e-3 # all length in mm

f0 = 2.4e9 # center frequency, frequency of interest!
lambda0 = round(C0/f0/unit) # wavelength in mm
fc = 0.5e9 # 20 dB corner frequency

# patch width in alpha-direction
patch_width  = 32 # resonant length in alpha-direction
patch_radius = 50 # radius
patch_length = 40 # patch length in z-direction

#substrate setup
substrate_epsR   = 3.38
substrate_kappa  = 1e-3 * 2*pi*2.45e9 * EPS0*substrate_epsR
substrate_width  = 80
substrate_length = 90
substrate_thickness = 1.524
substrate_cells = 4

#setup feeding
feed_pos   = -5.5  #feeding position in x-direction
feed_width = 2     #feeding port width
feed_R     = 50    #feed resistance

# size of the simulation box
SimBox_rad    = 2*100
SimBox_height = 1.5*200

### Setup FDTD parameter & excitation function
FDTD = openEMS(CoordSystem=1) # init a cylindrical FDTD
f0 = 2e9 # center frequency
fc = 1e9 # 20 dB corner frequency
FDTD.SetGaussExcite(f0, fc)
FDTD.SetBoundaryCond(['MUR', 'MUR', 'MUR', 'MUR', 'MUR', 'MUR']) # boundary conditions

### Setup the Geometry & Mesh
# init a cylindrical mesh
CSX = CSXCAD.ContinuousStructure(CoordSystem=1)
FDTD.SetCSX(CSX)
mesh = CSX.GetGrid()
mesh.SetDeltaUnit(unit)

### Setup the geometry using cylindrical coordinates
# calculate some width as an angle in radiant
patch_ang_width = patch_width/(patch_radius+substrate_thickness)
substr_ang_width = substrate_width/patch_radius
feed_angle = feed_pos/patch_radius

# create patch
patch = CSX.AddMetal('patch') # create a perfect electric conductor (PEC)
start = [patch_radius+substrate_thickness, -patch_ang_width/2, -patch_length/2 ]
stop  = [patch_radius+substrate_thickness,  patch_ang_width/2,  patch_length/2 ]
CSX.AddBox(patch, priority=10, start=start, stop=stop, edges2grid='all') # add a box-primitive to the metal property 'patch'

# create substrate
substrate = CSX.AddMaterial('substrate', epsilon=substrate_epsR, kappa=substrate_kappa  )
start = [patch_radius                    , -substr_ang_width/2, -substrate_length/2]
stop  = [patch_radius+substrate_thickness,  substr_ang_width/2,  substrate_length/2]
substrate.AddBox(start=start, stop=stop, edges2grid='all')

# save current density oon the patch
jt_patch = CSX.AddDump('Jt_patch', dump_type=3, file_type=1)
start = [patch_radius+substrate_thickness, -substr_ang_width/2, -substrate_length/2]
stop  = [patch_radius+substrate_thickness, +substr_ang_width/2,  substrate_length/2]
jt_patch.AddBox(start=start, stop=stop)

# create ground
gnd = CSX.AddMetal('gnd') # create a perfect electric conductor (PEC)
start = [patch_radius, -substr_ang_width/2, -substrate_length/2]
stop  = [patch_radius, +substr_ang_width/2, +substrate_length/2]
gnd.AddBox(priority=10, start=start, stop=stop, edges2grid='all')

# apply the excitation & resist as a current source
start = [patch_radius                    ,  feed_angle, 0]
stop  = [patch_radius+substrate_thickness,  feed_angle, 0]
port = FDTD.AddLumpedPort(1 ,feed_R, start, stop, 'r', 1.0, priority=50, edges2grid='all')

### Finalize the Mesh
# add the simulation domain size
mesh.AddLine('r', patch_radius+np.array([-20, SimBox_rad]))
mesh.AddLine('a', [-0.75*pi, 0.75*pi])
mesh.AddLine('z', [-SimBox_height/2, SimBox_height/2])

# add some lines for the substrate
mesh.AddLine('r', patch_radius+np.linspace(0,substrate_thickness,substrate_cells))

# generate a smooth mesh with max. cell size: lambda_min / 20
max_res = C0 / (f0+fc) / unit / 20
max_ang = max_res/(SimBox_rad+patch_radius) # max res in radiant
mesh.SmoothMeshLines(0, max_res, 1.4)
mesh.SmoothMeshLines(1, max_ang, 1.4)
mesh.SmoothMeshLines(2, max_res, 1.4)

## Add the nf2ff recording box
nf2ff = FDTD.CreateNF2FFBox()

### Run the simulation
if 0:  # debugging only
    CSX_file = os.path.join(Sim_Path, 'bent_patch.xml')
    if not os.path.exists(Sim_Path):
        os.mkdir(Sim_Path)
    CSX.Write2XML(CSX_file)
    os.system(r'AppCSXCAD "{}"'.format(CSX_file))


if not post_proc_only:
    FDTD.Run(Sim_Path, verbose=3, cleanup=True)

### Postprocessing & plotting
f = np.linspace(max(1e9,f0-fc),f0+fc,401)
port.CalcPort(Sim_Path, f)
Zin = port.uf_tot / port.if_tot
s11 = port.uf_ref/port.uf_inc
s11_dB = 20.0*np.log10(np.abs(s11))

figure()
plot(f/1e9, s11_dB)
grid()
ylabel('s11 (dB)')
xlabel('frequency (GHz)')

P_in = 0.5*np.real(port.uf_tot * np.conj(port.if_tot)) # antenna feed power

# plot feed point impedance
figure()
plot( f/1e6, real(Zin), 'k-', linewidth=2, label=r'$\Re(Z_{in})$' )
grid()
plot( f/1e6, imag(Zin), 'r--', linewidth=2, label=r'$\Im(Z_{in})$' )
title( 'feed point impedance' )
xlabel( 'frequency (MHz)' )
ylabel( 'impedance ($\Omega$)' )
legend( )


idx = np.where((s11_dB<-10) & (s11_dB==np.min(s11_dB)))[0]
if not len(idx)==1:
    print('No resonance frequency found for far-field calulation')
else:
    f_res = f[idx[0]]
    theta = np.arange(-180.0, 180.0, 2.0)
    print("Calculate NF2FF")
    nf2ff_res_phi0 = nf2ff.CalcNF2FF(Sim_Path, f_res, theta, 0, center=np.array([patch_radius+substrate_thickness, 0, 0])*unit, read_cached=True, outfile='nf2ff_xz.h5')

    figure(figsize=(15, 7))
    ax = subplot(121, polar=True)
    E_norm = 20.0*np.log10(nf2ff_res_phi0.E_norm/np.max(nf2ff_res_phi0.E_norm)) + nf2ff_res_phi0.Dmax
    ax.plot(np.deg2rad(theta), 10**(np.squeeze(E_norm)/20), linewidth=2, label='xz-plane')
    ax.grid(True)
    ax.set_xlabel('theta (deg)')
    ax.set_theta_zero_location('N')
    ax.set_theta_direction(-1)
    ax.legend(loc=3)

    phi = theta
    nf2ff_res_theta90 = nf2ff.CalcNF2FF(Sim_Path, f_res, 90, phi, center=np.array([patch_radius+substrate_thickness, 0, 0])*unit, read_cached=True, outfile='nf2ff_xy.h5')

    ax = subplot(122, polar=True)
    E_norm = 20.0*np.log10(nf2ff_res_theta90.E_norm/np.max(nf2ff_res_theta90.E_norm)) + nf2ff_res_theta90.Dmax
    ax.plot(np.deg2rad(phi), 10**(np.squeeze(E_norm)/20), linewidth=2, label='xy-plane')
    ax.grid(True)
    ax.set_xlabel('phi (deg)')
    suptitle('Bent Patch Anteanna Pattern\nFrequency: {} GHz'.format(f_res/1e9), fontsize=14)
    ax.legend(loc=3)

    print( 'radiated power: Prad = {:.2e} Watt'.format(nf2ff_res_theta90.Prad[0]))
    print( 'directivity:    Dmax = {:.1f} ({:.1f} dBi)'.format(nf2ff_res_theta90.Dmax[0], 10*np.log10(nf2ff_res_theta90.Dmax[0])))
    print( 'efficiency:   nu_rad = {:.1f} %'.format(100*nf2ff_res_theta90.Prad[0]/real(P_in[idx[0]])))

show()