This section is from "The Encyclopaedia Britannica". Also available from Amazon: Great Books of the Western World (60 Volumes).

The hand of the fourth clock will then give in succession the numbers 1, 8, 27, 64, etc., being the cubes of the natural numbers. The numbers thus obtained on the last dial will have the differences given by those shown in succession on the dial before it, their differences by the next, and so on till we come to the constant difference on the first dial. A function

y = a + bx + cx2 + dx3 + ex4

gives, on increasing x always by unity, a set of values for which the fourth difference is constant. We can, by an arrangement like the above, with five clocks calculate y for x = 1, 2, 3, ... to any extent. This is the principle of Babbage's difference machine. The clock dials have to be replaced by a series of dials as in the arithmometers described, and an arrangement has to be made to drive the whole by turning one handle by hand or some other power. Imagine further that with the last clock is connected a kind of typewriter which prints the number, or, better, impresses the number in a soft substance from which a stereotype casting can be taken, and we have a machine which, when once set for a given formula like the above, will automatically print, or prepare stereotype plates for the printing of, tables of the function without any copying or typesetting, thus excluding all possibility of errors. Of this "Difference engine," as Babbage called it, a part was finished in 1834, the government having contributed £17,000 towards the cost.

This great expense was chiefly due to the want of proper machine tools.

Meanwhile Babbage had conceived the idea of a much more powerful machine, the "analytical engine," intended to perform any series of possible arithmetical operations. Each of these was to be communicated to the machine by aid of cards with holes punched in them into which levers could drop. It was long taken for granted that Babbage left complete plans; the committee of the British Association appointed to consider this question came, however, to the conclusion (Brit. Assoc. Report, 1878, pp. 92-102) that no detailed working drawings existed at all; that the drawings left were only diagrammatic and not nearly sufficient to put into the hands of a draughtsman for making working plans; and "that in the present state of the design it is not more than a theoretical possibility." A full account of the work done by Babbage in connexion with calculating machines, and much else published by others in connexion therewith, is contained in a work published by his son, General Babbage.

Fig. 4.

Slide rules are instruments for performing logarithmic calculations mechanically, and are extensively used, especially where Slide rules. only rough approximations are required. They are almost as old as logarithms themselves. Edmund Gunter drew a "logarithmic line" on his "Scales" as follows (fig. 4): - On a line AB lengths are set off to scale to represent the common logarithms of the numbers 1 2 3 ... 10, and the points thus obtained are marked with these numbers. As log 1 = 0, the beginning A has the number 1 and B the number 10, hence the unit of length is AB, as log 10 = 1. The same division is repeated from B to C. The distance 1,2 thus represents log 2, 1,3 gives log 3, the distance between 4 and 5 gives log 5 - log 4 = log 5/4, and so for others. In order to multiply two numbers, say 2 and 3, we have log 2 × 3 = log 2 + log 3. Hence, setting off the distance 1,2 from 3 forward by the aid of a pair of compasses will give the distance log 2 + log 3, and will bring us to 6 as the required product. Again, if it is required to find 4/5 of 7, set off the distance between 4 and 5 from 7 backwards, and the required number will be obtained.

In the actual scales the spaces between the numbers are subdivided into 10 or even more parts, so that from two to three figures may be read. The numbers 2, 3 ... in the interval BC give the logarithms of 10 times the same numbers in the interval AB; hence, if the 2 in the latter means 2 or .2, then the 2 in the former means 20 or 2.

Soon after Gunter's publication (1620) of these "logarithmic lines," Edmund Wingate (1672) constructed the slide rule by repeating the logarithmic scale on a tongue or "slide," which could be moved along the first scale, thus avoiding the use of a pair of compasses. A clear idea of this device can be formed if the scale in fig. 4 be copied on the edge of a strip of paper placed against the line A C. If this is now moved to the right till its 1 comes opposite the 2 on the first scale, then the 3 of the second will be opposite 6 on the top scale, this being the product of 2 and 3; and in this position every number on the top scale will be twice that on the lower. For every position of the lower scale the ratio of the numbers on the two scales which coincide will be the same. Therefore multiplications, divisions, and simple proportions can be solved at once.

Dr John Perry added log log scales to the ordinary slide rule in order to facilitate the calculation of ax or ex according to the formula log logax = log loga + logx. These rules are manufactured by A.G. Thornton of Manchester.

Many different forms of slide rules are now on the market. The handiest for general use is the Gravet rule made by Tavernier-Gravet in Paris, according to instructions of the mathematician V.M.A. Mannheim of the école Polytechnique in Paris. It contains at the back of the slide scales for the logarithms of sines and tangents so arranged that they can be worked with the scale on the front. An improved form is now made by Davis and Son of Derby, who engrave the scales on white celluloid instead of on box-wood, thus greatly facilitating the readings. These scales have the distance from one to ten about twice that in fig. 4. Tavernier-Gravet makes them of that size and longer, even &FRAC12; metre long. But they then become somewhat unwieldy, though they allow of reading to more figures. To get a handy long scale Professor G. Fuller has constructed a spiral slide rule drawn on a cylinder, which admits of reading to three and four figures. The handiest of all is perhaps the "Calculating Circle" by Boucher, made in the form of a watch. For various purposes special adaptations of the slide rules are met with - for instance, in various exposure meters for photographic purposes. General Strachey introduced slide rules into the Meteorological Office for performing special calculations.

At some blast furnaces a slide rule has been used for determining the amount of coke and flux required for any weight of ore. Near the balance a large logarithmic scale is fixed with a slide which has three indices only. A load of ore is put on the scales, and the first index of the slide is put to the number giving the weight, when the second and third point to the weights of coke and flux required.

By placing a number of slides side by side, drawn if need be to different scales of length, more complicated calculations may be performed. It is then convenient to make the scales circular. A number of rings or disks are mounted side by side on a cylinder, each having on its rim a log-scale.

The "Callendar Cable Calculator," invented by Harold Hastings and manufactured by Robert W. Paul, is of this kind. In it a number of disks are mounted on a common shaft, on which each turns freely unless a button is pressed down whereby the disk is clamped to the shaft. Another disk is fixed to the shaft. In front of the disks lies a fixed zero line. Let all disks be set to zero and the shaft be turned, with the first disk clamped, till a desired number appears on the zero line; let then the first disk be released and the second clamped and so on; then the fixed disk will add up all the turnings and thus give the product of the numbers shown on the several disks. If the division on the disks is drawn to different scales, more or less complicated calculations may be rapidly performed. Thus if for some purpose the value of say ab&SUP3; √c is required for many different values of a, b, c, three movable disks would be needed with divisions drawn to scales of lengths in the proportion 1: 3: &FRAC12;. The instrument now on sale contains six movable disks.

Continue to: