summaryrefslogtreecommitdiff
path: root/doc/html/pcrepattern.html
diff options
context:
space:
mode:
Diffstat (limited to 'doc/html/pcrepattern.html')
-rw-r--r--doc/html/pcrepattern.html3273
1 files changed, 3273 insertions, 0 deletions
diff --git a/doc/html/pcrepattern.html b/doc/html/pcrepattern.html
new file mode 100644
index 0000000..55034a7
--- /dev/null
+++ b/doc/html/pcrepattern.html
@@ -0,0 +1,3273 @@
+<html>
+<head>
+<title>pcrepattern specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcrepattern man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">PCRE REGULAR EXPRESSION DETAILS</a>
+<li><a name="TOC2" href="#SEC2">SPECIAL START-OF-PATTERN ITEMS</a>
+<li><a name="TOC3" href="#SEC3">EBCDIC CHARACTER CODES</a>
+<li><a name="TOC4" href="#SEC4">CHARACTERS AND METACHARACTERS</a>
+<li><a name="TOC5" href="#SEC5">BACKSLASH</a>
+<li><a name="TOC6" href="#SEC6">CIRCUMFLEX AND DOLLAR</a>
+<li><a name="TOC7" href="#SEC7">FULL STOP (PERIOD, DOT) AND \N</a>
+<li><a name="TOC8" href="#SEC8">MATCHING A SINGLE DATA UNIT</a>
+<li><a name="TOC9" href="#SEC9">SQUARE BRACKETS AND CHARACTER CLASSES</a>
+<li><a name="TOC10" href="#SEC10">POSIX CHARACTER CLASSES</a>
+<li><a name="TOC11" href="#SEC11">COMPATIBILITY FEATURE FOR WORD BOUNDARIES</a>
+<li><a name="TOC12" href="#SEC12">VERTICAL BAR</a>
+<li><a name="TOC13" href="#SEC13">INTERNAL OPTION SETTING</a>
+<li><a name="TOC14" href="#SEC14">SUBPATTERNS</a>
+<li><a name="TOC15" href="#SEC15">DUPLICATE SUBPATTERN NUMBERS</a>
+<li><a name="TOC16" href="#SEC16">NAMED SUBPATTERNS</a>
+<li><a name="TOC17" href="#SEC17">REPETITION</a>
+<li><a name="TOC18" href="#SEC18">ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS</a>
+<li><a name="TOC19" href="#SEC19">BACK REFERENCES</a>
+<li><a name="TOC20" href="#SEC20">ASSERTIONS</a>
+<li><a name="TOC21" href="#SEC21">CONDITIONAL SUBPATTERNS</a>
+<li><a name="TOC22" href="#SEC22">COMMENTS</a>
+<li><a name="TOC23" href="#SEC23">RECURSIVE PATTERNS</a>
+<li><a name="TOC24" href="#SEC24">SUBPATTERNS AS SUBROUTINES</a>
+<li><a name="TOC25" href="#SEC25">ONIGURUMA SUBROUTINE SYNTAX</a>
+<li><a name="TOC26" href="#SEC26">CALLOUTS</a>
+<li><a name="TOC27" href="#SEC27">BACKTRACKING CONTROL</a>
+<li><a name="TOC28" href="#SEC28">SEE ALSO</a>
+<li><a name="TOC29" href="#SEC29">AUTHOR</a>
+<li><a name="TOC30" href="#SEC30">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">PCRE REGULAR EXPRESSION DETAILS</a><br>
+<P>
+The syntax and semantics of the regular expressions that are supported by PCRE
+are described in detail below. There is a quick-reference syntax summary in the
+<a href="pcresyntax.html"><b>pcresyntax</b></a>
+page. PCRE tries to match Perl syntax and semantics as closely as it can. PCRE
+also supports some alternative regular expression syntax (which does not
+conflict with the Perl syntax) in order to provide some compatibility with
+regular expressions in Python, .NET, and Oniguruma.
+</P>
+<P>
+Perl's regular expressions are described in its own documentation, and
+regular expressions in general are covered in a number of books, some of which
+have copious examples. Jeffrey Friedl's "Mastering Regular Expressions",
+published by O'Reilly, covers regular expressions in great detail. This
+description of PCRE's regular expressions is intended as reference material.
+</P>
+<P>
+This document discusses the patterns that are supported by PCRE when one its
+main matching functions, <b>pcre_exec()</b> (8-bit) or <b>pcre[16|32]_exec()</b>
+(16- or 32-bit), is used. PCRE also has alternative matching functions,
+<b>pcre_dfa_exec()</b> and <b>pcre[16|32_dfa_exec()</b>, which match using a
+different algorithm that is not Perl-compatible. Some of the features discussed
+below are not available when DFA matching is used. The advantages and
+disadvantages of the alternative functions, and how they differ from the normal
+functions, are discussed in the
+<a href="pcrematching.html"><b>pcrematching</b></a>
+page.
+</P>
+<br><a name="SEC2" href="#TOC1">SPECIAL START-OF-PATTERN ITEMS</a><br>
+<P>
+A number of options that can be passed to <b>pcre_compile()</b> can also be set
+by special items at the start of a pattern. These are not Perl-compatible, but
+are provided to make these options accessible to pattern writers who are not
+able to change the program that processes the pattern. Any number of these
+items may appear, but they must all be together right at the start of the
+pattern string, and the letters must be in upper case.
+</P>
+<br><b>
+UTF support
+</b><br>
+<P>
+The original operation of PCRE was on strings of one-byte characters. However,
+there is now also support for UTF-8 strings in the original library, an
+extra library that supports 16-bit and UTF-16 character strings, and a
+third library that supports 32-bit and UTF-32 character strings. To use these
+features, PCRE must be built to include appropriate support. When using UTF
+strings you must either call the compiling function with the PCRE_UTF8,
+PCRE_UTF16, or PCRE_UTF32 option, or the pattern must start with one of
+these special sequences:
+<pre>
+ (*UTF8)
+ (*UTF16)
+ (*UTF32)
+ (*UTF)
+</pre>
+(*UTF) is a generic sequence that can be used with any of the libraries.
+Starting a pattern with such a sequence is equivalent to setting the relevant
+option. How setting a UTF mode affects pattern matching is mentioned in several
+places below. There is also a summary of features in the
+<a href="pcreunicode.html"><b>pcreunicode</b></a>
+page.
+</P>
+<P>
+Some applications that allow their users to supply patterns may wish to
+restrict them to non-UTF data for security reasons. If the PCRE_NEVER_UTF
+option is set at compile time, (*UTF) etc. are not allowed, and their
+appearance causes an error.
+</P>
+<br><b>
+Unicode property support
+</b><br>
+<P>
+Another special sequence that may appear at the start of a pattern is (*UCP).
+This has the same effect as setting the PCRE_UCP option: it causes sequences
+such as \d and \w to use Unicode properties to determine character types,
+instead of recognizing only characters with codes less than 128 via a lookup
+table.
+</P>
+<br><b>
+Disabling auto-possessification
+</b><br>
+<P>
+If a pattern starts with (*NO_AUTO_POSSESS), it has the same effect as setting
+the PCRE_NO_AUTO_POSSESS option at compile time. This stops PCRE from making
+quantifiers possessive when what follows cannot match the repeated item. For
+example, by default a+b is treated as a++b. For more details, see the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+documentation.
+</P>
+<br><b>
+Disabling start-up optimizations
+</b><br>
+<P>
+If a pattern starts with (*NO_START_OPT), it has the same effect as setting the
+PCRE_NO_START_OPTIMIZE option either at compile or matching time. This disables
+several optimizations for quickly reaching "no match" results. For more
+details, see the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+documentation.
+<a name="newlines"></a></P>
+<br><b>
+Newline conventions
+</b><br>
+<P>
+PCRE supports five different conventions for indicating line breaks in
+strings: a single CR (carriage return) character, a single LF (linefeed)
+character, the two-character sequence CRLF, any of the three preceding, or any
+Unicode newline sequence. The
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page has
+<a href="pcreapi.html#newlines">further discussion</a>
+about newlines, and shows how to set the newline convention in the
+<i>options</i> arguments for the compiling and matching functions.
+</P>
+<P>
+It is also possible to specify a newline convention by starting a pattern
+string with one of the following five sequences:
+<pre>
+ (*CR) carriage return
+ (*LF) linefeed
+ (*CRLF) carriage return, followed by linefeed
+ (*ANYCRLF) any of the three above
+ (*ANY) all Unicode newline sequences
+</pre>
+These override the default and the options given to the compiling function. For
+example, on a Unix system where LF is the default newline sequence, the pattern
+<pre>
+ (*CR)a.b
+</pre>
+changes the convention to CR. That pattern matches "a\nb" because LF is no
+longer a newline. If more than one of these settings is present, the last one
+is used.
+</P>
+<P>
+The newline convention affects where the circumflex and dollar assertions are
+true. It also affects the interpretation of the dot metacharacter when
+PCRE_DOTALL is not set, and the behaviour of \N. However, it does not affect
+what the \R escape sequence matches. By default, this is any Unicode newline
+sequence, for Perl compatibility. However, this can be changed; see the
+description of \R in the section entitled
+<a href="#newlineseq">"Newline sequences"</a>
+below. A change of \R setting can be combined with a change of newline
+convention.
+</P>
+<br><b>
+Setting match and recursion limits
+</b><br>
+<P>
+The caller of <b>pcre_exec()</b> can set a limit on the number of times the
+internal <b>match()</b> function is called and on the maximum depth of
+recursive calls. These facilities are provided to catch runaway matches that
+are provoked by patterns with huge matching trees (a typical example is a
+pattern with nested unlimited repeats) and to avoid running out of system stack
+by too much recursion. When one of these limits is reached, <b>pcre_exec()</b>
+gives an error return. The limits can also be set by items at the start of the
+pattern of the form
+<pre>
+ (*LIMIT_MATCH=d)
+ (*LIMIT_RECURSION=d)
+</pre>
+where d is any number of decimal digits. However, the value of the setting must
+be less than the value set (or defaulted) by the caller of <b>pcre_exec()</b>
+for it to have any effect. In other words, the pattern writer can lower the
+limits set by the programmer, but not raise them. If there is more than one
+setting of one of these limits, the lower value is used.
+</P>
+<br><a name="SEC3" href="#TOC1">EBCDIC CHARACTER CODES</a><br>
+<P>
+PCRE can be compiled to run in an environment that uses EBCDIC as its character
+code rather than ASCII or Unicode (typically a mainframe system). In the
+sections below, character code values are ASCII or Unicode; in an EBCDIC
+environment these characters may have different code values, and there are no
+code points greater than 255.
+</P>
+<br><a name="SEC4" href="#TOC1">CHARACTERS AND METACHARACTERS</a><br>
+<P>
+A regular expression is a pattern that is matched against a subject string from
+left to right. Most characters stand for themselves in a pattern, and match the
+corresponding characters in the subject. As a trivial example, the pattern
+<pre>
+ The quick brown fox
+</pre>
+matches a portion of a subject string that is identical to itself. When
+caseless matching is specified (the PCRE_CASELESS option), letters are matched
+independently of case. In a UTF mode, PCRE always understands the concept of
+case for characters whose values are less than 128, so caseless matching is
+always possible. For characters with higher values, the concept of case is
+supported if PCRE is compiled with Unicode property support, but not otherwise.
+If you want to use caseless matching for characters 128 and above, you must
+ensure that PCRE is compiled with Unicode property support as well as with
+UTF support.
+</P>
+<P>
+The power of regular expressions comes from the ability to include alternatives
+and repetitions in the pattern. These are encoded in the pattern by the use of
+<i>metacharacters</i>, which do not stand for themselves but instead are
+interpreted in some special way.
+</P>
+<P>
+There are two different sets of metacharacters: those that are recognized
+anywhere in the pattern except within square brackets, and those that are
+recognized within square brackets. Outside square brackets, the metacharacters
+are as follows:
+<pre>
+ \ general escape character with several uses
+ ^ assert start of string (or line, in multiline mode)
+ $ assert end of string (or line, in multiline mode)
+ . match any character except newline (by default)
+ [ start character class definition
+ | start of alternative branch
+ ( start subpattern
+ ) end subpattern
+ ? extends the meaning of (
+ also 0 or 1 quantifier
+ also quantifier minimizer
+ * 0 or more quantifier
+ + 1 or more quantifier
+ also "possessive quantifier"
+ { start min/max quantifier
+</pre>
+Part of a pattern that is in square brackets is called a "character class". In
+a character class the only metacharacters are:
+<pre>
+ \ general escape character
+ ^ negate the class, but only if the first character
+ - indicates character range
+ [ POSIX character class (only if followed by POSIX syntax)
+ ] terminates the character class
+</pre>
+The following sections describe the use of each of the metacharacters.
+</P>
+<br><a name="SEC5" href="#TOC1">BACKSLASH</a><br>
+<P>
+The backslash character has several uses. Firstly, if it is followed by a
+character that is not a number or a letter, it takes away any special meaning
+that character may have. This use of backslash as an escape character applies
+both inside and outside character classes.
+</P>
+<P>
+For example, if you want to match a * character, you write \* in the pattern.
+This escaping action applies whether or not the following character would
+otherwise be interpreted as a metacharacter, so it is always safe to precede a
+non-alphanumeric with backslash to specify that it stands for itself. In
+particular, if you want to match a backslash, you write \\.
+</P>
+<P>
+In a UTF mode, only ASCII numbers and letters have any special meaning after a
+backslash. All other characters (in particular, those whose codepoints are
+greater than 127) are treated as literals.
+</P>
+<P>
+If a pattern is compiled with the PCRE_EXTENDED option, most white space in the
+pattern (other than in a character class), and characters between a # outside a
+character class and the next newline, inclusive, are ignored. An escaping
+backslash can be used to include a white space or # character as part of the
+pattern.
+</P>
+<P>
+If you want to remove the special meaning from a sequence of characters, you
+can do so by putting them between \Q and \E. This is different from Perl in
+that $ and @ are handled as literals in \Q...\E sequences in PCRE, whereas in
+Perl, $ and @ cause variable interpolation. Note the following examples:
+<pre>
+ Pattern PCRE matches Perl matches
+
+ \Qabc$xyz\E abc$xyz abc followed by the contents of $xyz
+ \Qabc\$xyz\E abc\$xyz abc\$xyz
+ \Qabc\E\$\Qxyz\E abc$xyz abc$xyz
+</pre>
+The \Q...\E sequence is recognized both inside and outside character classes.
+An isolated \E that is not preceded by \Q is ignored. If \Q is not followed
+by \E later in the pattern, the literal interpretation continues to the end of
+the pattern (that is, \E is assumed at the end). If the isolated \Q is inside
+a character class, this causes an error, because the character class is not
+terminated.
+<a name="digitsafterbackslash"></a></P>
+<br><b>
+Non-printing characters
+</b><br>
+<P>
+A second use of backslash provides a way of encoding non-printing characters
+in patterns in a visible manner. There is no restriction on the appearance of
+non-printing characters, apart from the binary zero that terminates a pattern,
+but when a pattern is being prepared by text editing, it is often easier to use
+one of the following escape sequences than the binary character it represents.
+In an ASCII or Unicode environment, these escapes are as follows:
+<pre>
+ \a alarm, that is, the BEL character (hex 07)
+ \cx "control-x", where x is any ASCII character
+ \e escape (hex 1B)
+ \f form feed (hex 0C)
+ \n linefeed (hex 0A)
+ \r carriage return (hex 0D)
+ \t tab (hex 09)
+ \0dd character with octal code 0dd
+ \ddd character with octal code ddd, or back reference
+ \o{ddd..} character with octal code ddd..
+ \xhh character with hex code hh
+ \x{hhh..} character with hex code hhh.. (non-JavaScript mode)
+ \uhhhh character with hex code hhhh (JavaScript mode only)
+</pre>
+The precise effect of \cx on ASCII characters is as follows: if x is a lower
+case letter, it is converted to upper case. Then bit 6 of the character (hex
+40) is inverted. Thus \cA to \cZ become hex 01 to hex 1A (A is 41, Z is 5A),
+but \c{ becomes hex 3B ({ is 7B), and \c; becomes hex 7B (; is 3B). If the
+data item (byte or 16-bit value) following \c has a value greater than 127, a
+compile-time error occurs. This locks out non-ASCII characters in all modes.
+</P>
+<P>
+When PCRE is compiled in EBCDIC mode, \a, \e, \f, \n, \r, and \t
+generate the appropriate EBCDIC code values. The \c escape is processed
+as specified for Perl in the <b>perlebcdic</b> document. The only characters
+that are allowed after \c are A-Z, a-z, or one of @, [, \, ], ^, _, or ?. Any
+other character provokes a compile-time error. The sequence \@ encodes
+character code 0; the letters (in either case) encode characters 1-26 (hex 01
+to hex 1A); [, \, ], ^, and _ encode characters 27-31 (hex 1B to hex 1F), and
+\? becomes either 255 (hex FF) or 95 (hex 5F).
+</P>
+<P>
+Thus, apart from \?, these escapes generate the same character code values as
+they do in an ASCII environment, though the meanings of the values mostly
+differ. For example, \G always generates code value 7, which is BEL in ASCII
+but DEL in EBCDIC.
+</P>
+<P>
+The sequence \? generates DEL (127, hex 7F) in an ASCII environment, but
+because 127 is not a control character in EBCDIC, Perl makes it generate the
+APC character. Unfortunately, there are several variants of EBCDIC. In most of
+them the APC character has the value 255 (hex FF), but in the one Perl calls
+POSIX-BC its value is 95 (hex 5F). If certain other characters have POSIX-BC
+values, PCRE makes \? generate 95; otherwise it generates 255.
+</P>
+<P>
+After \0 up to two further octal digits are read. If there are fewer than two
+digits, just those that are present are used. Thus the sequence \0\x\015
+specifies two binary zeros followed by a CR character (code value 13). Make
+sure you supply two digits after the initial zero if the pattern character that
+follows is itself an octal digit.
+</P>
+<P>
+The escape \o must be followed by a sequence of octal digits, enclosed in
+braces. An error occurs if this is not the case. This escape is a recent
+addition to Perl; it provides way of specifying character code points as octal
+numbers greater than 0777, and it also allows octal numbers and back references
+to be unambiguously specified.
+</P>
+<P>
+For greater clarity and unambiguity, it is best to avoid following \ by a
+digit greater than zero. Instead, use \o{} or \x{} to specify character
+numbers, and \g{} to specify back references. The following paragraphs
+describe the old, ambiguous syntax.
+</P>
+<P>
+The handling of a backslash followed by a digit other than 0 is complicated,
+and Perl has changed in recent releases, causing PCRE also to change. Outside a
+character class, PCRE reads the digit and any following digits as a decimal
+number. If the number is less than 8, or if there have been at least that many
+previous capturing left parentheses in the expression, the entire sequence is
+taken as a <i>back reference</i>. A description of how this works is given
+<a href="#backreferences">later,</a>
+following the discussion of
+<a href="#subpattern">parenthesized subpatterns.</a>
+</P>
+<P>
+Inside a character class, or if the decimal number following \ is greater than
+7 and there have not been that many capturing subpatterns, PCRE handles \8 and
+\9 as the literal characters "8" and "9", and otherwise re-reads up to three
+octal digits following the backslash, using them to generate a data character.
+Any subsequent digits stand for themselves. For example:
+<pre>
+ \040 is another way of writing an ASCII space
+ \40 is the same, provided there are fewer than 40 previous capturing subpatterns
+ \7 is always a back reference
+ \11 might be a back reference, or another way of writing a tab
+ \011 is always a tab
+ \0113 is a tab followed by the character "3"
+ \113 might be a back reference, otherwise the character with octal code 113
+ \377 might be a back reference, otherwise the value 255 (decimal)
+ \81 is either a back reference, or the two characters "8" and "1"
+</pre>
+Note that octal values of 100 or greater that are specified using this syntax
+must not be introduced by a leading zero, because no more than three octal
+digits are ever read.
+</P>
+<P>
+By default, after \x that is not followed by {, from zero to two hexadecimal
+digits are read (letters can be in upper or lower case). Any number of
+hexadecimal digits may appear between \x{ and }. If a character other than
+a hexadecimal digit appears between \x{ and }, or if there is no terminating
+}, an error occurs.
+</P>
+<P>
+If the PCRE_JAVASCRIPT_COMPAT option is set, the interpretation of \x is
+as just described only when it is followed by two hexadecimal digits.
+Otherwise, it matches a literal "x" character. In JavaScript mode, support for
+code points greater than 256 is provided by \u, which must be followed by
+four hexadecimal digits; otherwise it matches a literal "u" character.
+</P>
+<P>
+Characters whose value is less than 256 can be defined by either of the two
+syntaxes for \x (or by \u in JavaScript mode). There is no difference in the
+way they are handled. For example, \xdc is exactly the same as \x{dc} (or
+\u00dc in JavaScript mode).
+</P>
+<br><b>
+Constraints on character values
+</b><br>
+<P>
+Characters that are specified using octal or hexadecimal numbers are
+limited to certain values, as follows:
+<pre>
+ 8-bit non-UTF mode less than 0x100
+ 8-bit UTF-8 mode less than 0x10ffff and a valid codepoint
+ 16-bit non-UTF mode less than 0x10000
+ 16-bit UTF-16 mode less than 0x10ffff and a valid codepoint
+ 32-bit non-UTF mode less than 0x100000000
+ 32-bit UTF-32 mode less than 0x10ffff and a valid codepoint
+</pre>
+Invalid Unicode codepoints are the range 0xd800 to 0xdfff (the so-called
+"surrogate" codepoints), and 0xffef.
+</P>
+<br><b>
+Escape sequences in character classes
+</b><br>
+<P>
+All the sequences that define a single character value can be used both inside
+and outside character classes. In addition, inside a character class, \b is
+interpreted as the backspace character (hex 08).
+</P>
+<P>
+\N is not allowed in a character class. \B, \R, and \X are not special
+inside a character class. Like other unrecognized escape sequences, they are
+treated as the literal characters "B", "R", and "X" by default, but cause an
+error if the PCRE_EXTRA option is set. Outside a character class, these
+sequences have different meanings.
+</P>
+<br><b>
+Unsupported escape sequences
+</b><br>
+<P>
+In Perl, the sequences \l, \L, \u, and \U are recognized by its string
+handler and used to modify the case of following characters. By default, PCRE
+does not support these escape sequences. However, if the PCRE_JAVASCRIPT_COMPAT
+option is set, \U matches a "U" character, and \u can be used to define a
+character by code point, as described in the previous section.
+</P>
+<br><b>
+Absolute and relative back references
+</b><br>
+<P>
+The sequence \g followed by an unsigned or a negative number, optionally
+enclosed in braces, is an absolute or relative back reference. A named back
+reference can be coded as \g{name}. Back references are discussed
+<a href="#backreferences">later,</a>
+following the discussion of
+<a href="#subpattern">parenthesized subpatterns.</a>
+</P>
+<br><b>
+Absolute and relative subroutine calls
+</b><br>
+<P>
+For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or
+a number enclosed either in angle brackets or single quotes, is an alternative
+syntax for referencing a subpattern as a "subroutine". Details are discussed
+<a href="#onigurumasubroutines">later.</a>
+Note that \g{...} (Perl syntax) and \g&#60;...&#62; (Oniguruma syntax) are <i>not</i>
+synonymous. The former is a back reference; the latter is a
+<a href="#subpatternsassubroutines">subroutine</a>
+call.
+<a name="genericchartypes"></a></P>
+<br><b>
+Generic character types
+</b><br>
+<P>
+Another use of backslash is for specifying generic character types:
+<pre>
+ \d any decimal digit
+ \D any character that is not a decimal digit
+ \h any horizontal white space character
+ \H any character that is not a horizontal white space character
+ \s any white space character
+ \S any character that is not a white space character
+ \v any vertical white space character
+ \V any character that is not a vertical white space character
+ \w any "word" character
+ \W any "non-word" character
+</pre>
+There is also the single sequence \N, which matches a non-newline character.
+This is the same as
+<a href="#fullstopdot">the "." metacharacter</a>
+when PCRE_DOTALL is not set. Perl also uses \N to match characters by name;
+PCRE does not support this.
+</P>
+<P>
+Each pair of lower and upper case escape sequences partitions the complete set
+of characters into two disjoint sets. Any given character matches one, and only
+one, of each pair. The sequences can appear both inside and outside character
+classes. They each match one character of the appropriate type. If the current
+matching point is at the end of the subject string, all of them fail, because
+there is no character to match.
+</P>
+<P>
+For compatibility with Perl, \s did not used to match the VT character (code
+11), which made it different from the the POSIX "space" class. However, Perl
+added VT at release 5.18, and PCRE followed suit at release 8.34. The default
+\s characters are now HT (9), LF (10), VT (11), FF (12), CR (13), and space
+(32), which are defined as white space in the "C" locale. This list may vary if
+locale-specific matching is taking place. For example, in some locales the
+"non-breaking space" character (\xA0) is recognized as white space, and in
+others the VT character is not.
+</P>
+<P>
+A "word" character is an underscore or any character that is a letter or digit.
+By default, the definition of letters and digits is controlled by PCRE's
+low-valued character tables, and may vary if locale-specific matching is taking
+place (see
+<a href="pcreapi.html#localesupport">"Locale support"</a>
+in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page). For example, in a French locale such as "fr_FR" in Unix-like systems,
+or "french" in Windows, some character codes greater than 127 are used for
+accented letters, and these are then matched by \w. The use of locales with
+Unicode is discouraged.
+</P>
+<P>
+By default, characters whose code points are greater than 127 never match \d,
+\s, or \w, and always match \D, \S, and \W, although this may vary for
+characters in the range 128-255 when locale-specific matching is happening.
+These escape sequences retain their original meanings from before Unicode
+support was available, mainly for efficiency reasons. If PCRE is compiled with
+Unicode property support, and the PCRE_UCP option is set, the behaviour is
+changed so that Unicode properties are used to determine character types, as
+follows:
+<pre>
+ \d any character that matches \p{Nd} (decimal digit)
+ \s any character that matches \p{Z} or \h or \v
+ \w any character that matches \p{L} or \p{N}, plus underscore
+</pre>
+The upper case escapes match the inverse sets of characters. Note that \d
+matches only decimal digits, whereas \w matches any Unicode digit, as well as
+any Unicode letter, and underscore. Note also that PCRE_UCP affects \b, and
+\B because they are defined in terms of \w and \W. Matching these sequences
+is noticeably slower when PCRE_UCP is set.
+</P>
+<P>
+The sequences \h, \H, \v, and \V are features that were added to Perl at
+release 5.10. In contrast to the other sequences, which match only ASCII
+characters by default, these always match certain high-valued code points,
+whether or not PCRE_UCP is set. The horizontal space characters are:
+<pre>
+ U+0009 Horizontal tab (HT)
+ U+0020 Space
+ U+00A0 Non-break space
+ U+1680 Ogham space mark
+ U+180E Mongolian vowel separator
+ U+2000 En quad
+ U+2001 Em quad
+ U+2002 En space
+ U+2003 Em space
+ U+2004 Three-per-em space
+ U+2005 Four-per-em space
+ U+2006 Six-per-em space
+ U+2007 Figure space
+ U+2008 Punctuation space
+ U+2009 Thin space
+ U+200A Hair space
+ U+202F Narrow no-break space
+ U+205F Medium mathematical space
+ U+3000 Ideographic space
+</pre>
+The vertical space characters are:
+<pre>
+ U+000A Linefeed (LF)
+ U+000B Vertical tab (VT)
+ U+000C Form feed (FF)
+ U+000D Carriage return (CR)
+ U+0085 Next line (NEL)
+ U+2028 Line separator
+ U+2029 Paragraph separator
+</pre>
+In 8-bit, non-UTF-8 mode, only the characters with codepoints less than 256 are
+relevant.
+<a name="newlineseq"></a></P>
+<br><b>
+Newline sequences
+</b><br>
+<P>
+Outside a character class, by default, the escape sequence \R matches any
+Unicode newline sequence. In 8-bit non-UTF-8 mode \R is equivalent to the
+following:
+<pre>
+ (?&#62;\r\n|\n|\x0b|\f|\r|\x85)
+</pre>
+This is an example of an "atomic group", details of which are given
+<a href="#atomicgroup">below.</a>
+This particular group matches either the two-character sequence CR followed by
+LF, or one of the single characters LF (linefeed, U+000A), VT (vertical tab,
+U+000B), FF (form feed, U+000C), CR (carriage return, U+000D), or NEL (next
+line, U+0085). The two-character sequence is treated as a single unit that
+cannot be split.
+</P>
+<P>
+In other modes, two additional characters whose codepoints are greater than 255
+are added: LS (line separator, U+2028) and PS (paragraph separator, U+2029).
+Unicode character property support is not needed for these characters to be
+recognized.
+</P>
+<P>
+It is possible to restrict \R to match only CR, LF, or CRLF (instead of the
+complete set of Unicode line endings) by setting the option PCRE_BSR_ANYCRLF
+either at compile time or when the pattern is matched. (BSR is an abbrevation
+for "backslash R".) This can be made the default when PCRE is built; if this is
+the case, the other behaviour can be requested via the PCRE_BSR_UNICODE option.
+It is also possible to specify these settings by starting a pattern string with
+one of the following sequences:
+<pre>
+ (*BSR_ANYCRLF) CR, LF, or CRLF only
+ (*BSR_UNICODE) any Unicode newline sequence
+</pre>
+These override the default and the options given to the compiling function, but
+they can themselves be overridden by options given to a matching function. Note
+that these special settings, which are not Perl-compatible, are recognized only
+at the very start of a pattern, and that they must be in upper case. If more
+than one of them is present, the last one is used. They can be combined with a
+change of newline convention; for example, a pattern can start with:
+<pre>
+ (*ANY)(*BSR_ANYCRLF)
+</pre>
+They can also be combined with the (*UTF8), (*UTF16), (*UTF32), (*UTF) or
+(*UCP) special sequences. Inside a character class, \R is treated as an
+unrecognized escape sequence, and so matches the letter "R" by default, but
+causes an error if PCRE_EXTRA is set.
+<a name="uniextseq"></a></P>
+<br><b>
+Unicode character properties
+</b><br>
+<P>
+When PCRE is built with Unicode character property support, three additional
+escape sequences that match characters with specific properties are available.
+When in 8-bit non-UTF-8 mode, these sequences are of course limited to testing
+characters whose codepoints are less than 256, but they do work in this mode.
+The extra escape sequences are:
+<pre>
+ \p{<i>xx</i>} a character with the <i>xx</i> property
+ \P{<i>xx</i>} a character without the <i>xx</i> property
+ \X a Unicode extended grapheme cluster
+</pre>
+The property names represented by <i>xx</i> above are limited to the Unicode
+script names, the general category properties, "Any", which matches any
+character (including newline), and some special PCRE properties (described
+in the
+<a href="#extraprops">next section).</a>
+Other Perl properties such as "InMusicalSymbols" are not currently supported by
+PCRE. Note that \P{Any} does not match any characters, so always causes a
+match failure.
+</P>
+<P>
+Sets of Unicode characters are defined as belonging to certain scripts. A
+character from one of these sets can be matched using a script name. For
+example:
+<pre>
+ \p{Greek}
+ \P{Han}
+</pre>
+Those that are not part of an identified script are lumped together as
+"Common". The current list of scripts is:
+</P>
+<P>
+Arabic,
+Armenian,
+Avestan,
+Balinese,
+Bamum,
+Bassa_Vah,
+Batak,
+Bengali,
+Bopomofo,
+Brahmi,
+Braille,
+Buginese,
+Buhid,
+Canadian_Aboriginal,
+Carian,
+Caucasian_Albanian,
+Chakma,
+Cham,
+Cherokee,
+Common,
+Coptic,
+Cuneiform,
+Cypriot,
+Cyrillic,
+Deseret,
+Devanagari,
+Duployan,
+Egyptian_Hieroglyphs,
+Elbasan,
+Ethiopic,
+Georgian,
+Glagolitic,
+Gothic,
+Grantha,
+Greek,
+Gujarati,
+Gurmukhi,
+Han,
+Hangul,
+Hanunoo,
+Hebrew,
+Hiragana,
+Imperial_Aramaic,
+Inherited,
+Inscriptional_Pahlavi,
+Inscriptional_Parthian,
+Javanese,
+Kaithi,
+Kannada,
+Katakana,
+Kayah_Li,
+Kharoshthi,
+Khmer,
+Khojki,
+Khudawadi,
+Lao,
+Latin,
+Lepcha,
+Limbu,
+Linear_A,
+Linear_B,
+Lisu,
+Lycian,
+Lydian,
+Mahajani,
+Malayalam,
+Mandaic,
+Manichaean,
+Meetei_Mayek,
+Mende_Kikakui,
+Meroitic_Cursive,
+Meroitic_Hieroglyphs,
+Miao,
+Modi,
+Mongolian,
+Mro,
+Myanmar,
+Nabataean,
+New_Tai_Lue,
+Nko,
+Ogham,
+Ol_Chiki,
+Old_Italic,
+Old_North_Arabian,
+Old_Permic,
+Old_Persian,
+Old_South_Arabian,
+Old_Turkic,
+Oriya,
+Osmanya,
+Pahawh_Hmong,
+Palmyrene,
+Pau_Cin_Hau,
+Phags_Pa,
+Phoenician,
+Psalter_Pahlavi,
+Rejang,
+Runic,
+Samaritan,
+Saurashtra,
+Sharada,
+Shavian,
+Siddham,
+Sinhala,
+Sora_Sompeng,
+Sundanese,
+Syloti_Nagri,
+Syriac,
+Tagalog,
+Tagbanwa,
+Tai_Le,
+Tai_Tham,
+Tai_Viet,
+Takri,
+Tamil,
+Telugu,
+Thaana,
+Thai,
+Tibetan,
+Tifinagh,
+Tirhuta,
+Ugaritic,
+Vai,
+Warang_Citi,
+Yi.
+</P>
+<P>
+Each character has exactly one Unicode general category property, specified by
+a two-letter abbreviation. For compatibility with Perl, negation can be
+specified by including a circumflex between the opening brace and the property
+name. For example, \p{^Lu} is the same as \P{Lu}.
+</P>
+<P>
+If only one letter is specified with \p or \P, it includes all the general
+category properties that start with that letter. In this case, in the absence
+of negation, the curly brackets in the escape sequence are optional; these two
+examples have the same effect:
+<pre>
+ \p{L}
+ \pL
+</pre>
+The following general category property codes are supported:
+<pre>
+ C Other
+ Cc Control
+ Cf Format
+ Cn Unassigned
+ Co Private use
+ Cs Surrogate
+
+ L Letter
+ Ll Lower case letter
+ Lm Modifier letter
+ Lo Other letter
+ Lt Title case letter
+ Lu Upper case letter
+
+ M Mark
+ Mc Spacing mark
+ Me Enclosing mark
+ Mn Non-spacing mark
+
+ N Number
+ Nd Decimal number
+ Nl Letter number
+ No Other number
+
+ P Punctuation
+ Pc Connector punctuation
+ Pd Dash punctuation
+ Pe Close punctuation
+ Pf Final punctuation
+ Pi Initial punctuation
+ Po Other punctuation
+ Ps Open punctuation
+
+ S Symbol
+ Sc Currency symbol
+ Sk Modifier symbol
+ Sm Mathematical symbol
+ So Other symbol
+
+ Z Separator
+ Zl Line separator
+ Zp Paragraph separator
+ Zs Space separator
+</pre>
+The special property L& is also supported: it matches a character that has
+the Lu, Ll, or Lt property, in other words, a letter that is not classified as
+a modifier or "other".
+</P>
+<P>
+The Cs (Surrogate) property applies only to characters in the range U+D800 to
+U+DFFF. Such characters are not valid in Unicode strings and so
+cannot be tested by PCRE, unless UTF validity checking has been turned off
+(see the discussion of PCRE_NO_UTF8_CHECK, PCRE_NO_UTF16_CHECK and
+PCRE_NO_UTF32_CHECK in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page). Perl does not support the Cs property.
+</P>
+<P>
+The long synonyms for property names that Perl supports (such as \p{Letter})
+are not supported by PCRE, nor is it permitted to prefix any of these
+properties with "Is".
+</P>
+<P>
+No character that is in the Unicode table has the Cn (unassigned) property.
+Instead, this property is assumed for any code point that is not in the
+Unicode table.
+</P>
+<P>
+Specifying caseless matching does not affect these escape sequences. For
+example, \p{Lu} always matches only upper case letters. This is different from
+the behaviour of current versions of Perl.
+</P>
+<P>
+Matching characters by Unicode property is not fast, because PCRE has to do a
+multistage table lookup in order to find a character's property. That is why
+the traditional escape sequences such as \d and \w do not use Unicode
+properties in PCRE by default, though you can make them do so by setting the
+PCRE_UCP option or by starting the pattern with (*UCP).
+</P>
+<br><b>
+Extended grapheme clusters
+</b><br>
+<P>
+The \X escape matches any number of Unicode characters that form an "extended
+grapheme cluster", and treats the sequence as an atomic group
+<a href="#atomicgroup">(see below).</a>
+Up to and including release 8.31, PCRE matched an earlier, simpler definition
+that was equivalent to
+<pre>
+ (?&#62;\PM\pM*)
+</pre>
+That is, it matched a character without the "mark" property, followed by zero
+or more characters with the "mark" property. Characters with the "mark"
+property are typically non-spacing accents that affect the preceding character.
+</P>
+<P>
+This simple definition was extended in Unicode to include more complicated
+kinds of composite character by giving each character a grapheme breaking
+property, and creating rules that use these properties to define the boundaries
+of extended grapheme clusters. In releases of PCRE later than 8.31, \X matches
+one of these clusters.
+</P>
+<P>
+\X always matches at least one character. Then it decides whether to add
+additional characters according to the following rules for ending a cluster:
+</P>
+<P>
+1. End at the end of the subject string.
+</P>
+<P>
+2. Do not end between CR and LF; otherwise end after any control character.
+</P>
+<P>
+3. Do not break Hangul (a Korean script) syllable sequences. Hangul characters
+are of five types: L, V, T, LV, and LVT. An L character may be followed by an
+L, V, LV, or LVT character; an LV or V character may be followed by a V or T
+character; an LVT or T character may be follwed only by a T character.
+</P>
+<P>
+4. Do not end before extending characters or spacing marks. Characters with
+the "mark" property always have the "extend" grapheme breaking property.
+</P>
+<P>
+5. Do not end after prepend characters.
+</P>
+<P>
+6. Otherwise, end the cluster.
+<a name="extraprops"></a></P>
+<br><b>
+PCRE's additional properties
+</b><br>
+<P>
+As well as the standard Unicode properties described above, PCRE supports four
+more that make it possible to convert traditional escape sequences such as \w
+and \s to use Unicode properties. PCRE uses these non-standard, non-Perl
+properties internally when PCRE_UCP is set. However, they may also be used
+explicitly. These properties are:
+<pre>
+ Xan Any alphanumeric character
+ Xps Any POSIX space character
+ Xsp Any Perl space character
+ Xwd Any Perl "word" character
+</pre>
+Xan matches characters that have either the L (letter) or the N (number)
+property. Xps matches the characters tab, linefeed, vertical tab, form feed, or
+carriage return, and any other character that has the Z (separator) property.
+Xsp is the same as Xps; it used to exclude vertical tab, for Perl
+compatibility, but Perl changed, and so PCRE followed at release 8.34. Xwd
+matches the same characters as Xan, plus underscore.
+</P>
+<P>
+There is another non-standard property, Xuc, which matches any character that
+can be represented by a Universal Character Name in C++ and other programming
+languages. These are the characters $, @, ` (grave accent), and all characters
+with Unicode code points greater than or equal to U+00A0, except for the
+surrogates U+D800 to U+DFFF. Note that most base (ASCII) characters are
+excluded. (Universal Character Names are of the form \uHHHH or \UHHHHHHHH
+where H is a hexadecimal digit. Note that the Xuc property does not match these
+sequences but the characters that they represent.)
+<a name="resetmatchstart"></a></P>
+<br><b>
+Resetting the match start
+</b><br>
+<P>
+The escape sequence \K causes any previously matched characters not to be
+included in the final matched sequence. For example, the pattern:
+<pre>
+ foo\Kbar
+</pre>
+matches "foobar", but reports that it has matched "bar". This feature is
+similar to a lookbehind assertion
+<a href="#lookbehind">(described below).</a>
+However, in this case, the part of the subject before the real match does not
+have to be of fixed length, as lookbehind assertions do. The use of \K does
+not interfere with the setting of
+<a href="#subpattern">captured substrings.</a>
+For example, when the pattern
+<pre>
+ (foo)\Kbar
+</pre>
+matches "foobar", the first substring is still set to "foo".
+</P>
+<P>
+Perl documents that the use of \K within assertions is "not well defined". In
+PCRE, \K is acted upon when it occurs inside positive assertions, but is
+ignored in negative assertions. Note that when a pattern such as (?=ab\K)
+matches, the reported start of the match can be greater than the end of the
+match.
+<a name="smallassertions"></a></P>
+<br><b>
+Simple assertions
+</b><br>
+<P>
+The final use of backslash is for certain simple assertions. An assertion
+specifies a condition that has to be met at a particular point in a match,
+without consuming any characters from the subject string. The use of
+subpatterns for more complicated assertions is described
+<a href="#bigassertions">below.</a>
+The backslashed assertions are:
+<pre>
+ \b matches at a word boundary
+ \B matches when not at a word boundary
+ \A matches at the start of the subject
+ \Z matches at the end of the subject
+ also matches before a newline at the end of the subject
+ \z matches only at the end of the subject
+ \G matches at the first matching position in the subject
+</pre>
+Inside a character class, \b has a different meaning; it matches the backspace
+character. If any other of these assertions appears in a character class, by
+default it matches the corresponding literal character (for example, \B
+matches the letter B). However, if the PCRE_EXTRA option is set, an "invalid
+escape sequence" error is generated instead.
+</P>
+<P>
+A word boundary is a position in the subject string where the current character
+and the previous character do not both match \w or \W (i.e. one matches
+\w and the other matches \W), or the start or end of the string if the
+first or last character matches \w, respectively. In a UTF mode, the meanings
+of \w and \W can be changed by setting the PCRE_UCP option. When this is
+done, it also affects \b and \B. Neither PCRE nor Perl has a separate "start
+of word" or "end of word" metasequence. However, whatever follows \b normally
+determines which it is. For example, the fragment \ba matches "a" at the start
+of a word.
+</P>
+<P>
+The \A, \Z, and \z assertions differ from the traditional circumflex and
+dollar (described in the next section) in that they only ever match at the very
+start and end of the subject string, whatever options are set. Thus, they are
+independent of multiline mode. These three assertions are not affected by the
+PCRE_NOTBOL or PCRE_NOTEOL options, which affect only the behaviour of the
+circumflex and dollar metacharacters. However, if the <i>startoffset</i>
+argument of <b>pcre_exec()</b> is non-zero, indicating that matching is to start
+at a point other than the beginning of the subject, \A can never match. The
+difference between \Z and \z is that \Z matches before a newline at the end
+of the string as well as at the very end, whereas \z matches only at the end.
+</P>
+<P>
+The \G assertion is true only when the current matching position is at the
+start point of the match, as specified by the <i>startoffset</i> argument of
+<b>pcre_exec()</b>. It differs from \A when the value of <i>startoffset</i> is
+non-zero. By calling <b>pcre_exec()</b> multiple times with appropriate
+arguments, you can mimic Perl's /g option, and it is in this kind of
+implementation where \G can be useful.
+</P>
+<P>
+Note, however, that PCRE's interpretation of \G, as the start of the current
+match, is subtly different from Perl's, which defines it as the end of the
+previous match. In Perl, these can be different when the previously matched
+string was empty. Because PCRE does just one match at a time, it cannot
+reproduce this behaviour.
+</P>
+<P>
+If all the alternatives of a pattern begin with \G, the expression is anchored
+to the starting match position, and the "anchored" flag is set in the compiled
+regular expression.
+</P>
+<br><a name="SEC6" href="#TOC1">CIRCUMFLEX AND DOLLAR</a><br>
+<P>
+The circumflex and dollar metacharacters are zero-width assertions. That is,
+they test for a particular condition being true without consuming any
+characters from the subject string.
+</P>
+<P>
+Outside a character class, in the default matching mode, the circumflex
+character is an assertion that is true only if the current matching point is at
+the start of the subject string. If the <i>startoffset</i> argument of
+<b>pcre_exec()</b> is non-zero, circumflex can never match if the PCRE_MULTILINE
+option is unset. Inside a character class, circumflex has an entirely different
+meaning
+<a href="#characterclass">(see below).</a>
+</P>
+<P>
+Circumflex need not be the first character of the pattern if a number of
+alternatives are involved, but it should be the first thing in each alternative
+in which it appears if the pattern is ever to match that branch. If all
+possible alternatives start with a circumflex, that is, if the pattern is
+constrained to match only at the start of the subject, it is said to be an
+"anchored" pattern. (There are also other constructs that can cause a pattern
+to be anchored.)
+</P>
+<P>
+The dollar character is an assertion that is true only if the current matching
+point is at the end of the subject string, or immediately before a newline at
+the end of the string (by default). Note, however, that it does not actually
+match the newline. Dollar need not be the last character of the pattern if a
+number of alternatives are involved, but it should be the last item in any
+branch in which it appears. Dollar has no special meaning in a character class.
+</P>
+<P>
+The meaning of dollar can be changed so that it matches only at the very end of
+the string, by setting the PCRE_DOLLAR_ENDONLY option at compile time. This
+does not affect the \Z assertion.
+</P>
+<P>
+The meanings of the circumflex and dollar characters are changed if the
+PCRE_MULTILINE option is set. When this is the case, a circumflex matches
+immediately after internal newlines as well as at the start of the subject
+string. It does not match after a newline that ends the string. A dollar
+matches before any newlines in the string, as well as at the very end, when
+PCRE_MULTILINE is set. When newline is specified as the two-character
+sequence CRLF, isolated CR and LF characters do not indicate newlines.
+</P>
+<P>
+For example, the pattern /^abc$/ matches the subject string "def\nabc" (where
+\n represents a newline) in multiline mode, but not otherwise. Consequently,
+patterns that are anchored in single line mode because all branches start with
+^ are not anchored in multiline mode, and a match for circumflex is possible
+when the <i>startoffset</i> argument of <b>pcre_exec()</b> is non-zero. The
+PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE is set.
+</P>
+<P>
+Note that the sequences \A, \Z, and \z can be used to match the start and
+end of the subject in both modes, and if all branches of a pattern start with
+\A it is always anchored, whether or not PCRE_MULTILINE is set.
+<a name="fullstopdot"></a></P>
+<br><a name="SEC7" href="#TOC1">FULL STOP (PERIOD, DOT) AND \N</a><br>
+<P>
+Outside a character class, a dot in the pattern matches any one character in
+the subject string except (by default) a character that signifies the end of a
+line.
+</P>
+<P>
+When a line ending is defined as a single character, dot never matches that
+character; when the two-character sequence CRLF is used, dot does not match CR
+if it is immediately followed by LF, but otherwise it matches all characters
+(including isolated CRs and LFs). When any Unicode line endings are being
+recognized, dot does not match CR or LF or any of the other line ending
+characters.
+</P>
+<P>
+The behaviour of dot with regard to newlines can be changed. If the PCRE_DOTALL
+option is set, a dot matches any one character, without exception. If the
+two-character sequence CRLF is present in the subject string, it takes two dots
+to match it.
+</P>
+<P>
+The handling of dot is entirely independent of the handling of circumflex and
+dollar, the only relationship being that they both involve newlines. Dot has no
+special meaning in a character class.
+</P>
+<P>
+The escape sequence \N behaves like a dot, except that it is not affected by
+the PCRE_DOTALL option. In other words, it matches any character except one
+that signifies the end of a line. Perl also uses \N to match characters by
+name; PCRE does not support this.
+</P>
+<br><a name="SEC8" href="#TOC1">MATCHING A SINGLE DATA UNIT</a><br>
+<P>
+Outside a character class, the escape sequence \C matches any one data unit,
+whether or not a UTF mode is set. In the 8-bit library, one data unit is one
+byte; in the 16-bit library it is a 16-bit unit; in the 32-bit library it is
+a 32-bit unit. Unlike a dot, \C always
+matches line-ending characters. The feature is provided in Perl in order to
+match individual bytes in UTF-8 mode, but it is unclear how it can usefully be
+used. Because \C breaks up characters into individual data units, matching one
+unit with \C in a UTF mode means that the rest of the string may start with a
+malformed UTF character. This has undefined results, because PCRE assumes that
+it is dealing with valid UTF strings (and by default it checks this at the
+start of processing unless the PCRE_NO_UTF8_CHECK, PCRE_NO_UTF16_CHECK or
+PCRE_NO_UTF32_CHECK option is used).
+</P>
+<P>
+PCRE does not allow \C to appear in lookbehind assertions
+<a href="#lookbehind">(described below)</a>
+in a UTF mode, because this would make it impossible to calculate the length of
+the lookbehind.
+</P>
+<P>
+In general, the \C escape sequence is best avoided. However, one
+way of using it that avoids the problem of malformed UTF characters is to use a
+lookahead to check the length of the next character, as in this pattern, which
+could be used with a UTF-8 string (ignore white space and line breaks):
+<pre>
+ (?| (?=[\x00-\x7f])(\C) |
+ (?=[\x80-\x{7ff}])(\C)(\C) |
+ (?=[\x{800}-\x{ffff}])(\C)(\C)(\C) |
+ (?=[\x{10000}-\x{1fffff}])(\C)(\C)(\C)(\C))
+</pre>
+A group that starts with (?| resets the capturing parentheses numbers in each
+alternative (see
+<a href="#dupsubpatternnumber">"Duplicate Subpattern Numbers"</a>
+below). The assertions at the start of each branch check the next UTF-8
+character for values whose encoding uses 1, 2, 3, or 4 bytes, respectively. The
+character's individual bytes are then captured by the appropriate number of
+groups.
+<a name="characterclass"></a></P>
+<br><a name="SEC9" href="#TOC1">SQUARE BRACKETS AND CHARACTER CLASSES</a><br>
+<P>
+An opening square bracket introduces a character class, terminated by a closing
+square bracket. A closing square bracket on its own is not special by default.
+However, if the PCRE_JAVASCRIPT_COMPAT option is set, a lone closing square
+bracket causes a compile-time error. If a closing square bracket is required as
+a member of the class, it should be the first data character in the class
+(after an initial circumflex, if present) or escaped with a backslash.
+</P>
+<P>
+A character class matches a single character in the subject. In a UTF mode, the
+character may be more than one data unit long. A matched character must be in
+the set of characters defined by the class, unless the first character in the
+class definition is a circumflex, in which case the subject character must not
+be in the set defined by the class. If a circumflex is actually required as a
+member of the class, ensure it is not the first character, or escape it with a
+backslash.
+</P>
+<P>
+For example, the character class [aeiou] matches any lower case vowel, while
+[^aeiou] matches any character that is not a lower case vowel. Note that a
+circumflex is just a convenient notation for specifying the characters that
+are in the class by enumerating those that are not. A class that starts with a
+circumflex is not an assertion; it still consumes a character from the subject
+string, and therefore it fails if the current pointer is at the end of the
+string.
+</P>
+<P>
+In UTF-8 (UTF-16, UTF-32) mode, characters with values greater than 255 (0xffff)
+can be included in a class as a literal string of data units, or by using the
+\x{ escaping mechanism.
+</P>
+<P>
+When caseless matching is set, any letters in a class represent both their
+upper case and lower case versions, so for example, a caseless [aeiou] matches
+"A" as well as "a", and a caseless [^aeiou] does not match "A", whereas a
+caseful version would. In a UTF mode, PCRE always understands the concept of
+case for characters whose values are less than 128, so caseless matching is
+always possible. For characters with higher values, the concept of case is
+supported if PCRE is compiled with Unicode property support, but not otherwise.
+If you want to use caseless matching in a UTF mode for characters 128 and
+above, you must ensure that PCRE is compiled with Unicode property support as
+well as with UTF support.
+</P>
+<P>
+Characters that might indicate line breaks are never treated in any special way
+when matching character classes, whatever line-ending sequence is in use, and
+whatever setting of the PCRE_DOTALL and PCRE_MULTILINE options is used. A class
+such as [^a] always matches one of these characters.
+</P>
+<P>
+The minus (hyphen) character can be used to specify a range of characters in a
+character class. For example, [d-m] matches any letter between d and m,
+inclusive. If a minus character is required in a class, it must be escaped with
+a backslash or appear in a position where it cannot be interpreted as
+indicating a range, typically as the first or last character in the class, or
+immediately after a range. For example, [b-d-z] matches letters in the range b
+to d, a hyphen character, or z.
+</P>
+<P>
+It is not possible to have the literal character "]" as the end character of a
+range. A pattern such as [W-]46] is interpreted as a class of two characters
+("W" and "-") followed by a literal string "46]", so it would match "W46]" or
+"-46]". However, if the "]" is escaped with a backslash it is interpreted as
+the end of range, so [W-\]46] is interpreted as a class containing a range
+followed by two other characters. The octal or hexadecimal representation of
+"]" can also be used to end a range.
+</P>
+<P>
+An error is generated if a POSIX character class (see below) or an escape
+sequence other than one that defines a single character appears at a point
+where a range ending character is expected. For example, [z-\xff] is valid,
+but [A-\d] and [A-[:digit:]] are not.
+</P>
+<P>
+Ranges operate in the collating sequence of character values. They can also be
+used for characters specified numerically, for example [\000-\037]. Ranges
+can include any characters that are valid for the current mode.
+</P>
+<P>
+If a range that includes letters is used when caseless matching is set, it
+matches the letters in either case. For example, [W-c] is equivalent to
+[][\\^_`wxyzabc], matched caselessly, and in a non-UTF mode, if character
+tables for a French locale are in use, [\xc8-\xcb] matches accented E
+characters in both cases. In UTF modes, PCRE supports the concept of case for
+characters with values greater than 128 only when it is compiled with Unicode
+property support.
+</P>
+<P>
+The character escape sequences \d, \D, \h, \H, \p, \P, \s, \S, \v,
+\V, \w, and \W may appear in a character class, and add the characters that
+they match to the class. For example, [\dABCDEF] matches any hexadecimal
+digit. In UTF modes, the PCRE_UCP option affects the meanings of \d, \s, \w
+and their upper case partners, just as it does when they appear outside a
+character class, as described in the section entitled
+<a href="#genericchartypes">"Generic character types"</a>
+above. The escape sequence \b has a different meaning inside a character
+class; it matches the backspace character. The sequences \B, \N, \R, and \X
+are not special inside a character class. Like any other unrecognized escape
+sequences, they are treated as the literal characters "B", "N", "R", and "X" by
+default, but cause an error if the PCRE_EXTRA option is set.
+</P>
+<P>
+A circumflex can conveniently be used with the upper case character types to
+specify a more restricted set of characters than the matching lower case type.
+For example, the class [^\W_] matches any letter or digit, but not underscore,
+whereas [\w] includes underscore. A positive character class should be read as
+"something OR something OR ..." and a negative class as "NOT something AND NOT
+something AND NOT ...".
+</P>
+<P>
+The only metacharacters that are recognized in character classes are backslash,
+hyphen (only where it can be interpreted as specifying a range), circumflex
+(only at the start), opening square bracket (only when it can be interpreted as
+introducing a POSIX class name, or for a special compatibility feature - see
+the next two sections), and the terminating closing square bracket. However,
+escaping other non-alphanumeric characters does no harm.
+</P>
+<br><a name="SEC10" href="#TOC1">POSIX CHARACTER CLASSES</a><br>
+<P>
+Perl supports the POSIX notation for character classes. This uses names
+enclosed by [: and :] within the enclosing square brackets. PCRE also supports
+this notation. For example,
+<pre>
+ [01[:alpha:]%]
+</pre>
+matches "0", "1", any alphabetic character, or "%". The supported class names
+are:
+<pre>
+ alnum letters and digits
+ alpha letters
+ ascii character codes 0 - 127
+ blank space or tab only
+ cntrl control characters
+ digit decimal digits (same as \d)
+ graph printing characters, excluding space
+ lower lower case letters
+ print printing characters, including space
+ punct printing characters, excluding letters and digits and space
+ space white space (the same as \s from PCRE 8.34)
+ upper upper case letters
+ word "word" characters (same as \w)
+ xdigit hexadecimal digits
+</pre>
+The default "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13),
+and space (32). If locale-specific matching is taking place, the list of space
+characters may be different; there may be fewer or more of them. "Space" used
+to be different to \s, which did not include VT, for Perl compatibility.
+However, Perl changed at release 5.18, and PCRE followed at release 8.34.
+"Space" and \s now match the same set of characters.
+</P>
+<P>
+The name "word" is a Perl extension, and "blank" is a GNU extension from Perl
+5.8. Another Perl extension is negation, which is indicated by a ^ character
+after the colon. For example,
+<pre>
+ [12[:^digit:]]
+</pre>
+matches "1", "2", or any non-digit. PCRE (and Perl) also recognize the POSIX
+syntax [.ch.] and [=ch=] where "ch" is a "collating element", but these are not
+supported, and an error is given if they are encountered.
+</P>
+<P>
+By default, characters with values greater than 128 do not match any of the
+POSIX character classes. However, if the PCRE_UCP option is passed to
+<b>pcre_compile()</b>, some of the classes are changed so that Unicode character
+properties are used. This is achieved by replacing certain POSIX classes by
+other sequences, as follows:
+<pre>
+ [:alnum:] becomes \p{Xan}
+ [:alpha:] becomes \p{L}
+ [:blank:] becomes \h
+ [:digit:] becomes \p{Nd}
+ [:lower:] becomes \p{Ll}
+ [:space:] becomes \p{Xps}
+ [:upper:] becomes \p{Lu}
+ [:word:] becomes \p{Xwd}
+</pre>
+Negated versions, such as [:^alpha:] use \P instead of \p. Three other POSIX
+classes are handled specially in UCP mode:
+</P>
+<P>
+[:graph:]
+This matches characters that have glyphs that mark the page when printed. In
+Unicode property terms, it matches all characters with the L, M, N, P, S, or Cf
+properties, except for:
+<pre>
+ U+061C Arabic Letter Mark
+ U+180E Mongolian Vowel Separator
+ U+2066 - U+2069 Various "isolate"s
+
+</PRE>
+</P>
+<P>
+[:print:]
+This matches the same characters as [:graph:] plus space characters that are
+not controls, that is, characters with the Zs property.
+</P>
+<P>
+[:punct:]
+This matches all characters that have the Unicode P (punctuation) property,
+plus those characters whose code points are less than 128 that have the S
+(Symbol) property.
+</P>
+<P>
+The other POSIX classes are unchanged, and match only characters with code
+points less than 128.
+</P>
+<br><a name="SEC11" href="#TOC1">COMPATIBILITY FEATURE FOR WORD BOUNDARIES</a><br>
+<P>
+In the POSIX.2 compliant library that was included in 4.4BSD Unix, the ugly
+syntax [[:&#60;:]] and [[:&#62;:]] is used for matching "start of word" and "end of
+word". PCRE treats these items as follows:
+<pre>
+ [[:&#60;:]] is converted to \b(?=\w)
+ [[:&#62;:]] is converted to \b(?&#60;=\w)
+</pre>
+Only these exact character sequences are recognized. A sequence such as
+[a[:&#60;:]b] provokes error for an unrecognized POSIX class name. This support is
+not compatible with Perl. It is provided to help migrations from other
+environments, and is best not used in any new patterns. Note that \b matches
+at the start and the end of a word (see
+<a href="#smallassertions">"Simple assertions"</a>
+above), and in a Perl-style pattern the preceding or following character
+normally shows which is wanted, without the need for the assertions that are
+used above in order to give exactly the POSIX behaviour.
+</P>
+<br><a name="SEC12" href="#TOC1">VERTICAL BAR</a><br>
+<P>
+Vertical bar characters are used to separate alternative patterns. For example,
+the pattern
+<pre>
+ gilbert|sullivan
+</pre>
+matches either "gilbert" or "sullivan". Any number of alternatives may appear,
+and an empty alternative is permitted (matching the empty string). The matching
+process tries each alternative in turn, from left to right, and the first one
+that succeeds is used. If the alternatives are within a subpattern
+<a href="#subpattern">(defined below),</a>
+"succeeds" means matching the rest of the main pattern as well as the
+alternative in the subpattern.
+</P>
+<br><a name="SEC13" href="#TOC1">INTERNAL OPTION SETTING</a><br>
+<P>
+The settings of the PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
+PCRE_EXTENDED options (which are Perl-compatible) can be changed from within
+the pattern by a sequence of Perl option letters enclosed between "(?" and ")".
+The option letters are
+<pre>
+ i for PCRE_CASELESS
+ m for PCRE_MULTILINE
+ s for PCRE_DOTALL
+ x for PCRE_EXTENDED
+</pre>
+For example, (?im) sets caseless, multiline matching. It is also possible to
+unset these options by preceding the letter with a hyphen, and a combined
+setting and unsetting such as (?im-sx), which sets PCRE_CASELESS and
+PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED, is also
+permitted. If a letter appears both before and after the hyphen, the option is
+unset.
+</P>
+<P>
+The PCRE-specific options PCRE_DUPNAMES, PCRE_UNGREEDY, and PCRE_EXTRA can be
+changed in the same way as the Perl-compatible options by using the characters
+J, U and X respectively.
+</P>
+<P>
+When one of these option changes occurs at top level (that is, not inside
+subpattern parentheses), the change applies to the remainder of the pattern
+that follows. If the change is placed right at the start of a pattern, PCRE
+extracts it into the global options (and it will therefore show up in data
+extracted by the <b>pcre_fullinfo()</b> function).
+</P>
+<P>
+An option change within a subpattern (see below for a description of
+subpatterns) affects only that part of the subpattern that follows it, so
+<pre>
+ (a(?i)b)c
+</pre>
+matches abc and aBc and no other strings (assuming PCRE_CASELESS is not used).
+By this means, options can be made to have different settings in different
+parts of the pattern. Any changes made in one alternative do carry on
+into subsequent branches within the same subpattern. For example,
+<pre>
+ (a(?i)b|c)
+</pre>
+matches "ab", "aB", "c", and "C", even though when matching "C" the first
+branch is abandoned before the option setting. This is because the effects of
+option settings happen at compile time. There would be some very weird
+behaviour otherwise.
+</P>
+<P>
+<b>Note:</b> There are other PCRE-specific options that can be set by the
+application when the compiling or matching functions are called. In some cases
+the pattern can contain special leading sequences such as (*CRLF) to override
+what the application has set or what has been defaulted. Details are given in
+the section entitled
+<a href="#newlineseq">"Newline sequences"</a>
+above. There are also the (*UTF8), (*UTF16),(*UTF32), and (*UCP) leading
+sequences that can be used to set UTF and Unicode property modes; they are
+equivalent to setting the PCRE_UTF8, PCRE_UTF16, PCRE_UTF32 and the PCRE_UCP
+options, respectively. The (*UTF) sequence is a generic version that can be
+used with any of the libraries. However, the application can set the
+PCRE_NEVER_UTF option, which locks out the use of the (*UTF) sequences.
+<a name="subpattern"></a></P>
+<br><a name="SEC14" href="#TOC1">SUBPATTERNS</a><br>
+<P>
+Subpatterns are delimited by parentheses (round brackets), which can be nested.
+Turning part of a pattern into a subpattern does two things:
+<br>
+<br>
+1. It localizes a set of alternatives. For example, the pattern
+<pre>
+ cat(aract|erpillar|)
+</pre>
+matches "cataract", "caterpillar", or "cat". Without the parentheses, it would
+match "cataract", "erpillar" or an empty string.
+<br>
+<br>
+2. It sets up the subpattern as a capturing subpattern. This means that, when
+the whole pattern matches, that portion of the subject string that matched the
+subpattern is passed back to the caller via the <i>ovector</i> argument of the
+matching function. (This applies only to the traditional matching functions;
+the DFA matching functions do not support capturing.)
+</P>
+<P>
+Opening parentheses are counted from left to right (starting from 1) to obtain
+numbers for the capturing subpatterns. For example, if the string "the red
+king" is matched against the pattern
+<pre>
+ the ((red|white) (king|queen))
+</pre>
+the captured substrings are "red king", "red", and "king", and are numbered 1,
+2, and 3, respectively.
+</P>
+<P>
+The fact that plain parentheses fulfil two functions is not always helpful.
+There are often times when a grouping subpattern is required without a
+capturing requirement. If an opening parenthesis is followed by a question mark
+and a colon, the subpattern does not do any capturing, and is not counted when
+computing the number of any subsequent capturing subpatterns. For example, if
+the string "the white queen" is matched against the pattern
+<pre>
+ the ((?:red|white) (king|queen))
+</pre>
+the captured substrings are "white queen" and "queen", and are numbered 1 and
+2. The maximum number of capturing subpatterns is 65535.
+</P>
+<P>
+As a convenient shorthand, if any option settings are required at the start of
+a non-capturing subpattern, the option letters may appear between the "?" and
+the ":". Thus the two patterns
+<pre>
+ (?i:saturday|sunday)
+ (?:(?i)saturday|sunday)
+</pre>
+match exactly the same set of strings. Because alternative branches are tried
+from left to right, and options are not reset until the end of the subpattern
+is reached, an option setting in one branch does affect subsequent branches, so
+the above patterns match "SUNDAY" as well as "Saturday".
+<a name="dupsubpatternnumber"></a></P>
+<br><a name="SEC15" href="#TOC1">DUPLICATE SUBPATTERN NUMBERS</a><br>
+<P>
+Perl 5.10 introduced a feature whereby each alternative in a subpattern uses
+the same numbers for its capturing parentheses. Such a subpattern starts with
+(?| and is itself a non-capturing subpattern. For example, consider this
+pattern:
+<pre>
+ (?|(Sat)ur|(Sun))day
+</pre>
+Because the two alternatives are inside a (?| group, both sets of capturing
+parentheses are numbered one. Thus, when the pattern matches, you can look
+at captured substring number one, whichever alternative matched. This construct
+is useful when you want to capture part, but not all, of one of a number of
+alternatives. Inside a (?| group, parentheses are numbered as usual, but the
+number is reset at the start of each branch. The numbers of any capturing
+parentheses that follow the subpattern start after the highest number used in
+any branch. The following example is taken from the Perl documentation. The
+numbers underneath show in which buffer the captured content will be stored.
+<pre>
+ # before ---------------branch-reset----------- after
+ / ( a ) (?| x ( y ) z | (p (q) r) | (t) u (v) ) ( z ) /x
+ # 1 2 2 3 2 3 4
+</pre>
+A back reference to a numbered subpattern uses the most recent value that is
+set for that number by any subpattern. The following pattern matches "abcabc"
+or "defdef":
+<pre>
+ /(?|(abc)|(def))\1/
+</pre>
+In contrast, a subroutine call to a numbered subpattern always refers to the
+first one in the pattern with the given number. The following pattern matches
+"abcabc" or "defabc":
+<pre>
+ /(?|(abc)|(def))(?1)/
+</pre>
+If a
+<a href="#conditions">condition test</a>
+for a subpattern's having matched refers to a non-unique number, the test is
+true if any of the subpatterns of that number have matched.
+</P>
+<P>
+An alternative approach to using this "branch reset" feature is to use
+duplicate named subpatterns, as described in the next section.
+</P>
+<br><a name="SEC16" href="#TOC1">NAMED SUBPATTERNS</a><br>
+<P>
+Identifying capturing parentheses by number is simple, but it can be very hard
+to keep track of the numbers in complicated regular expressions. Furthermore,
+if an expression is modified, the numbers may change. To help with this
+difficulty, PCRE supports the naming of subpatterns. This feature was not
+added to Perl until release 5.10. Python had the feature earlier, and PCRE
+introduced it at release 4.0, using the Python syntax. PCRE now supports both
+the Perl and the Python syntax. Perl allows identically numbered subpatterns to
+have different names, but PCRE does not.
+</P>
+<P>
+In PCRE, a subpattern can be named in one of three ways: (?&#60;name&#62;...) or
+(?'name'...) as in Perl, or (?P&#60;name&#62;...) as in Python. References to capturing
+parentheses from other parts of the pattern, such as
+<a href="#backreferences">back references,</a>
+<a href="#recursion">recursion,</a>
+and
+<a href="#conditions">conditions,</a>
+can be made by name as well as by number.
+</P>
+<P>
+Names consist of up to 32 alphanumeric characters and underscores, but must
+start with a non-digit. Named capturing parentheses are still allocated numbers
+as well as names, exactly as if the names were not present. The PCRE API
+provides function calls for extracting the name-to-number translation table
+from a compiled pattern. There is also a convenience function for extracting a
+captured substring by name.
+</P>
+<P>
+By default, a name must be unique within a pattern, but it is possible to relax
+this constraint by setting the PCRE_DUPNAMES option at compile time. (Duplicate
+names are also always permitted for subpatterns with the same number, set up as
+described in the previous section.) Duplicate names can be useful for patterns
+where only one instance of the named parentheses can match. Suppose you want to
+match the name of a weekday, either as a 3-letter abbreviation or as the full
+name, and in both cases you want to extract the abbreviation. This pattern
+(ignoring the line breaks) does the job:
+<pre>
+ (?&#60;DN&#62;Mon|Fri|Sun)(?:day)?|
+ (?&#60;DN&#62;Tue)(?:sday)?|
+ (?&#60;DN&#62;Wed)(?:nesday)?|
+ (?&#60;DN&#62;Thu)(?:rsday)?|
+ (?&#60;DN&#62;Sat)(?:urday)?
+</pre>
+There are five capturing substrings, but only one is ever set after a match.
+(An alternative way of solving this problem is to use a "branch reset"
+subpattern, as described in the previous section.)
+</P>
+<P>
+The convenience function for extracting the data by name returns the substring
+for the first (and in this example, the only) subpattern of that name that
+matched. This saves searching to find which numbered subpattern it was.
+</P>
+<P>
+If you make a back reference to a non-unique named subpattern from elsewhere in
+the pattern, the subpatterns to which the name refers are checked in the order
+in which they appear in the overall pattern. The first one that is set is used
+for the reference. For example, this pattern matches both "foofoo" and
+"barbar" but not "foobar" or "barfoo":
+<pre>
+ (?:(?&#60;n&#62;foo)|(?&#60;n&#62;bar))\k&#60;n&#62;
+
+</PRE>
+</P>
+<P>
+If you make a subroutine call to a non-unique named subpattern, the one that
+corresponds to the first occurrence of the name is used. In the absence of
+duplicate numbers (see the previous section) this is the one with the lowest
+number.
+</P>
+<P>
+If you use a named reference in a condition
+test (see the
+<a href="#conditions">section about conditions</a>
+below), either to check whether a subpattern has matched, or to check for
+recursion, all subpatterns with the same name are tested. If the condition is
+true for any one of them, the overall condition is true. This is the same
+behaviour as testing by number. For further details of the interfaces for
+handling named subpatterns, see the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+documentation.
+</P>
+<P>
+<b>Warning:</b> You cannot use different names to distinguish between two
+subpatterns with the same number because PCRE uses only the numbers when
+matching. For this reason, an error is given at compile time if different names
+are given to subpatterns with the same number. However, you can always give the
+same name to subpatterns with the same number, even when PCRE_DUPNAMES is not
+set.
+</P>
+<br><a name="SEC17" href="#TOC1">REPETITION</a><br>
+<P>
+Repetition is specified by quantifiers, which can follow any of the following
+items:
+<pre>
+ a literal data character
+ the dot metacharacter
+ the \C escape sequence
+ the \X escape sequence
+ the \R escape sequence
+ an escape such as \d or \pL that matches a single character
+ a character class
+ a back reference (see next section)
+ a parenthesized subpattern (including assertions)
+ a subroutine call to a subpattern (recursive or otherwise)
+</pre>
+The general repetition quantifier specifies a minimum and maximum number of
+permitted matches, by giving the two numbers in curly brackets (braces),
+separated by a comma. The numbers must be less than 65536, and the first must
+be less than or equal to the second. For example:
+<pre>
+ z{2,4}
+</pre>
+matches "zz", "zzz", or "zzzz". A closing brace on its own is not a special
+character. If the second number is omitted, but the comma is present, there is
+no upper limit; if the second number and the comma are both omitted, the
+quantifier specifies an exact number of required matches. Thus
+<pre>
+ [aeiou]{3,}
+</pre>
+matches at least 3 successive vowels, but may match many more, while
+<pre>
+ \d{8}
+</pre>
+matches exactly 8 digits. An opening curly bracket that appears in a position
+where a quantifier is not allowed, or one that does not match the syntax of a
+quantifier, is taken as a literal character. For example, {,6} is not a
+quantifier, but a literal string of four characters.
+</P>
+<P>
+In UTF modes, quantifiers apply to characters rather than to individual data
+units. Thus, for example, \x{100}{2} matches two characters, each of
+which is represented by a two-byte sequence in a UTF-8 string. Similarly,
+\X{3} matches three Unicode extended grapheme clusters, each of which may be
+several data units long (and they may be of different lengths).
+</P>
+<P>
+The quantifier {0} is permitted, causing the expression to behave as if the
+previous item and the quantifier were not present. This may be useful for
+subpatterns that are referenced as
+<a href="#subpatternsassubroutines">subroutines</a>
+from elsewhere in the pattern (but see also the section entitled
+<a href="#subdefine">"Defining subpatterns for use by reference only"</a>
+below). Items other than subpatterns that have a {0} quantifier are omitted
+from the compiled pattern.
+</P>
+<P>
+For convenience, the three most common quantifiers have single-character
+abbreviations:
+<pre>
+ * is equivalent to {0,}
+ + is equivalent to {1,}
+ ? is equivalent to {0,1}
+</pre>
+It is possible to construct infinite loops by following a subpattern that can
+match no characters with a quantifier that has no upper limit, for example:
+<pre>
+ (a?)*
+</pre>
+Earlier versions of Perl and PCRE used to give an error at compile time for
+such patterns. However, because there are cases where this can be useful, such
+patterns are now accepted, but if any repetition of the subpattern does in fact
+match no characters, the loop is forcibly broken.
+</P>
+<P>
+By default, the quantifiers are "greedy", that is, they match as much as
+possible (up to the maximum number of permitted times), without causing the
+rest of the pattern to fail. The classic example of where this gives problems
+is in trying to match comments in C programs. These appear between /* and */
+and within the comment, individual * and / characters may appear. An attempt to
+match C comments by applying the pattern
+<pre>
+ /\*.*\*/
+</pre>
+to the string
+<pre>
+ /* first comment */ not comment /* second comment */
+</pre>
+fails, because it matches the entire string owing to the greediness of the .*
+item.
+</P>
+<P>
+However, if a quantifier is followed by a question mark, it ceases to be
+greedy, and instead matches the minimum number of times possible, so the
+pattern
+<pre>
+ /\*.*?\*/
+</pre>
+does the right thing with the C comments. The meaning of the various
+quantifiers is not otherwise changed, just the preferred number of matches.
+Do not confuse this use of question mark with its use as a quantifier in its
+own right. Because it has two uses, it can sometimes appear doubled, as in
+<pre>
+ \d??\d
+</pre>
+which matches one digit by preference, but can match two if that is the only
+way the rest of the pattern matches.
+</P>
+<P>
+If the PCRE_UNGREEDY option is set (an option that is not available in Perl),
+the quantifiers are not greedy by default, but individual ones can be made
+greedy by following them with a question mark. In other words, it inverts the
+default behaviour.
+</P>
+<P>
+When a parenthesized subpattern is quantified with a minimum repeat count that
+is greater than 1 or with a limited maximum, more memory is required for the
+compiled pattern, in proportion to the size of the minimum or maximum.
+</P>
+<P>
+If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent
+to Perl's /s) is set, thus allowing the dot to match newlines, the pattern is
+implicitly anchored, because whatever follows will be tried against every
+character position in the subject string, so there is no point in retrying the
+overall match at any position after the first. PCRE normally treats such a
+pattern as though it were preceded by \A.
+</P>
+<P>
+In cases where it is known that the subject string contains no newlines, it is
+worth setting PCRE_DOTALL in order to obtain this optimization, or
+alternatively using ^ to indicate anchoring explicitly.
+</P>
+<P>
+However, there are some cases where the optimization cannot be used. When .*
+is inside capturing parentheses that are the subject of a back reference
+elsewhere in the pattern, a match at the start may fail where a later one
+succeeds. Consider, for example:
+<pre>
+ (.*)abc\1
+</pre>
+If the subject is "xyz123abc123" the match point is the fourth character. For
+this reason, such a pattern is not implicitly anchored.
+</P>
+<P>
+Another case where implicit anchoring is not applied is when the leading .* is
+inside an atomic group. Once again, a match at the start may fail where a later
+one succeeds. Consider this pattern:
+<pre>
+ (?&#62;.*?a)b
+</pre>
+It matches "ab" in the subject "aab". The use of the backtracking control verbs
+(*PRUNE) and (*SKIP) also disable this optimization.
+</P>
+<P>
+When a capturing subpattern is repeated, the value captured is the substring
+that matched the final iteration. For example, after
+<pre>
+ (tweedle[dume]{3}\s*)+
+</pre>
+has matched "tweedledum tweedledee" the value of the captured substring is
+"tweedledee". However, if there are nested capturing subpatterns, the
+corresponding captured values may have been set in previous iterations. For
+example, after
+<pre>
+ /(a|(b))+/
+</pre>
+matches "aba" the value of the second captured substring is "b".
+<a name="atomicgroup"></a></P>
+<br><a name="SEC18" href="#TOC1">ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS</a><br>
+<P>
+With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy")
+repetition, failure of what follows normally causes the repeated item to be
+re-evaluated to see if a different number of repeats allows the rest of the
+pattern to match. Sometimes it is useful to prevent this, either to change the
+nature of the match, or to cause it fail earlier than it otherwise might, when
+the author of the pattern knows there is no point in carrying on.
+</P>
+<P>
+Consider, for example, the pattern \d+foo when applied to the subject line
+<pre>
+ 123456bar
+</pre>
+After matching all 6 digits and then failing to match "foo", the normal
+action of the matcher is to try again with only 5 digits matching the \d+
+item, and then with 4, and so on, before ultimately failing. "Atomic grouping"
+(a term taken from Jeffrey Friedl's book) provides the means for specifying
+that once a subpattern has matched, it is not to be re-evaluated in this way.
+</P>
+<P>
+If we use atomic grouping for the previous example, the matcher gives up
+immediately on failing to match "foo" the first time. The notation is a kind of
+special parenthesis, starting with (?&#62; as in this example:
+<pre>
+ (?&#62;\d+)foo
+</pre>
+This kind of parenthesis "locks up" the part of the pattern it contains once
+it has matched, and a failure further into the pattern is prevented from
+backtracking into it. Backtracking past it to previous items, however, works as
+normal.
+</P>
+<P>
+An alternative description is that a subpattern of this type matches the string
+of characters that an identical standalone pattern would match, if anchored at
+the current point in the subject string.
+</P>
+<P>
+Atomic grouping subpatterns are not capturing subpatterns. Simple cases such as
+the above example can be thought of as a maximizing repeat that must swallow
+everything it can. So, while both \d+ and \d+? are prepared to adjust the
+number of digits they match in order to make the rest of the pattern match,
+(?&#62;\d+) can only match an entire sequence of digits.
+</P>
+<P>
+Atomic groups in general can of course contain arbitrarily complicated
+subpatterns, and can be nested. However, when the subpattern for an atomic
+group is just a single repeated item, as in the example above, a simpler
+notation, called a "possessive quantifier" can be used. This consists of an
+additional + character following a quantifier. Using this notation, the
+previous example can be rewritten as
+<pre>
+ \d++foo
+</pre>
+Note that a possessive quantifier can be used with an entire group, for
+example:
+<pre>
+ (abc|xyz){2,3}+
+</pre>
+Possessive quantifiers are always greedy; the setting of the PCRE_UNGREEDY
+option is ignored. They are a convenient notation for the simpler forms of
+atomic group. However, there is no difference in the meaning of a possessive
+quantifier and the equivalent atomic group, though there may be a performance
+difference; possessive quantifiers should be slightly faster.
+</P>
+<P>
+The possessive quantifier syntax is an extension to the Perl 5.8 syntax.
+Jeffrey Friedl originated the idea (and the name) in the first edition of his
+book. Mike McCloskey liked it, so implemented it when he built Sun's Java
+package, and PCRE copied it from there. It ultimately found its way into Perl
+at release 5.10.
+</P>
+<P>
+PCRE has an optimization that automatically "possessifies" certain simple
+pattern constructs. For example, the sequence A+B is treated as A++B because
+there is no point in backtracking into a sequence of A's when B must follow.
+</P>
+<P>
+When a pattern contains an unlimited repeat inside a subpattern that can itself
+be repeated an unlimited number of times, the use of an atomic group is the
+only way to avoid some failing matches taking a very long time indeed. The
+pattern
+<pre>
+ (\D+|&#60;\d+&#62;)*[!?]
+</pre>
+matches an unlimited number of substrings that either consist of non-digits, or
+digits enclosed in &#60;&#62;, followed by either ! or ?. When it matches, it runs
+quickly. However, if it is applied to
+<pre>
+ aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
+</pre>
+it takes a long time before reporting failure. This is because the string can
+be divided between the internal \D+ repeat and the external * repeat in a
+large number of ways, and all have to be tried. (The example uses [!?] rather
+than a single character at the end, because both PCRE and Perl have an
+optimization that allows for fast failure when a single character is used. They
+remember the last single character that is required for a match, and fail early
+if it is not present in the string.) If the pattern is changed so that it uses
+an atomic group, like this:
+<pre>
+ ((?&#62;\D+)|&#60;\d+&#62;)*[!?]
+</pre>
+sequences of non-digits cannot be broken, and failure happens quickly.
+<a name="backreferences"></a></P>
+<br><a name="SEC19" href="#TOC1">BACK REFERENCES</a><br>
+<P>
+Outside a character class, a backslash followed by a digit greater than 0 (and
+possibly further digits) is a back reference to a capturing subpattern earlier
+(that is, to its left) in the pattern, provided there have been that many
+previous capturing left parentheses.
+</P>
+<P>
+However, if the decimal number following the backslash is less than 10, it is
+always taken as a back reference, and causes an error only if there are not
+that many capturing left parentheses in the entire pattern. In other words, the
+parentheses that are referenced need not be to the left of the reference for
+numbers less than 10. A "forward back reference" of this type can make sense
+when a repetition is involved and the subpattern to the right has participated
+in an earlier iteration.
+</P>
+<P>
+It is not possible to have a numerical "forward back reference" to a subpattern
+whose number is 10 or more using this syntax because a sequence such as \50 is
+interpreted as a character defined in octal. See the subsection entitled
+"Non-printing characters"
+<a href="#digitsafterbackslash">above</a>
+for further details of the handling of digits following a backslash. There is
+no such problem when named parentheses are used. A back reference to any
+subpattern is possible using named parentheses (see below).
+</P>
+<P>
+Another way of avoiding the ambiguity inherent in the use of digits following a
+backslash is to use the \g escape sequence. This escape must be followed by an
+unsigned number or a negative number, optionally enclosed in braces. These
+examples are all identical:
+<pre>
+ (ring), \1
+ (ring), \g1
+ (ring), \g{1}
+</pre>
+An unsigned number specifies an absolute reference without the ambiguity that
+is present in the older syntax. It is also useful when literal digits follow
+the reference. A negative number is a relative reference. Consider this
+example:
+<pre>
+ (abc(def)ghi)\g{-1}
+</pre>
+The sequence \g{-1} is a reference to the most recently started capturing
+subpattern before \g, that is, is it equivalent to \2 in this example.
+Similarly, \g{-2} would be equivalent to \1. The use of relative references
+can be helpful in long patterns, and also in patterns that are created by
+joining together fragments that contain references within themselves.
+</P>
+<P>
+A back reference matches whatever actually matched the capturing subpattern in
+the current subject string, rather than anything matching the subpattern
+itself (see
+<a href="#subpatternsassubroutines">"Subpatterns as subroutines"</a>
+below for a way of doing that). So the pattern
+<pre>
+ (sens|respons)e and \1ibility
+</pre>
+matches "sense and sensibility" and "response and responsibility", but not
+"sense and responsibility". If caseful matching is in force at the time of the
+back reference, the case of letters is relevant. For example,
+<pre>
+ ((?i)rah)\s+\1
+</pre>
+matches "rah rah" and "RAH RAH", but not "RAH rah", even though the original
+capturing subpattern is matched caselessly.
+</P>
+<P>
+There are several different ways of writing back references to named
+subpatterns. The .NET syntax \k{name} and the Perl syntax \k&#60;name&#62; or
+\k'name' are supported, as is the Python syntax (?P=name). Perl 5.10's unified
+back reference syntax, in which \g can be used for both numeric and named
+references, is also supported. We could rewrite the above example in any of
+the following ways:
+<pre>
+ (?&#60;p1&#62;(?i)rah)\s+\k&#60;p1&#62;
+ (?'p1'(?i)rah)\s+\k{p1}
+ (?P&#60;p1&#62;(?i)rah)\s+(?P=p1)
+ (?&#60;p1&#62;(?i)rah)\s+\g{p1}
+</pre>
+A subpattern that is referenced by name may appear in the pattern before or
+after the reference.
+</P>
+<P>
+There may be more than one back reference to the same subpattern. If a
+subpattern has not actually been used in a particular match, any back
+references to it always fail by default. For example, the pattern
+<pre>
+ (a|(bc))\2
+</pre>
+always fails if it starts to match "a" rather than "bc". However, if the
+PCRE_JAVASCRIPT_COMPAT option is set at compile time, a back reference to an
+unset value matches an empty string.
+</P>
+<P>
+Because there may be many capturing parentheses in a pattern, all digits
+following a backslash are taken as part of a potential back reference number.
+If the pattern continues with a digit character, some delimiter must be used to
+terminate the back reference. If the PCRE_EXTENDED option is set, this can be
+white space. Otherwise, the \g{ syntax or an empty comment (see
+<a href="#comments">"Comments"</a>
+below) can be used.
+</P>
+<br><b>
+Recursive back references
+</b><br>
+<P>
+A back reference that occurs inside the parentheses to which it refers fails
+when the subpattern is first used, so, for example, (a\1) never matches.
+However, such references can be useful inside repeated subpatterns. For
+example, the pattern
+<pre>
+ (a|b\1)+
+</pre>
+matches any number of "a"s and also "aba", "ababbaa" etc. At each iteration of
+the subpattern, the back reference matches the character string corresponding
+to the previous iteration. In order for this to work, the pattern must be such
+that the first iteration does not need to match the back reference. This can be
+done using alternation, as in the example above, or by a quantifier with a
+minimum of zero.
+</P>
+<P>
+Back references of this type cause the group that they reference to be treated
+as an
+<a href="#atomicgroup">atomic group.</a>
+Once the whole group has been matched, a subsequent matching failure cannot
+cause backtracking into the middle of the group.
+<a name="bigassertions"></a></P>
+<br><a name="SEC20" href="#TOC1">ASSERTIONS</a><br>
+<P>
+An assertion is a test on the characters following or preceding the current
+matching point that does not actually consume any characters. The simple
+assertions coded as \b, \B, \A, \G, \Z, \z, ^ and $ are described
+<a href="#smallassertions">above.</a>
+</P>
+<P>
+More complicated assertions are coded as subpatterns. There are two kinds:
+those that look ahead of the current position in the subject string, and those
+that look behind it. An assertion subpattern is matched in the normal way,
+except that it does not cause the current matching position to be changed.
+</P>
+<P>
+Assertion subpatterns are not capturing subpatterns. If such an assertion
+contains capturing subpatterns within it, these are counted for the purposes of
+numbering the capturing subpatterns in the whole pattern. However, substring
+capturing is carried out only for positive assertions. (Perl sometimes, but not
+always, does do capturing in negative assertions.)
+</P>
+<P>
+For compatibility with Perl, assertion subpatterns may be repeated; though
+it makes no sense to assert the same thing several times, the side effect of
+capturing parentheses may occasionally be useful. In practice, there only three
+cases:
+<br>
+<br>
+(1) If the quantifier is {0}, the assertion is never obeyed during matching.
+However, it may contain internal capturing parenthesized groups that are called
+from elsewhere via the
+<a href="#subpatternsassubroutines">subroutine mechanism.</a>
+<br>
+<br>
+(2) If quantifier is {0,n} where n is greater than zero, it is treated as if it
+were {0,1}. At run time, the rest of the pattern match is tried with and
+without the assertion, the order depending on the greediness of the quantifier.
+<br>
+<br>
+(3) If the minimum repetition is greater than zero, the quantifier is ignored.
+The assertion is obeyed just once when encountered during matching.
+</P>
+<br><b>
+Lookahead assertions
+</b><br>
+<P>
+Lookahead assertions start with (?= for positive assertions and (?! for
+negative assertions. For example,
+<pre>
+ \w+(?=;)
+</pre>
+matches a word followed by a semicolon, but does not include the semicolon in
+the match, and
+<pre>
+ foo(?!bar)
+</pre>
+matches any occurrence of "foo" that is not followed by "bar". Note that the
+apparently similar pattern
+<pre>
+ (?!foo)bar
+</pre>
+does not find an occurrence of "bar" that is preceded by something other than
+"foo"; it finds any occurrence of "bar" whatsoever, because the assertion
+(?!foo) is always true when the next three characters are "bar". A
+lookbehind assertion is needed to achieve the other effect.
+</P>
+<P>
+If you want to force a matching failure at some point in a pattern, the most
+convenient way to do it is with (?!) because an empty string always matches, so
+an assertion that requires there not to be an empty string must always fail.
+The backtracking control verb (*FAIL) or (*F) is a synonym for (?!).
+<a name="lookbehind"></a></P>
+<br><b>
+Lookbehind assertions
+</b><br>
+<P>
+Lookbehind assertions start with (?&#60;= for positive assertions and (?&#60;! for
+negative assertions. For example,
+<pre>
+ (?&#60;!foo)bar
+</pre>
+does find an occurrence of "bar" that is not preceded by "foo". The contents of
+a lookbehind assertion are restricted such that all the strings it matches must
+have a fixed length. However, if there are several top-level alternatives, they
+do not all have to have the same fixed length. Thus
+<pre>
+ (?&#60;=bullock|donkey)
+</pre>
+is permitted, but
+<pre>
+ (?&#60;!dogs?|cats?)
+</pre>
+causes an error at compile time. Branches that match different length strings
+are permitted only at the top level of a lookbehind assertion. This is an
+extension compared with Perl, which requires all branches to match the same
+length of string. An assertion such as
+<pre>
+ (?&#60;=ab(c|de))
+</pre>
+is not permitted, because its single top-level branch can match two different
+lengths, but it is acceptable to PCRE if rewritten to use two top-level
+branches:
+<pre>
+ (?&#60;=abc|abde)
+</pre>
+In some cases, the escape sequence \K
+<a href="#resetmatchstart">(see above)</a>
+can be used instead of a lookbehind assertion to get round the fixed-length
+restriction.
+</P>
+<P>
+The implementation of lookbehind assertions is, for each alternative, to
+temporarily move the current position back by the fixed length and then try to
+match. If there are insufficient characters before the current position, the
+assertion fails.
+</P>
+<P>
+In a UTF mode, PCRE does not allow the \C escape (which matches a single data
+unit even in a UTF mode) to appear in lookbehind assertions, because it makes
+it impossible to calculate the length of the lookbehind. The \X and \R
+escapes, which can match different numbers of data units, are also not
+permitted.
+</P>
+<P>
+<a href="#subpatternsassubroutines">"Subroutine"</a>
+calls (see below) such as (?2) or (?&X) are permitted in lookbehinds, as long
+as the subpattern matches a fixed-length string.
+<a href="#recursion">Recursion,</a>
+however, is not supported.
+</P>
+<P>
+Possessive quantifiers can be used in conjunction with lookbehind assertions to
+specify efficient matching of fixed-length strings at the end of subject
+strings. Consider a simple pattern such as
+<pre>
+ abcd$
+</pre>
+when applied to a long string that does not match. Because matching proceeds
+from left to right, PCRE will look for each "a" in the subject and then see if
+what follows matches the rest of the pattern. If the pattern is specified as
+<pre>
+ ^.*abcd$
+</pre>
+the initial .* matches the entire string at first, but when this fails (because
+there is no following "a"), it backtracks to match all but the last character,
+then all but the last two characters, and so on. Once again the search for "a"
+covers the entire string, from right to left, so we are no better off. However,
+if the pattern is written as
+<pre>
+ ^.*+(?&#60;=abcd)
+</pre>
+there can be no backtracking for the .*+ item; it can match only the entire
+string. The subsequent lookbehind assertion does a single test on the last four
+characters. If it fails, the match fails immediately. For long strings, this
+approach makes a significant difference to the processing time.
+</P>
+<br><b>
+Using multiple assertions
+</b><br>
+<P>
+Several assertions (of any sort) may occur in succession. For example,
+<pre>
+ (?&#60;=\d{3})(?&#60;!999)foo
+</pre>
+matches "foo" preceded by three digits that are not "999". Notice that each of
+the assertions is applied independently at the same point in the subject
+string. First there is a check that the previous three characters are all
+digits, and then there is a check that the same three characters are not "999".
+This pattern does <i>not</i> match "foo" preceded by six characters, the first
+of which are digits and the last three of which are not "999". For example, it
+doesn't match "123abcfoo". A pattern to do that is
+<pre>
+ (?&#60;=\d{3}...)(?&#60;!999)foo
+</pre>
+This time the first assertion looks at the preceding six characters, checking
+that the first three are digits, and then the second assertion checks that the
+preceding three characters are not "999".
+</P>
+<P>
+Assertions can be nested in any combination. For example,
+<pre>
+ (?&#60;=(?&#60;!foo)bar)baz
+</pre>
+matches an occurrence of "baz" that is preceded by "bar" which in turn is not
+preceded by "foo", while
+<pre>
+ (?&#60;=\d{3}(?!999)...)foo
+</pre>
+is another pattern that matches "foo" preceded by three digits and any three
+characters that are not "999".
+<a name="conditions"></a></P>
+<br><a name="SEC21" href="#TOC1">CONDITIONAL SUBPATTERNS</a><br>
+<P>
+It is possible to cause the matching process to obey a subpattern
+conditionally or to choose between two alternative subpatterns, depending on
+the result of an assertion, or whether a specific capturing subpattern has
+already been matched. The two possible forms of conditional subpattern are:
+<pre>
+ (?(condition)yes-pattern)
+ (?(condition)yes-pattern|no-pattern)
+</pre>
+If the condition is satisfied, the yes-pattern is used; otherwise the
+no-pattern (if present) is used. If there are more than two alternatives in the
+subpattern, a compile-time error occurs. Each of the two alternatives may
+itself contain nested subpatterns of any form, including conditional
+subpatterns; the restriction to two alternatives applies only at the level of
+the condition. This pattern fragment is an example where the alternatives are
+complex:
+<pre>
+ (?(1) (A|B|C) | (D | (?(2)E|F) | E) )
+
+</PRE>
+</P>
+<P>
+There are four kinds of condition: references to subpatterns, references to
+recursion, a pseudo-condition called DEFINE, and assertions.
+</P>
+<br><b>
+Checking for a used subpattern by number
+</b><br>
+<P>
+If the text between the parentheses consists of a sequence of digits, the
+condition is true if a capturing subpattern of that number has previously
+matched. If there is more than one capturing subpattern with the same number
+(see the earlier
+<a href="#recursion">section about duplicate subpattern numbers),</a>
+the condition is true if any of them have matched. An alternative notation is
+to precede the digits with a plus or minus sign. In this case, the subpattern
+number is relative rather than absolute. The most recently opened parentheses
+can be referenced by (?(-1), the next most recent by (?(-2), and so on. Inside
+loops it can also make sense to refer to subsequent groups. The next
+parentheses to be opened can be referenced as (?(+1), and so on. (The value
+zero in any of these forms is not used; it provokes a compile-time error.)
+</P>
+<P>
+Consider the following pattern, which contains non-significant white space to
+make it more readable (assume the PCRE_EXTENDED option) and to divide it into
+three parts for ease of discussion:
+<pre>
+ ( \( )? [^()]+ (?(1) \) )
+</pre>
+The first part matches an optional opening parenthesis, and if that
+character is present, sets it as the first captured substring. The second part
+matches one or more characters that are not parentheses. The third part is a
+conditional subpattern that tests whether or not the first set of parentheses
+matched. If they did, that is, if subject started with an opening parenthesis,
+the condition is true, and so the yes-pattern is executed and a closing
+parenthesis is required. Otherwise, since no-pattern is not present, the
+subpattern matches nothing. In other words, this pattern matches a sequence of
+non-parentheses, optionally enclosed in parentheses.
+</P>
+<P>
+If you were embedding this pattern in a larger one, you could use a relative
+reference:
+<pre>
+ ...other stuff... ( \( )? [^()]+ (?(-1) \) ) ...
+</pre>
+This makes the fragment independent of the parentheses in the larger pattern.
+</P>
+<br><b>
+Checking for a used subpattern by name
+</b><br>
+<P>
+Perl uses the syntax (?(&#60;name&#62;)...) or (?('name')...) to test for a used
+subpattern by name. For compatibility with earlier versions of PCRE, which had
+this facility before Perl, the syntax (?(name)...) is also recognized.
+</P>
+<P>
+Rewriting the above example to use a named subpattern gives this:
+<pre>
+ (?&#60;OPEN&#62; \( )? [^()]+ (?(&#60;OPEN&#62;) \) )
+</pre>
+If the name used in a condition of this kind is a duplicate, the test is
+applied to all subpatterns of the same name, and is true if any one of them has
+matched.
+</P>
+<br><b>
+Checking for pattern recursion
+</b><br>
+<P>
+If the condition is the string (R), and there is no subpattern with the name R,
+the condition is true if a recursive call to the whole pattern or any
+subpattern has been made. If digits or a name preceded by ampersand follow the
+letter R, for example:
+<pre>
+ (?(R3)...) or (?(R&name)...)
+</pre>
+the condition is true if the most recent recursion is into a subpattern whose
+number or name is given. This condition does not check the entire recursion
+stack. If the name used in a condition of this kind is a duplicate, the test is
+applied to all subpatterns of the same name, and is true if any one of them is
+the most recent recursion.
+</P>
+<P>
+At "top level", all these recursion test conditions are false.
+<a href="#recursion">The syntax for recursive patterns</a>
+is described below.
+<a name="subdefine"></a></P>
+<br><b>
+Defining subpatterns for use by reference only
+</b><br>
+<P>
+If the condition is the string (DEFINE), and there is no subpattern with the
+name DEFINE, the condition is always false. In this case, there may be only one
+alternative in the subpattern. It is always skipped if control reaches this
+point in the pattern; the idea of DEFINE is that it can be used to define
+subroutines that can be referenced from elsewhere. (The use of
+<a href="#subpatternsassubroutines">subroutines</a>
+is described below.) For example, a pattern to match an IPv4 address such as
+"192.168.23.245" could be written like this (ignore white space and line
+breaks):
+<pre>
+ (?(DEFINE) (?&#60;byte&#62; 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d) )
+ \b (?&byte) (\.(?&byte)){3} \b
+</pre>
+The first part of the pattern is a DEFINE group inside which a another group
+named "byte" is defined. This matches an individual component of an IPv4
+address (a number less than 256). When matching takes place, this part of the
+pattern is skipped because DEFINE acts like a false condition. The rest of the
+pattern uses references to the named group to match the four dot-separated
+components of an IPv4 address, insisting on a word boundary at each end.
+</P>
+<br><b>
+Assertion conditions
+</b><br>
+<P>
+If the condition is not in any of the above formats, it must be an assertion.
+This may be a positive or negative lookahead or lookbehind assertion. Consider
+this pattern, again containing non-significant white space, and with the two
+alternatives on the second line:
+<pre>
+ (?(?=[^a-z]*[a-z])
+ \d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2} )
+</pre>
+The condition is a positive lookahead assertion that matches an optional
+sequence of non-letters followed by a letter. In other words, it tests for the
+presence of at least one letter in the subject. If a letter is found, the
+subject is matched against the first alternative; otherwise it is matched
+against the second. This pattern matches strings in one of the two forms
+dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are digits.
+<a name="comments"></a></P>
+<br><a name="SEC22" href="#TOC1">COMMENTS</a><br>
+<P>
+There are two ways of including comments in patterns that are processed by
+PCRE. In both cases, the start of the comment must not be in a character class,
+nor in the middle of any other sequence of related characters such as (?: or a
+subpattern name or number. The characters that make up a comment play no part
+in the pattern matching.
+</P>
+<P>
+The sequence (?# marks the start of a comment that continues up to the next
+closing parenthesis. Nested parentheses are not permitted. If the PCRE_EXTENDED
+option is set, an unescaped # character also introduces a comment, which in
+this case continues to immediately after the next newline character or
+character sequence in the pattern. Which characters are interpreted as newlines
+is controlled by the options passed to a compiling function or by a special
+sequence at the start of the pattern, as described in the section entitled
+<a href="#newlines">"Newline conventions"</a>
+above. Note that the end of this type of comment is a literal newline sequence
+in the pattern; escape sequences that happen to represent a newline do not
+count. For example, consider this pattern when PCRE_EXTENDED is set, and the
+default newline convention is in force:
+<pre>
+ abc #comment \n still comment
+</pre>
+On encountering the # character, <b>pcre_compile()</b> skips along, looking for
+a newline in the pattern. The sequence \n is still literal at this stage, so
+it does not terminate the comment. Only an actual character with the code value
+0x0a (the default newline) does so.
+<a name="recursion"></a></P>
+<br><a name="SEC23" href="#TOC1">RECURSIVE PATTERNS</a><br>
+<P>
+Consider the problem of matching a string in parentheses, allowing for
+unlimited nested parentheses. Without the use of recursion, the best that can
+be done is to use a pattern that matches up to some fixed depth of nesting. It
+is not possible to handle an arbitrary nesting depth.
+</P>
+<P>
+For some time, Perl has provided a facility that allows regular expressions to
+recurse (amongst other things). It does this by interpolating Perl code in the
+expression at run time, and the code can refer to the expression itself. A Perl
+pattern using code interpolation to solve the parentheses problem can be
+created like this:
+<pre>
+ $re = qr{\( (?: (?&#62;[^()]+) | (?p{$re}) )* \)}x;
+</pre>
+The (?p{...}) item interpolates Perl code at run time, and in this case refers
+recursively to the pattern in which it appears.
+</P>
+<P>
+Obviously, PCRE cannot support the interpolation of Perl code. Instead, it
+supports special syntax for recursion of the entire pattern, and also for
+individual subpattern recursion. After its introduction in PCRE and Python,
+this kind of recursion was subsequently introduced into Perl at release 5.10.
+</P>
+<P>
+A special item that consists of (? followed by a number greater than zero and a
+closing parenthesis is a recursive subroutine call of the subpattern of the
+given number, provided that it occurs inside that subpattern. (If not, it is a
+<a href="#subpatternsassubroutines">non-recursive subroutine</a>
+call, which is described in the next section.) The special item (?R) or (?0) is
+a recursive call of the entire regular expression.
+</P>
+<P>
+This PCRE pattern solves the nested parentheses problem (assume the
+PCRE_EXTENDED option is set so that white space is ignored):
+<pre>
+ \( ( [^()]++ | (?R) )* \)
+</pre>
+First it matches an opening parenthesis. Then it matches any number of
+substrings which can either be a sequence of non-parentheses, or a recursive
+match of the pattern itself (that is, a correctly parenthesized substring).
+Finally there is a closing parenthesis. Note the use of a possessive quantifier
+to avoid backtracking into sequences of non-parentheses.
+</P>
+<P>
+If this were part of a larger pattern, you would not want to recurse the entire
+pattern, so instead you could use this:
+<pre>
+ ( \( ( [^()]++ | (?1) )* \) )
+</pre>
+We have put the pattern into parentheses, and caused the recursion to refer to
+them instead of the whole pattern.
+</P>
+<P>
+In a larger pattern, keeping track of parenthesis numbers can be tricky. This
+is made easier by the use of relative references. Instead of (?1) in the
+pattern above you can write (?-2) to refer to the second most recently opened
+parentheses preceding the recursion. In other words, a negative number counts
+capturing parentheses leftwards from the point at which it is encountered.
+</P>
+<P>
+It is also possible to refer to subsequently opened parentheses, by writing
+references such as (?+2). However, these cannot be recursive because the
+reference is not inside the parentheses that are referenced. They are always
+<a href="#subpatternsassubroutines">non-recursive subroutine</a>
+calls, as described in the next section.
+</P>
+<P>
+An alternative approach is to use named parentheses instead. The Perl syntax
+for this is (?&name); PCRE's earlier syntax (?P&#62;name) is also supported. We
+could rewrite the above example as follows:
+<pre>
+ (?&#60;pn&#62; \( ( [^()]++ | (?&pn) )* \) )
+</pre>
+If there is more than one subpattern with the same name, the earliest one is
+used.
+</P>
+<P>
+This particular example pattern that we have been looking at contains nested
+unlimited repeats, and so the use of a possessive quantifier for matching
+strings of non-parentheses is important when applying the pattern to strings
+that do not match. For example, when this pattern is applied to
+<pre>
+ (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()
+</pre>
+it yields "no match" quickly. However, if a possessive quantifier is not used,
+the match runs for a very long time indeed because there are so many different
+ways the + and * repeats can carve up the subject, and all have to be tested
+before failure can be reported.
+</P>
+<P>
+At the end of a match, the values of capturing parentheses are those from
+the outermost level. If you want to obtain intermediate values, a callout
+function can be used (see below and the
+<a href="pcrecallout.html"><b>pcrecallout</b></a>
+documentation). If the pattern above is matched against
+<pre>
+ (ab(cd)ef)
+</pre>
+the value for the inner capturing parentheses (numbered 2) is "ef", which is
+the last value taken on at the top level. If a capturing subpattern is not
+matched at the top level, its final captured value is unset, even if it was
+(temporarily) set at a deeper level during the matching process.
+</P>
+<P>
+If there are more than 15 capturing parentheses in a pattern, PCRE has to
+obtain extra memory to store data during a recursion, which it does by using
+<b>pcre_malloc</b>, freeing it via <b>pcre_free</b> afterwards. If no memory can
+be obtained, the match fails with the PCRE_ERROR_NOMEMORY error.
+</P>
+<P>
+Do not confuse the (?R) item with the condition (R), which tests for recursion.
+Consider this pattern, which matches text in angle brackets, allowing for
+arbitrary nesting. Only digits are allowed in nested brackets (that is, when
+recursing), whereas any characters are permitted at the outer level.
+<pre>
+ &#60; (?: (?(R) \d++ | [^&#60;&#62;]*+) | (?R)) * &#62;
+</pre>
+In this pattern, (?(R) is the start of a conditional subpattern, with two
+different alternatives for the recursive and non-recursive cases. The (?R) item
+is the actual recursive call.
+<a name="recursiondifference"></a></P>
+<br><b>
+Differences in recursion processing between PCRE and Perl
+</b><br>
+<P>
+Recursion processing in PCRE differs from Perl in two important ways. In PCRE
+(like Python, but unlike Perl), a recursive subpattern call is always treated
+as an atomic group. That is, once it has matched some of the subject string, it
+is never re-entered, even if it contains untried alternatives and there is a
+subsequent matching failure. This can be illustrated by the following pattern,
+which purports to match a palindromic string that contains an odd number of
+characters (for example, "a", "aba", "abcba", "abcdcba"):
+<pre>
+ ^(.|(.)(?1)\2)$
+</pre>
+The idea is that it either matches a single character, or two identical
+characters surrounding a sub-palindrome. In Perl, this pattern works; in PCRE
+it does not if the pattern is longer than three characters. Consider the
+subject string "abcba":
+</P>
+<P>
+At the top level, the first character is matched, but as it is not at the end
+of the string, the first alternative fails; the second alternative is taken
+and the recursion kicks in. The recursive call to subpattern 1 successfully
+matches the next character ("b"). (Note that the beginning and end of line
+tests are not part of the recursion).
+</P>
+<P>
+Back at the top level, the next character ("c") is compared with what
+subpattern 2 matched, which was "a". This fails. Because the recursion is
+treated as an atomic group, there are now no backtracking points, and so the
+entire match fails. (Perl is able, at this point, to re-enter the recursion and
+try the second alternative.) However, if the pattern is written with the
+alternatives in the other order, things are different:
+<pre>
+ ^((.)(?1)\2|.)$
+</pre>
+This time, the recursing alternative is tried first, and continues to recurse
+until it runs out of characters, at which point the recursion fails. But this
+time we do have another alternative to try at the higher level. That is the big
+difference: in the previous case the remaining alternative is at a deeper
+recursion level, which PCRE cannot use.
+</P>
+<P>
+To change the pattern so that it matches all palindromic strings, not just
+those with an odd number of characters, it is tempting to change the pattern to
+this:
+<pre>
+ ^((.)(?1)\2|.?)$
+</pre>
+Again, this works in Perl, but not in PCRE, and for the same reason. When a
+deeper recursion has matched a single character, it cannot be entered again in
+order to match an empty string. The solution is to separate the two cases, and
+write out the odd and even cases as alternatives at the higher level:
+<pre>
+ ^(?:((.)(?1)\2|)|((.)(?3)\4|.))
+</pre>
+If you want to match typical palindromic phrases, the pattern has to ignore all
+non-word characters, which can be done like this:
+<pre>
+ ^\W*+(?:((.)\W*+(?1)\W*+\2|)|((.)\W*+(?3)\W*+\4|\W*+.\W*+))\W*+$
+</pre>
+If run with the PCRE_CASELESS option, this pattern matches phrases such as "A
+man, a plan, a canal: Panama!" and it works well in both PCRE and Perl. Note
+the use of the possessive quantifier *+ to avoid backtracking into sequences of
+non-word characters. Without this, PCRE takes a great deal longer (ten times or
+more) to match typical phrases, and Perl takes so long that you think it has
+gone into a loop.
+</P>
+<P>
+<b>WARNING</b>: The palindrome-matching patterns above work only if the subject
+string does not start with a palindrome that is shorter than the entire string.
+For example, although "abcba" is correctly matched, if the subject is "ababa",
+PCRE finds the palindrome "aba" at the start, then fails at top level because
+the end of the string does not follow. Once again, it cannot jump back into the
+recursion to try other alternatives, so the entire match fails.
+</P>
+<P>
+The second way in which PCRE and Perl differ in their recursion processing is
+in the handling of captured values. In Perl, when a subpattern is called
+recursively or as a subpattern (see the next section), it has no access to any
+values that were captured outside the recursion, whereas in PCRE these values
+can be referenced. Consider this pattern:
+<pre>
+ ^(.)(\1|a(?2))
+</pre>
+In PCRE, this pattern matches "bab". The first capturing parentheses match "b",
+then in the second group, when the back reference \1 fails to match "b", the
+second alternative matches "a" and then recurses. In the recursion, \1 does
+now match "b" and so the whole match succeeds. In Perl, the pattern fails to
+match because inside the recursive call \1 cannot access the externally set
+value.
+<a name="subpatternsassubroutines"></a></P>
+<br><a name="SEC24" href="#TOC1">SUBPATTERNS AS SUBROUTINES</a><br>
+<P>
+If the syntax for a recursive subpattern call (either by number or by
+name) is used outside the parentheses to which it refers, it operates like a
+subroutine in a programming language. The called subpattern may be defined
+before or after the reference. A numbered reference can be absolute or
+relative, as in these examples:
+<pre>
+ (...(absolute)...)...(?2)...
+ (...(relative)...)...(?-1)...
+ (...(?+1)...(relative)...
+</pre>
+An earlier example pointed out that the pattern
+<pre>
+ (sens|respons)e and \1ibility
+</pre>
+matches "sense and sensibility" and "response and responsibility", but not
+"sense and responsibility". If instead the pattern
+<pre>
+ (sens|respons)e and (?1)ibility
+</pre>
+is used, it does match "sense and responsibility" as well as the other two
+strings. Another example is given in the discussion of DEFINE above.
+</P>
+<P>
+All subroutine calls, whether recursive or not, are always treated as atomic
+groups. That is, once a subroutine has matched some of the subject string, it
+is never re-entered, even if it contains untried alternatives and there is a
+subsequent matching failure. Any capturing parentheses that are set during the
+subroutine call revert to their previous values afterwards.
+</P>
+<P>
+Processing options such as case-independence are fixed when a subpattern is
+defined, so if it is used as a subroutine, such options cannot be changed for
+different calls. For example, consider this pattern:
+<pre>
+ (abc)(?i:(?-1))
+</pre>
+It matches "abcabc". It does not match "abcABC" because the change of
+processing option does not affect the called subpattern.
+<a name="onigurumasubroutines"></a></P>
+<br><a name="SEC25" href="#TOC1">ONIGURUMA SUBROUTINE SYNTAX</a><br>
+<P>
+For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or
+a number enclosed either in angle brackets or single quotes, is an alternative
+syntax for referencing a subpattern as a subroutine, possibly recursively. Here
+are two of the examples used above, rewritten using this syntax:
+<pre>
+ (?&#60;pn&#62; \( ( (?&#62;[^()]+) | \g&#60;pn&#62; )* \) )
+ (sens|respons)e and \g'1'ibility
+</pre>
+PCRE supports an extension to Oniguruma: if a number is preceded by a
+plus or a minus sign it is taken as a relative reference. For example:
+<pre>
+ (abc)(?i:\g&#60;-1&#62;)
+</pre>
+Note that \g{...} (Perl syntax) and \g&#60;...&#62; (Oniguruma syntax) are <i>not</i>
+synonymous. The former is a back reference; the latter is a subroutine call.
+</P>
+<br><a name="SEC26" href="#TOC1">CALLOUTS</a><br>
+<P>
+Perl has a feature whereby using the sequence (?{...}) causes arbitrary Perl
+code to be obeyed in the middle of matching a regular expression. This makes it
+possible, amongst other things, to extract different substrings that match the
+same pair of parentheses when there is a repetition.
+</P>
+<P>
+PCRE provides a similar feature, but of course it cannot obey arbitrary Perl
+code. The feature is called "callout". The caller of PCRE provides an external
+function by putting its entry point in the global variable <i>pcre_callout</i>
+(8-bit library) or <i>pcre[16|32]_callout</i> (16-bit or 32-bit library).
+By default, this variable contains NULL, which disables all calling out.
+</P>
+<P>
+Within a regular expression, (?C) indicates the points at which the external
+function is to be called. If you want to identify different callout points, you
+can put a number less than 256 after the letter C. The default value is zero.
+For example, this pattern has two callout points:
+<pre>
+ (?C1)abc(?C2)def
+</pre>
+If the PCRE_AUTO_CALLOUT flag is passed to a compiling function, callouts are
+automatically installed before each item in the pattern. They are all numbered
+255. If there is a conditional group in the pattern whose condition is an
+assertion, an additional callout is inserted just before the condition. An
+explicit callout may also be set at this position, as in this example:
+<pre>
+ (?(?C9)(?=a)abc|def)
+</pre>
+Note that this applies only to assertion conditions, not to other types of
+condition.
+</P>
+<P>
+During matching, when PCRE reaches a callout point, the external function is
+called. It is provided with the number of the callout, the position in the
+pattern, and, optionally, one item of data originally supplied by the caller of
+the matching function. The callout function may cause matching to proceed, to
+backtrack, or to fail altogether.
+</P>
+<P>
+By default, PCRE implements a number of optimizations at compile time and
+matching time, and one side-effect is that sometimes callouts are skipped. If
+you need all possible callouts to happen, you need to set options that disable
+the relevant optimizations. More details, and a complete description of the
+interface to the callout function, are given in the
+<a href="pcrecallout.html"><b>pcrecallout</b></a>
+documentation.
+<a name="backtrackcontrol"></a></P>
+<br><a name="SEC27" href="#TOC1">BACKTRACKING CONTROL</a><br>
+<P>
+Perl 5.10 introduced a number of "Special Backtracking Control Verbs", which
+are still described in the Perl documentation as "experimental and subject to
+change or removal in a future version of Perl". It goes on to say: "Their usage
+in production code should be noted to avoid problems during upgrades." The same
+remarks apply to the PCRE features described in this section.
+</P>
+<P>
+The new verbs make use of what was previously invalid syntax: an opening
+parenthesis followed by an asterisk. They are generally of the form
+(*VERB) or (*VERB:NAME). Some may take either form, possibly behaving
+differently depending on whether or not a name is present. A name is any
+sequence of characters that does not include a closing parenthesis. The maximum
+length of name is 255 in the 8-bit library and 65535 in the 16-bit and 32-bit
+libraries. If the name is empty, that is, if the closing parenthesis
+immediately follows the colon, the effect is as if the colon were not there.
+Any number of these verbs may occur in a pattern.
+</P>
+<P>
+Since these verbs are specifically related to backtracking, most of them can be
+used only when the pattern is to be matched using one of the traditional
+matching functions, because these use a backtracking algorithm. With the
+exception of (*FAIL), which behaves like a failing negative assertion, the
+backtracking control verbs cause an error if encountered by a DFA matching
+function.
+</P>
+<P>
+The behaviour of these verbs in
+<a href="#btrepeat">repeated groups,</a>
+<a href="#btassert">assertions,</a>
+and in
+<a href="#btsub">subpatterns called as subroutines</a>
+(whether or not recursively) is documented below.
+<a name="nooptimize"></a></P>
+<br><b>
+Optimizations that affect backtracking verbs
+</b><br>
+<P>
+PCRE contains some optimizations that are used to speed up matching by running
+some checks at the start of each match attempt. For example, it may know the
+minimum length of matching subject, or that a particular character must be
+present. When one of these optimizations bypasses the running of a match, any
+included backtracking verbs will not, of course, be processed. You can suppress
+the start-of-match optimizations by setting the PCRE_NO_START_OPTIMIZE option
+when calling <b>pcre_compile()</b> or <b>pcre_exec()</b>, or by starting the
+pattern with (*NO_START_OPT). There is more discussion of this option in the
+section entitled
+<a href="pcreapi.html#execoptions">"Option bits for <b>pcre_exec()</b>"</a>
+in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+documentation.
+</P>
+<P>
+Experiments with Perl suggest that it too has similar optimizations, sometimes
+leading to anomalous results.
+</P>
+<br><b>
+Verbs that act immediately
+</b><br>
+<P>
+The following verbs act as soon as they are encountered. They may not be
+followed by a name.
+<pre>
+ (*ACCEPT)
+</pre>
+This verb causes the match to end successfully, skipping the remainder of the
+pattern. However, when it is inside a subpattern that is called as a
+subroutine, only that subpattern is ended successfully. Matching then continues
+at the outer level. If (*ACCEPT) in triggered in a positive assertion, the
+assertion succeeds; in a negative assertion, the assertion fails.
+</P>
+<P>
+If (*ACCEPT) is inside capturing parentheses, the data so far is captured. For
+example:
+<pre>
+ A((?:A|B(*ACCEPT)|C)D)
+</pre>
+This matches "AB", "AAD", or "ACD"; when it matches "AB", "B" is captured by
+the outer parentheses.
+<pre>
+ (*FAIL) or (*F)
+</pre>
+This verb causes a matching failure, forcing backtracking to occur. It is
+equivalent to (?!) but easier to read. The Perl documentation notes that it is
+probably useful only when combined with (?{}) or (??{}). Those are, of course,
+Perl features that are not present in PCRE. The nearest equivalent is the
+callout feature, as for example in this pattern:
+<pre>
+ a+(?C)(*FAIL)
+</pre>
+A match with the string "aaaa" always fails, but the callout is taken before
+each backtrack happens (in this example, 10 times).
+</P>
+<br><b>
+Recording which path was taken
+</b><br>
+<P>
+There is one verb whose main purpose is to track how a match was arrived at,
+though it also has a secondary use in conjunction with advancing the match
+starting point (see (*SKIP) below).
+<pre>
+ (*MARK:NAME) or (*:NAME)
+</pre>
+A name is always required with this verb. There may be as many instances of
+(*MARK) as you like in a pattern, and their names do not have to be unique.
+</P>
+<P>
+When a match succeeds, the name of the last-encountered (*MARK:NAME),
+(*PRUNE:NAME), or (*THEN:NAME) on the matching path is passed back to the
+caller as described in the section entitled
+<a href="pcreapi.html#extradata">"Extra data for <b>pcre_exec()</b>"</a>
+in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+documentation. Here is an example of <b>pcretest</b> output, where the /K
+modifier requests the retrieval and outputting of (*MARK) data:
+<pre>
+ re&#62; /X(*MARK:A)Y|X(*MARK:B)Z/K
+ data&#62; XY
+ 0: XY
+ MK: A
+ XZ
+ 0: XZ
+ MK: B
+</pre>
+The (*MARK) name is tagged with "MK:" in this output, and in this example it
+indicates which of the two alternatives matched. This is a more efficient way
+of obtaining this information than putting each alternative in its own
+capturing parentheses.
+</P>
+<P>
+If a verb with a name is encountered in a positive assertion that is true, the
+name is recorded and passed back if it is the last-encountered. This does not
+happen for negative assertions or failing positive assertions.
+</P>
+<P>
+After a partial match or a failed match, the last encountered name in the
+entire match process is returned. For example:
+<pre>
+ re&#62; /X(*MARK:A)Y|X(*MARK:B)Z/K
+ data&#62; XP
+ No match, mark = B
+</pre>
+Note that in this unanchored example the mark is retained from the match
+attempt that started at the letter "X" in the subject. Subsequent match
+attempts starting at "P" and then with an empty string do not get as far as the
+(*MARK) item, but nevertheless do not reset it.
+</P>
+<P>
+If you are interested in (*MARK) values after failed matches, you should
+probably set the PCRE_NO_START_OPTIMIZE option
+<a href="#nooptimize">(see above)</a>
+to ensure that the match is always attempted.
+</P>
+<br><b>
+Verbs that act after backtracking
+</b><br>
+<P>
+The following verbs do nothing when they are encountered. Matching continues
+with what follows, but if there is no subsequent match, causing a backtrack to
+the verb, a failure is forced. That is, backtracking cannot pass to the left of
+the verb. However, when one of these verbs appears inside an atomic group or an
+assertion that is true, its effect is confined to that group, because once the
+group has been matched, there is never any backtracking into it. In this
+situation, backtracking can "jump back" to the left of the entire atomic group
+or assertion. (Remember also, as stated above, that this localization also
+applies in subroutine calls.)
+</P>
+<P>
+These verbs differ in exactly what kind of failure occurs when backtracking
+reaches them. The behaviour described below is what happens when the verb is
+not in a subroutine or an assertion. Subsequent sections cover these special
+cases.
+<pre>
+ (*COMMIT)
+</pre>
+This verb, which may not be followed by a name, causes the whole match to fail
+outright if there is a later matching failure that causes backtracking to reach
+it. Even if the pattern is unanchored, no further attempts to find a match by
+advancing the starting point take place. If (*COMMIT) is the only backtracking
+verb that is encountered, once it has been passed <b>pcre_exec()</b> is
+committed to finding a match at the current starting point, or not at all. For
+example:
+<pre>
+ a+(*COMMIT)b
+</pre>
+This matches "xxaab" but not "aacaab". It can be thought of as a kind of
+dynamic anchor, or "I've started, so I must finish." The name of the most
+recently passed (*MARK) in the path is passed back when (*COMMIT) forces a
+match failure.
+</P>
+<P>
+If there is more than one backtracking verb in a pattern, a different one that
+follows (*COMMIT) may be triggered first, so merely passing (*COMMIT) during a
+match does not always guarantee that a match must be at this starting point.
+</P>
+<P>
+Note that (*COMMIT) at the start of a pattern is not the same as an anchor,
+unless PCRE's start-of-match optimizations are turned off, as shown in this
+output from <b>pcretest</b>:
+<pre>
+ re&#62; /(*COMMIT)abc/
+ data&#62; xyzabc
+ 0: abc
+ data&#62; xyzabc\Y
+ No match
+</pre>
+For this pattern, PCRE knows that any match must start with "a", so the
+optimization skips along the subject to "a" before applying the pattern to the
+first set of data. The match attempt then succeeds. In the second set of data,
+the escape sequence \Y is interpreted by the <b>pcretest</b> program. It causes
+the PCRE_NO_START_OPTIMIZE option to be set when <b>pcre_exec()</b> is called.
+This disables the optimization that skips along to the first character. The
+pattern is now applied starting at "x", and so the (*COMMIT) causes the match
+to fail without trying any other starting points.
+<pre>
+ (*PRUNE) or (*PRUNE:NAME)
+</pre>
+This verb causes the match to fail at the current starting position in the
+subject if there is a later matching failure that causes backtracking to reach
+it. If the pattern is unanchored, the normal "bumpalong" advance to the next
+starting character then happens. Backtracking can occur as usual to the left of
+(*PRUNE), before it is reached, or when matching to the right of (*PRUNE), but
+if there is no match to the right, backtracking cannot cross (*PRUNE). In
+simple cases, the use of (*PRUNE) is just an alternative to an atomic group or
+possessive quantifier, but there are some uses of (*PRUNE) that cannot be
+expressed in any other way. In an anchored pattern (*PRUNE) has the same effect
+as (*COMMIT).
+</P>
+<P>
+The behaviour of (*PRUNE:NAME) is the not the same as (*MARK:NAME)(*PRUNE).
+It is like (*MARK:NAME) in that the name is remembered for passing back to the
+caller. However, (*SKIP:NAME) searches only for names set with (*MARK).
+<pre>
+ (*SKIP)
+</pre>
+This verb, when given without a name, is like (*PRUNE), except that if the
+pattern is unanchored, the "bumpalong" advance is not to the next character,
+but to the position in the subject where (*SKIP) was encountered. (*SKIP)
+signifies that whatever text was matched leading up to it cannot be part of a
+successful match. Consider:
+<pre>
+ a+(*SKIP)b
+</pre>
+If the subject is "aaaac...", after the first match attempt fails (starting at
+the first character in the string), the starting point skips on to start the
+next attempt at "c". Note that a possessive quantifer does not have the same
+effect as this example; although it would suppress backtracking during the
+first match attempt, the second attempt would start at the second character
+instead of skipping on to "c".
+<pre>
+ (*SKIP:NAME)
+</pre>
+When (*SKIP) has an associated name, its behaviour is modified. When it is
+triggered, the previous path through the pattern is searched for the most
+recent (*MARK) that has the same name. If one is found, the "bumpalong" advance
+is to the subject position that corresponds to that (*MARK) instead of to where
+(*SKIP) was encountered. If no (*MARK) with a matching name is found, the
+(*SKIP) is ignored.
+</P>
+<P>
+Note that (*SKIP:NAME) searches only for names set by (*MARK:NAME). It ignores
+names that are set by (*PRUNE:NAME) or (*THEN:NAME).
+<pre>
+ (*THEN) or (*THEN:NAME)
+</pre>
+This verb causes a skip to the next innermost alternative when backtracking
+reaches it. That is, it cancels any further backtracking within the current
+alternative. Its name comes from the observation that it can be used for a
+pattern-based if-then-else block:
+<pre>
+ ( COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ ) ...
+</pre>
+If the COND1 pattern matches, FOO is tried (and possibly further items after
+the end of the group if FOO succeeds); on failure, the matcher skips to the
+second alternative and tries COND2, without backtracking into COND1. If that
+succeeds and BAR fails, COND3 is tried. If subsequently BAZ fails, there are no
+more alternatives, so there is a backtrack to whatever came before the entire
+group. If (*THEN) is not inside an alternation, it acts like (*PRUNE).
+</P>
+<P>
+The behaviour of (*THEN:NAME) is the not the same as (*MARK:NAME)(*THEN).
+It is like (*MARK:NAME) in that the name is remembered for passing back to the
+caller. However, (*SKIP:NAME) searches only for names set with (*MARK).
+</P>
+<P>
+A subpattern that does not contain a | character is just a part of the
+enclosing alternative; it is not a nested alternation with only one
+alternative. The effect of (*THEN) extends beyond such a subpattern to the
+enclosing alternative. Consider this pattern, where A, B, etc. are complex
+pattern fragments that do not contain any | characters at this level:
+<pre>
+ A (B(*THEN)C) | D
+</pre>
+If A and B are matched, but there is a failure in C, matching does not
+backtrack into A; instead it moves to the next alternative, that is, D.
+However, if the subpattern containing (*THEN) is given an alternative, it
+behaves differently:
+<pre>
+ A (B(*THEN)C | (*FAIL)) | D
+</pre>
+The effect of (*THEN) is now confined to the inner subpattern. After a failure
+in C, matching moves to (*FAIL), which causes the whole subpattern to fail
+because there are no more alternatives to try. In this case, matching does now
+backtrack into A.
+</P>
+<P>
+Note that a conditional subpattern is not considered as having two
+alternatives, because only one is ever used. In other words, the | character in
+a conditional subpattern has a different meaning. Ignoring white space,
+consider:
+<pre>
+ ^.*? (?(?=a) a | b(*THEN)c )
+</pre>
+If the subject is "ba", this pattern does not match. Because .*? is ungreedy,
+it initially matches zero characters. The condition (?=a) then fails, the
+character "b" is matched, but "c" is not. At this point, matching does not
+backtrack to .*? as might perhaps be expected from the presence of the |
+character. The conditional subpattern is part of the single alternative that
+comprises the whole pattern, and so the match fails. (If there was a backtrack
+into .*?, allowing it to match "b", the match would succeed.)
+</P>
+<P>
+The verbs just described provide four different "strengths" of control when
+subsequent matching fails. (*THEN) is the weakest, carrying on the match at the
+next alternative. (*PRUNE) comes next, failing the match at the current
+starting position, but allowing an advance to the next character (for an
+unanchored pattern). (*SKIP) is similar, except that the advance may be more
+than one character. (*COMMIT) is the strongest, causing the entire match to
+fail.
+</P>
+<br><b>
+More than one backtracking verb
+</b><br>
+<P>
+If more than one backtracking verb is present in a pattern, the one that is
+backtracked onto first acts. For example, consider this pattern, where A, B,
+etc. are complex pattern fragments:
+<pre>
+ (A(*COMMIT)B(*THEN)C|ABD)
+</pre>
+If A matches but B fails, the backtrack to (*COMMIT) causes the entire match to
+fail. However, if A and B match, but C fails, the backtrack to (*THEN) causes
+the next alternative (ABD) to be tried. This behaviour is consistent, but is
+not always the same as Perl's. It means that if two or more backtracking verbs
+appear in succession, all the the last of them has no effect. Consider this
+example:
+<pre>
+ ...(*COMMIT)(*PRUNE)...
+</pre>
+If there is a matching failure to the right, backtracking onto (*PRUNE) causes
+it to be triggered, and its action is taken. There can never be a backtrack
+onto (*COMMIT).
+<a name="btrepeat"></a></P>
+<br><b>
+Backtracking verbs in repeated groups
+</b><br>
+<P>
+PCRE differs from Perl in its handling of backtracking verbs in repeated
+groups. For example, consider:
+<pre>
+ /(a(*COMMIT)b)+ac/
+</pre>
+If the subject is "abac", Perl matches, but PCRE fails because the (*COMMIT) in
+the second repeat of the group acts.
+<a name="btassert"></a></P>
+<br><b>
+Backtracking verbs in assertions
+</b><br>
+<P>
+(*FAIL) in an assertion has its normal effect: it forces an immediate backtrack.
+</P>
+<P>
+(*ACCEPT) in a positive assertion causes the assertion to succeed without any
+further processing. In a negative assertion, (*ACCEPT) causes the assertion to
+fail without any further processing.
+</P>
+<P>
+The other backtracking verbs are not treated specially if they appear in a
+positive assertion. In particular, (*THEN) skips to the next alternative in the
+innermost enclosing group that has alternations, whether or not this is within
+the assertion.
+</P>
+<P>
+Negative assertions are, however, different, in order to ensure that changing a
+positive assertion into a negative assertion changes its result. Backtracking
+into (*COMMIT), (*SKIP), or (*PRUNE) causes a negative assertion to be true,
+without considering any further alternative branches in the assertion.
+Backtracking into (*THEN) causes it to skip to the next enclosing alternative
+within the assertion (the normal behaviour), but if the assertion does not have
+such an alternative, (*THEN) behaves like (*PRUNE).
+<a name="btsub"></a></P>
+<br><b>
+Backtracking verbs in subroutines
+</b><br>
+<P>
+These behaviours occur whether or not the subpattern is called recursively.
+Perl's treatment of subroutines is different in some cases.
+</P>
+<P>
+(*FAIL) in a subpattern called as a subroutine has its normal effect: it forces
+an immediate backtrack.
+</P>
+<P>
+(*ACCEPT) in a subpattern called as a subroutine causes the subroutine match to
+succeed without any further processing. Matching then continues after the
+subroutine call.
+</P>
+<P>
+(*COMMIT), (*SKIP), and (*PRUNE) in a subpattern called as a subroutine cause
+the subroutine match to fail.
+</P>
+<P>
+(*THEN) skips to the next alternative in the innermost enclosing group within
+the subpattern that has alternatives. If there is no such group within the
+subpattern, (*THEN) causes the subroutine match to fail.
+</P>
+<br><a name="SEC28" href="#TOC1">SEE ALSO</a><br>
+<P>
+<b>pcreapi</b>(3), <b>pcrecallout</b>(3), <b>pcrematching</b>(3),
+<b>pcresyntax</b>(3), <b>pcre</b>(3), <b>pcre16(3)</b>, <b>pcre32(3)</b>.
+</P>
+<br><a name="SEC29" href="#TOC1">AUTHOR</a><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><a name="SEC30" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 14 June 2015
+<br>
+Copyright &copy; 1997-2015 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>