/* * Stack-less Just-In-Time compiler * * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void) { return "ARM-Thumb2" SLJIT_CPUINFO; } /* Length of an instruction word. */ typedef sljit_u32 sljit_ins; /* Last register + 1. */ #define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2) #define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3) #define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4) #define TMP_PC (SLJIT_NUMBER_OF_REGISTERS + 5) #define TMP_FREG1 (0) #define TMP_FREG2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1) /* See sljit_emit_enter and sljit_emit_op0 if you want to change them. */ static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 6] = { 0, 0, 1, 2, 12, 11, 10, 9, 8, 7, 6, 5, 13, 3, 4, 14, 15 }; #define COPY_BITS(src, from, to, bits) \ ((from >= to ? (src >> (from - to)) : (src << (to - from))) & (((1 << bits) - 1) << to)) /* Thumb16 encodings. */ #define RD3(rd) (reg_map[rd]) #define RN3(rn) (reg_map[rn] << 3) #define RM3(rm) (reg_map[rm] << 6) #define RDN3(rdn) (reg_map[rdn] << 8) #define IMM3(imm) (imm << 6) #define IMM8(imm) (imm) /* Thumb16 helpers. */ #define SET_REGS44(rd, rn) \ ((reg_map[rn] << 3) | (reg_map[rd] & 0x7) | ((reg_map[rd] & 0x8) << 4)) #define IS_2_LO_REGS(reg1, reg2) \ (reg_map[reg1] <= 7 && reg_map[reg2] <= 7) #define IS_3_LO_REGS(reg1, reg2, reg3) \ (reg_map[reg1] <= 7 && reg_map[reg2] <= 7 && reg_map[reg3] <= 7) /* Thumb32 encodings. */ #define RD4(rd) (reg_map[rd] << 8) #define RN4(rn) (reg_map[rn] << 16) #define RM4(rm) (reg_map[rm]) #define RT4(rt) (reg_map[rt] << 12) #define DD4(dd) ((dd) << 12) #define DN4(dn) ((dn) << 16) #define DM4(dm) (dm) #define IMM5(imm) \ (COPY_BITS(imm, 2, 12, 3) | ((imm & 0x3) << 6)) #define IMM12(imm) \ (COPY_BITS(imm, 11, 26, 1) | COPY_BITS(imm, 8, 12, 3) | (imm & 0xff)) /* --------------------------------------------------------------------- */ /* Instrucion forms */ /* --------------------------------------------------------------------- */ /* dot '.' changed to _ I immediate form (possibly followed by number of immediate bits). */ #define ADCI 0xf1400000 #define ADCS 0x4140 #define ADC_W 0xeb400000 #define ADD 0x4400 #define ADDS 0x1800 #define ADDSI3 0x1c00 #define ADDSI8 0x3000 #define ADD_W 0xeb000000 #define ADDWI 0xf2000000 #define ADD_SP 0xb000 #define ADD_W 0xeb000000 #define ADD_WI 0xf1000000 #define ANDI 0xf0000000 #define ANDS 0x4000 #define AND_W 0xea000000 #define ASRS 0x4100 #define ASRSI 0x1000 #define ASR_W 0xfa40f000 #define ASR_WI 0xea4f0020 #define BICI 0xf0200000 #define BKPT 0xbe00 #define BLX 0x4780 #define BX 0x4700 #define CLZ 0xfab0f080 #define CMPI 0x2800 #define CMP_W 0xebb00f00 #define EORI 0xf0800000 #define EORS 0x4040 #define EOR_W 0xea800000 #define IT 0xbf00 #define LSLS 0x4080 #define LSLSI 0x0000 #define LSL_W 0xfa00f000 #define LSL_WI 0xea4f0000 #define LSRS 0x40c0 #define LSRSI 0x0800 #define LSR_W 0xfa20f000 #define LSR_WI 0xea4f0010 #define MOV 0x4600 #define MOVS 0x0000 #define MOVSI 0x2000 #define MOVT 0xf2c00000 #define MOVW 0xf2400000 #define MOV_W 0xea4f0000 #define MOV_WI 0xf04f0000 #define MUL 0xfb00f000 #define MVNS 0x43c0 #define MVN_W 0xea6f0000 #define MVN_WI 0xf06f0000 #define NOP 0xbf00 #define ORNI 0xf0600000 #define ORRI 0xf0400000 #define ORRS 0x4300 #define ORR_W 0xea400000 #define POP 0xbc00 #define POP_W 0xe8bd0000 #define PUSH 0xb400 #define PUSH_W 0xe92d0000 #define RSB_WI 0xf1c00000 #define RSBSI 0x4240 #define SBCI 0xf1600000 #define SBCS 0x4180 #define SBC_W 0xeb600000 #define SMULL 0xfb800000 #define STR_SP 0x9000 #define SUBS 0x1a00 #define SUBSI3 0x1e00 #define SUBSI8 0x3800 #define SUB_W 0xeba00000 #define SUBWI 0xf2a00000 #define SUB_SP 0xb080 #define SUB_WI 0xf1a00000 #define SXTB 0xb240 #define SXTB_W 0xfa4ff080 #define SXTH 0xb200 #define SXTH_W 0xfa0ff080 #define TST 0x4200 #define UMULL 0xfba00000 #define UXTB 0xb2c0 #define UXTB_W 0xfa5ff080 #define UXTH 0xb280 #define UXTH_W 0xfa1ff080 #define VABS_F32 0xeeb00ac0 #define VADD_F32 0xee300a00 #define VCMP_F32 0xeeb40a40 #define VCVT_F32_S32 0xeeb80ac0 #define VCVT_F64_F32 0xeeb70ac0 #define VCVT_S32_F32 0xeebd0ac0 #define VDIV_F32 0xee800a00 #define VMOV_F32 0xeeb00a40 #define VMOV 0xee000a10 #define VMRS 0xeef1fa10 #define VMUL_F32 0xee200a00 #define VNEG_F32 0xeeb10a40 #define VSTR_F32 0xed000a00 #define VSUB_F32 0xee300a40 static sljit_s32 push_inst16(struct sljit_compiler *compiler, sljit_ins inst) { sljit_u16 *ptr; SLJIT_ASSERT(!(inst & 0xffff0000)); ptr = (sljit_u16*)ensure_buf(compiler, sizeof(sljit_u16)); FAIL_IF(!ptr); *ptr = inst; compiler->size++; return SLJIT_SUCCESS; } static sljit_s32 push_inst32(struct sljit_compiler *compiler, sljit_ins inst) { sljit_u16 *ptr = (sljit_u16*)ensure_buf(compiler, sizeof(sljit_ins)); FAIL_IF(!ptr); *ptr++ = inst >> 16; *ptr = inst; compiler->size += 2; return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 emit_imm32_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_uw imm) { FAIL_IF(push_inst32(compiler, MOVW | RD4(dst) | COPY_BITS(imm, 12, 16, 4) | COPY_BITS(imm, 11, 26, 1) | COPY_BITS(imm, 8, 12, 3) | (imm & 0xff))); return push_inst32(compiler, MOVT | RD4(dst) | COPY_BITS(imm, 12 + 16, 16, 4) | COPY_BITS(imm, 11 + 16, 26, 1) | COPY_BITS(imm, 8 + 16, 12, 3) | ((imm & 0xff0000) >> 16)); } static SLJIT_INLINE void modify_imm32_const(sljit_u16 *inst, sljit_uw new_imm) { sljit_s32 dst = inst[1] & 0x0f00; SLJIT_ASSERT(((inst[0] & 0xfbf0) == (MOVW >> 16)) && ((inst[2] & 0xfbf0) == (MOVT >> 16)) && dst == (inst[3] & 0x0f00)); inst[0] = (MOVW >> 16) | COPY_BITS(new_imm, 12, 0, 4) | COPY_BITS(new_imm, 11, 10, 1); inst[1] = dst | COPY_BITS(new_imm, 8, 12, 3) | (new_imm & 0xff); inst[2] = (MOVT >> 16) | COPY_BITS(new_imm, 12 + 16, 0, 4) | COPY_BITS(new_imm, 11 + 16, 10, 1); inst[3] = dst | COPY_BITS(new_imm, 8 + 16, 12, 3) | ((new_imm & 0xff0000) >> 16); } static SLJIT_INLINE sljit_s32 detect_jump_type(struct sljit_jump *jump, sljit_u16 *code_ptr, sljit_u16 *code) { sljit_sw diff; if (jump->flags & SLJIT_REWRITABLE_JUMP) return 0; if (jump->flags & JUMP_ADDR) { /* Branch to ARM code is not optimized yet. */ if (!(jump->u.target & 0x1)) return 0; diff = ((sljit_sw)jump->u.target - (sljit_sw)(code_ptr + 2)) >> 1; } else { SLJIT_ASSERT(jump->flags & JUMP_LABEL); diff = ((sljit_sw)(code + jump->u.label->size) - (sljit_sw)(code_ptr + 2)) >> 1; } if (jump->flags & IS_COND) { SLJIT_ASSERT(!(jump->flags & IS_BL)); if (diff <= 127 && diff >= -128) { jump->flags |= PATCH_TYPE1; return 5; } if (diff <= 524287 && diff >= -524288) { jump->flags |= PATCH_TYPE2; return 4; } /* +1 comes from the prefix IT instruction. */ diff--; if (diff <= 8388607 && diff >= -8388608) { jump->flags |= PATCH_TYPE3; return 3; } } else if (jump->flags & IS_BL) { if (diff <= 8388607 && diff >= -8388608) { jump->flags |= PATCH_BL; return 3; } } else { if (diff <= 1023 && diff >= -1024) { jump->flags |= PATCH_TYPE4; return 4; } if (diff <= 8388607 && diff >= -8388608) { jump->flags |= PATCH_TYPE5; return 3; } } return 0; } static SLJIT_INLINE void set_jump_instruction(struct sljit_jump *jump) { sljit_s32 type = (jump->flags >> 4) & 0xf; sljit_sw diff; sljit_u16 *jump_inst; sljit_s32 s, j1, j2; if (SLJIT_UNLIKELY(type == 0)) { modify_imm32_const((sljit_u16*)jump->addr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target); return; } if (jump->flags & JUMP_ADDR) { SLJIT_ASSERT(jump->u.target & 0x1); diff = ((sljit_sw)jump->u.target - (sljit_sw)(jump->addr + 4)) >> 1; } else diff = ((sljit_sw)(jump->u.label->addr) - (sljit_sw)(jump->addr + 4)) >> 1; jump_inst = (sljit_u16*)jump->addr; switch (type) { case 1: /* Encoding T1 of 'B' instruction */ SLJIT_ASSERT(diff <= 127 && diff >= -128 && (jump->flags & IS_COND)); jump_inst[0] = 0xd000 | (jump->flags & 0xf00) | (diff & 0xff); return; case 2: /* Encoding T3 of 'B' instruction */ SLJIT_ASSERT(diff <= 524287 && diff >= -524288 && (jump->flags & IS_COND)); jump_inst[0] = 0xf000 | COPY_BITS(jump->flags, 8, 6, 4) | COPY_BITS(diff, 11, 0, 6) | COPY_BITS(diff, 19, 10, 1); jump_inst[1] = 0x8000 | COPY_BITS(diff, 17, 13, 1) | COPY_BITS(diff, 18, 11, 1) | (diff & 0x7ff); return; case 3: SLJIT_ASSERT(jump->flags & IS_COND); *jump_inst++ = IT | ((jump->flags >> 4) & 0xf0) | 0x8; diff--; type = 5; break; case 4: /* Encoding T2 of 'B' instruction */ SLJIT_ASSERT(diff <= 1023 && diff >= -1024 && !(jump->flags & IS_COND)); jump_inst[0] = 0xe000 | (diff & 0x7ff); return; } SLJIT_ASSERT(diff <= 8388607 && diff >= -8388608); /* Really complex instruction form for branches. */ s = (diff >> 23) & 0x1; j1 = (~(diff >> 21) ^ s) & 0x1; j2 = (~(diff >> 22) ^ s) & 0x1; jump_inst[0] = 0xf000 | (s << 10) | COPY_BITS(diff, 11, 0, 10); jump_inst[1] = (j1 << 13) | (j2 << 11) | (diff & 0x7ff); /* The others have a common form. */ if (type == 5) /* Encoding T4 of 'B' instruction */ jump_inst[1] |= 0x9000; else if (type == 6) /* Encoding T1 of 'BL' instruction */ jump_inst[1] |= 0xd000; else SLJIT_ASSERT_STOP(); } SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler) { struct sljit_memory_fragment *buf; sljit_u16 *code; sljit_u16 *code_ptr; sljit_u16 *buf_ptr; sljit_u16 *buf_end; sljit_uw half_count; struct sljit_label *label; struct sljit_jump *jump; struct sljit_const *const_; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_generate_code(compiler)); reverse_buf(compiler); code = (sljit_u16*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_u16)); PTR_FAIL_WITH_EXEC_IF(code); buf = compiler->buf; code_ptr = code; half_count = 0; label = compiler->labels; jump = compiler->jumps; const_ = compiler->consts; do { buf_ptr = (sljit_u16*)buf->memory; buf_end = buf_ptr + (buf->used_size >> 1); do { *code_ptr = *buf_ptr++; /* These structures are ordered by their address. */ SLJIT_ASSERT(!label || label->size >= half_count); SLJIT_ASSERT(!jump || jump->addr >= half_count); SLJIT_ASSERT(!const_ || const_->addr >= half_count); if (label && label->size == half_count) { label->addr = ((sljit_uw)code_ptr) | 0x1; label->size = code_ptr - code; label = label->next; } if (jump && jump->addr == half_count) { jump->addr = (sljit_uw)code_ptr - ((jump->flags & IS_COND) ? 10 : 8); code_ptr -= detect_jump_type(jump, code_ptr, code); jump = jump->next; } if (const_ && const_->addr == half_count) { const_->addr = (sljit_uw)code_ptr; const_ = const_->next; } code_ptr ++; half_count ++; } while (buf_ptr < buf_end); buf = buf->next; } while (buf); if (label && label->size == half_count) { label->addr = ((sljit_uw)code_ptr) | 0x1; label->size = code_ptr - code; label = label->next; } SLJIT_ASSERT(!label); SLJIT_ASSERT(!jump); SLJIT_ASSERT(!const_); SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size); jump = compiler->jumps; while (jump) { set_jump_instruction(jump); jump = jump->next; } compiler->error = SLJIT_ERR_COMPILED; compiler->executable_size = (code_ptr - code) * sizeof(sljit_u16); SLJIT_CACHE_FLUSH(code, code_ptr); /* Set thumb mode flag. */ return (void*)((sljit_uw)code | 0x1); } /* --------------------------------------------------------------------- */ /* Core code generator functions. */ /* --------------------------------------------------------------------- */ #define INVALID_IMM 0x80000000 static sljit_uw get_imm(sljit_uw imm) { /* Thumb immediate form. */ sljit_s32 counter; if (imm <= 0xff) return imm; if ((imm & 0xffff) == (imm >> 16)) { /* Some special cases. */ if (!(imm & 0xff00)) return (1 << 12) | (imm & 0xff); if (!(imm & 0xff)) return (2 << 12) | ((imm >> 8) & 0xff); if ((imm & 0xff00) == ((imm & 0xff) << 8)) return (3 << 12) | (imm & 0xff); } /* Assembly optimization: count leading zeroes? */ counter = 8; if (!(imm & 0xffff0000)) { counter += 16; imm <<= 16; } if (!(imm & 0xff000000)) { counter += 8; imm <<= 8; } if (!(imm & 0xf0000000)) { counter += 4; imm <<= 4; } if (!(imm & 0xc0000000)) { counter += 2; imm <<= 2; } if (!(imm & 0x80000000)) { counter += 1; imm <<= 1; } /* Since imm >= 128, this must be true. */ SLJIT_ASSERT(counter <= 31); if (imm & 0x00ffffff) return INVALID_IMM; /* Cannot be encoded. */ return ((imm >> 24) & 0x7f) | COPY_BITS(counter, 4, 26, 1) | COPY_BITS(counter, 1, 12, 3) | COPY_BITS(counter, 0, 7, 1); } static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 dst, sljit_uw imm) { sljit_uw tmp; if (imm >= 0x10000) { tmp = get_imm(imm); if (tmp != INVALID_IMM) return push_inst32(compiler, MOV_WI | RD4(dst) | tmp); tmp = get_imm(~imm); if (tmp != INVALID_IMM) return push_inst32(compiler, MVN_WI | RD4(dst) | tmp); } /* set low 16 bits, set hi 16 bits to 0. */ FAIL_IF(push_inst32(compiler, MOVW | RD4(dst) | COPY_BITS(imm, 12, 16, 4) | COPY_BITS(imm, 11, 26, 1) | COPY_BITS(imm, 8, 12, 3) | (imm & 0xff))); /* set hi 16 bit if needed. */ if (imm >= 0x10000) return push_inst32(compiler, MOVT | RD4(dst) | COPY_BITS(imm, 12 + 16, 16, 4) | COPY_BITS(imm, 11 + 16, 26, 1) | COPY_BITS(imm, 8 + 16, 12, 3) | ((imm & 0xff0000) >> 16)); return SLJIT_SUCCESS; } #define ARG1_IMM 0x0010000 #define ARG2_IMM 0x0020000 #define KEEP_FLAGS 0x0040000 /* SET_FLAGS must be 0x100000 as it is also the value of S bit (can be used for optimization). */ #define SET_FLAGS 0x0100000 #define UNUSED_RETURN 0x0200000 #define SLOW_DEST 0x0400000 #define SLOW_SRC1 0x0800000 #define SLOW_SRC2 0x1000000 static sljit_s32 emit_op_imm(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 dst, sljit_uw arg1, sljit_uw arg2) { /* dst must be register, TMP_REG1 arg1 must be register, TMP_REG1, imm arg2 must be register, TMP_REG2, imm */ sljit_s32 reg; sljit_uw imm, nimm; if (SLJIT_UNLIKELY((flags & (ARG1_IMM | ARG2_IMM)) == (ARG1_IMM | ARG2_IMM))) { /* Both are immediates. */ flags &= ~ARG1_IMM; FAIL_IF(load_immediate(compiler, TMP_REG1, arg1)); arg1 = TMP_REG1; } if (flags & (ARG1_IMM | ARG2_IMM)) { reg = (flags & ARG2_IMM) ? arg1 : arg2; imm = (flags & ARG2_IMM) ? arg2 : arg1; switch (flags & 0xffff) { case SLJIT_CLZ: case SLJIT_MUL: /* No form with immediate operand. */ break; case SLJIT_MOV: SLJIT_ASSERT(!(flags & SET_FLAGS) && (flags & ARG2_IMM) && arg1 == TMP_REG1); return load_immediate(compiler, dst, imm); case SLJIT_NOT: if (!(flags & SET_FLAGS)) return load_immediate(compiler, dst, ~imm); /* Since the flags should be set, we just fallback to the register mode. Although some clever things could be done here, "NOT IMM" does not worth the efforts. */ break; case SLJIT_ADD: nimm = -imm; if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(reg, dst)) { if (imm <= 0x7) return push_inst16(compiler, ADDSI3 | IMM3(imm) | RD3(dst) | RN3(reg)); if (nimm <= 0x7) return push_inst16(compiler, SUBSI3 | IMM3(nimm) | RD3(dst) | RN3(reg)); if (reg == dst) { if (imm <= 0xff) return push_inst16(compiler, ADDSI8 | IMM8(imm) | RDN3(dst)); if (nimm <= 0xff) return push_inst16(compiler, SUBSI8 | IMM8(nimm) | RDN3(dst)); } } if (!(flags & SET_FLAGS)) { if (imm <= 0xfff) return push_inst32(compiler, ADDWI | RD4(dst) | RN4(reg) | IMM12(imm)); if (nimm <= 0xfff) return push_inst32(compiler, SUBWI | RD4(dst) | RN4(reg) | IMM12(nimm)); } imm = get_imm(imm); if (imm != INVALID_IMM) return push_inst32(compiler, ADD_WI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm); break; case SLJIT_ADDC: imm = get_imm(imm); if (imm != INVALID_IMM) return push_inst32(compiler, ADCI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm); break; case SLJIT_SUB: if (flags & ARG1_IMM) { if (!(flags & KEEP_FLAGS) && imm == 0 && IS_2_LO_REGS(reg, dst)) return push_inst16(compiler, RSBSI | RD3(dst) | RN3(reg)); imm = get_imm(imm); if (imm != INVALID_IMM) return push_inst32(compiler, RSB_WI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm); break; } nimm = -imm; if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(reg, dst)) { if (imm <= 0x7) return push_inst16(compiler, SUBSI3 | IMM3(imm) | RD3(dst) | RN3(reg)); if (nimm <= 0x7) return push_inst16(compiler, ADDSI3 | IMM3(nimm) | RD3(dst) | RN3(reg)); if (reg == dst) { if (imm <= 0xff) return push_inst16(compiler, SUBSI8 | IMM8(imm) | RDN3(dst)); if (nimm <= 0xff) return push_inst16(compiler, ADDSI8 | IMM8(nimm) | RDN3(dst)); } if (imm <= 0xff && (flags & UNUSED_RETURN)) return push_inst16(compiler, CMPI | IMM8(imm) | RDN3(reg)); } if (!(flags & SET_FLAGS)) { if (imm <= 0xfff) return push_inst32(compiler, SUBWI | RD4(dst) | RN4(reg) | IMM12(imm)); if (nimm <= 0xfff) return push_inst32(compiler, ADDWI | RD4(dst) | RN4(reg) | IMM12(nimm)); } imm = get_imm(imm); if (imm != INVALID_IMM) return push_inst32(compiler, SUB_WI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm); break; case SLJIT_SUBC: if (flags & ARG1_IMM) break; imm = get_imm(imm); if (imm != INVALID_IMM) return push_inst32(compiler, SBCI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm); break; case SLJIT_AND: nimm = get_imm(imm); if (nimm != INVALID_IMM) return push_inst32(compiler, ANDI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | nimm); imm = get_imm(imm); if (imm != INVALID_IMM) return push_inst32(compiler, BICI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm); break; case SLJIT_OR: nimm = get_imm(imm); if (nimm != INVALID_IMM) return push_inst32(compiler, ORRI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | nimm); imm = get_imm(imm); if (imm != INVALID_IMM) return push_inst32(compiler, ORNI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm); break; case SLJIT_XOR: imm = get_imm(imm); if (imm != INVALID_IMM) return push_inst32(compiler, EORI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm); break; case SLJIT_SHL: case SLJIT_LSHR: case SLJIT_ASHR: if (flags & ARG1_IMM) break; imm &= 0x1f; if (imm == 0) { if (!(flags & SET_FLAGS)) return push_inst16(compiler, MOV | SET_REGS44(dst, reg)); if (IS_2_LO_REGS(dst, reg)) return push_inst16(compiler, MOVS | RD3(dst) | RN3(reg)); return push_inst32(compiler, MOV_W | SET_FLAGS | RD4(dst) | RM4(reg)); } switch (flags & 0xffff) { case SLJIT_SHL: if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, reg)) return push_inst16(compiler, LSLSI | RD3(dst) | RN3(reg) | (imm << 6)); return push_inst32(compiler, LSL_WI | (flags & SET_FLAGS) | RD4(dst) | RM4(reg) | IMM5(imm)); case SLJIT_LSHR: if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, reg)) return push_inst16(compiler, LSRSI | RD3(dst) | RN3(reg) | (imm << 6)); return push_inst32(compiler, LSR_WI | (flags & SET_FLAGS) | RD4(dst) | RM4(reg) | IMM5(imm)); default: /* SLJIT_ASHR */ if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, reg)) return push_inst16(compiler, ASRSI | RD3(dst) | RN3(reg) | (imm << 6)); return push_inst32(compiler, ASR_WI | (flags & SET_FLAGS) | RD4(dst) | RM4(reg) | IMM5(imm)); } default: SLJIT_ASSERT_STOP(); break; } if (flags & ARG2_IMM) { FAIL_IF(load_immediate(compiler, TMP_REG2, arg2)); arg2 = TMP_REG2; } else { FAIL_IF(load_immediate(compiler, TMP_REG1, arg1)); arg1 = TMP_REG1; } } /* Both arguments are registers. */ switch (flags & 0xffff) { case SLJIT_MOV: case SLJIT_MOV_U32: case SLJIT_MOV_S32: case SLJIT_MOV_P: case SLJIT_MOVU: case SLJIT_MOVU_U32: case SLJIT_MOVU_S32: case SLJIT_MOVU_P: SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1); if (dst == arg2) return SLJIT_SUCCESS; return push_inst16(compiler, MOV | SET_REGS44(dst, arg2)); case SLJIT_MOV_U8: case SLJIT_MOVU_U8: SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1); if (IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, UXTB | RD3(dst) | RN3(arg2)); return push_inst32(compiler, UXTB_W | RD4(dst) | RM4(arg2)); case SLJIT_MOV_S8: case SLJIT_MOVU_S8: SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1); if (IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, SXTB | RD3(dst) | RN3(arg2)); return push_inst32(compiler, SXTB_W | RD4(dst) | RM4(arg2)); case SLJIT_MOV_U16: case SLJIT_MOVU_U16: SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1); if (IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, UXTH | RD3(dst) | RN3(arg2)); return push_inst32(compiler, UXTH_W | RD4(dst) | RM4(arg2)); case SLJIT_MOV_S16: case SLJIT_MOVU_S16: SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1); if (IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, SXTH | RD3(dst) | RN3(arg2)); return push_inst32(compiler, SXTH_W | RD4(dst) | RM4(arg2)); case SLJIT_NOT: SLJIT_ASSERT(arg1 == TMP_REG1); if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, MVNS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, MVN_W | (flags & SET_FLAGS) | RD4(dst) | RM4(arg2)); case SLJIT_CLZ: SLJIT_ASSERT(arg1 == TMP_REG1); FAIL_IF(push_inst32(compiler, CLZ | RN4(arg2) | RD4(dst) | RM4(arg2))); if (flags & SET_FLAGS) { if (reg_map[dst] <= 7) return push_inst16(compiler, CMPI | RDN3(dst)); return push_inst32(compiler, ADD_WI | SET_FLAGS | RN4(dst) | RD4(dst)); } return SLJIT_SUCCESS; case SLJIT_ADD: if (!(flags & KEEP_FLAGS) && IS_3_LO_REGS(dst, arg1, arg2)) return push_inst16(compiler, ADDS | RD3(dst) | RN3(arg1) | RM3(arg2)); if (dst == arg1 && !(flags & SET_FLAGS)) return push_inst16(compiler, ADD | SET_REGS44(dst, arg2)); return push_inst32(compiler, ADD_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_ADDC: if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, ADCS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, ADC_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_SUB: if (!(flags & KEEP_FLAGS) && IS_3_LO_REGS(dst, arg1, arg2)) return push_inst16(compiler, SUBS | RD3(dst) | RN3(arg1) | RM3(arg2)); return push_inst32(compiler, SUB_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_SUBC: if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, SBCS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, SBC_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_MUL: if (!(flags & SET_FLAGS)) return push_inst32(compiler, MUL | RD4(dst) | RN4(arg1) | RM4(arg2)); SLJIT_ASSERT(reg_map[TMP_REG2] <= 7 && dst != TMP_REG2); FAIL_IF(push_inst32(compiler, SMULL | RT4(dst) | RD4(TMP_REG2) | RN4(arg1) | RM4(arg2))); /* cmp TMP_REG2, dst asr #31. */ return push_inst32(compiler, CMP_W | RN4(TMP_REG2) | 0x70e0 | RM4(dst)); case SLJIT_AND: if (!(flags & KEEP_FLAGS)) { if (dst == arg1 && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, ANDS | RD3(dst) | RN3(arg2)); if ((flags & UNUSED_RETURN) && IS_2_LO_REGS(arg1, arg2)) return push_inst16(compiler, TST | RD3(arg1) | RN3(arg2)); } return push_inst32(compiler, AND_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_OR: if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, ORRS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, ORR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_XOR: if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, EORS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, EOR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_SHL: if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, LSLS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, LSL_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_LSHR: if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, LSRS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, LSR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_ASHR: if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, ASRS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, ASR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); } SLJIT_ASSERT_STOP(); return SLJIT_SUCCESS; } #define STORE 0x01 #define SIGNED 0x02 #define WORD_SIZE 0x00 #define BYTE_SIZE 0x04 #define HALF_SIZE 0x08 #define UPDATE 0x10 #define ARG_TEST 0x20 #define IS_WORD_SIZE(flags) (!(flags & (BYTE_SIZE | HALF_SIZE))) #define OFFSET_CHECK(imm, shift) (!(argw & ~(imm << shift))) /* 1st letter: w = word b = byte h = half 2nd letter: s = signed u = unsigned 3rd letter: l = load s = store */ static const sljit_ins sljit_mem16[12] = { /* w u l */ 0x5800 /* ldr */, /* w u s */ 0x5000 /* str */, /* w s l */ 0x5800 /* ldr */, /* w s s */ 0x5000 /* str */, /* b u l */ 0x5c00 /* ldrb */, /* b u s */ 0x5400 /* strb */, /* b s l */ 0x5600 /* ldrsb */, /* b s s */ 0x5400 /* strb */, /* h u l */ 0x5a00 /* ldrh */, /* h u s */ 0x5200 /* strh */, /* h s l */ 0x5e00 /* ldrsh */, /* h s s */ 0x5200 /* strh */, }; static const sljit_ins sljit_mem16_imm5[12] = { /* w u l */ 0x6800 /* ldr imm5 */, /* w u s */ 0x6000 /* str imm5 */, /* w s l */ 0x6800 /* ldr imm5 */, /* w s s */ 0x6000 /* str imm5 */, /* b u l */ 0x7800 /* ldrb imm5 */, /* b u s */ 0x7000 /* strb imm5 */, /* b s l */ 0x0000 /* not allowed */, /* b s s */ 0x7000 /* strb imm5 */, /* h u l */ 0x8800 /* ldrh imm5 */, /* h u s */ 0x8000 /* strh imm5 */, /* h s l */ 0x0000 /* not allowed */, /* h s s */ 0x8000 /* strh imm5 */, }; #define MEM_IMM8 0xc00 #define MEM_IMM12 0x800000 static const sljit_ins sljit_mem32[12] = { /* w u l */ 0xf8500000 /* ldr.w */, /* w u s */ 0xf8400000 /* str.w */, /* w s l */ 0xf8500000 /* ldr.w */, /* w s s */ 0xf8400000 /* str.w */, /* b u l */ 0xf8100000 /* ldrb.w */, /* b u s */ 0xf8000000 /* strb.w */, /* b s l */ 0xf9100000 /* ldrsb.w */, /* b s s */ 0xf8000000 /* strb.w */, /* h u l */ 0xf8300000 /* ldrh.w */, /* h u s */ 0xf8200000 /* strsh.w */, /* h s l */ 0xf9300000 /* ldrsh.w */, /* h s s */ 0xf8200000 /* strsh.w */, }; /* Helper function. Dst should be reg + value, using at most 1 instruction, flags does not set. */ static sljit_s32 emit_set_delta(struct sljit_compiler *compiler, sljit_s32 dst, sljit_s32 reg, sljit_sw value) { if (value >= 0) { if (value <= 0xfff) return push_inst32(compiler, ADDWI | RD4(dst) | RN4(reg) | IMM12(value)); value = get_imm(value); if (value != INVALID_IMM) return push_inst32(compiler, ADD_WI | RD4(dst) | RN4(reg) | value); } else { value = -value; if (value <= 0xfff) return push_inst32(compiler, SUBWI | RD4(dst) | RN4(reg) | IMM12(value)); value = get_imm(value); if (value != INVALID_IMM) return push_inst32(compiler, SUB_WI | RD4(dst) | RN4(reg) | value); } return SLJIT_ERR_UNSUPPORTED; } /* Can perform an operation using at most 1 instruction. */ static sljit_s32 getput_arg_fast(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw) { sljit_s32 other_r, shift; SLJIT_ASSERT(arg & SLJIT_MEM); if (SLJIT_UNLIKELY(flags & UPDATE)) { if ((arg & REG_MASK) && !(arg & OFFS_REG_MASK) && argw <= 0xff && argw >= -0xff) { if (SLJIT_UNLIKELY(flags & ARG_TEST)) return 1; flags &= ~UPDATE; arg &= 0xf; if (argw >= 0) argw |= 0x200; else { argw = -argw; } SLJIT_ASSERT(argw >= 0 && (argw & 0xff) <= 0xff); FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | MEM_IMM8 | RT4(reg) | RN4(arg) | 0x100 | argw)); return -1; } return 0; } if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) { if (SLJIT_UNLIKELY(flags & ARG_TEST)) return 1; argw &= 0x3; other_r = OFFS_REG(arg); arg &= 0xf; if (!argw && IS_3_LO_REGS(reg, arg, other_r)) FAIL_IF(push_inst16(compiler, sljit_mem16[flags] | RD3(reg) | RN3(arg) | RM3(other_r))); else FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(other_r) | (argw << 4))); return -1; } if (!(arg & REG_MASK) || argw > 0xfff || argw < -0xff) return 0; if (SLJIT_UNLIKELY(flags & ARG_TEST)) return 1; arg &= 0xf; if (IS_2_LO_REGS(reg, arg) && sljit_mem16_imm5[flags]) { shift = 3; if (IS_WORD_SIZE(flags)) { if (OFFSET_CHECK(0x1f, 2)) shift = 2; } else if (flags & BYTE_SIZE) { if (OFFSET_CHECK(0x1f, 0)) shift = 0; } else { SLJIT_ASSERT(flags & HALF_SIZE); if (OFFSET_CHECK(0x1f, 1)) shift = 1; } if (shift != 3) { FAIL_IF(push_inst16(compiler, sljit_mem16_imm5[flags] | RD3(reg) | RN3(arg) | (argw << (6 - shift)))); return -1; } } /* SP based immediate. */ if (SLJIT_UNLIKELY(arg == SLJIT_SP) && OFFSET_CHECK(0xff, 2) && IS_WORD_SIZE(flags) && reg_map[reg] <= 7) { FAIL_IF(push_inst16(compiler, STR_SP | ((flags & STORE) ? 0 : 0x800) | RDN3(reg) | (argw >> 2))); return -1; } if (argw >= 0) FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(arg) | argw)); else FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | MEM_IMM8 | RT4(reg) | RN4(arg) | -argw)); return -1; } /* see getput_arg below. Note: can_cache is called only for binary operators. Those operators always uses word arguments without write back. */ static sljit_s32 can_cache(sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw) { sljit_sw diff; if ((arg & OFFS_REG_MASK) || !(next_arg & SLJIT_MEM)) return 0; if (!(arg & REG_MASK)) { diff = argw - next_argw; if (diff <= 0xfff && diff >= -0xfff) return 1; return 0; } if (argw == next_argw) return 1; diff = argw - next_argw; if (arg == next_arg && diff <= 0xfff && diff >= -0xfff) return 1; return 0; } /* Emit the necessary instructions. See can_cache above. */ static sljit_s32 getput_arg(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw) { sljit_s32 tmp_r, other_r; sljit_sw diff; SLJIT_ASSERT(arg & SLJIT_MEM); if (!(next_arg & SLJIT_MEM)) { next_arg = 0; next_argw = 0; } tmp_r = (flags & STORE) ? TMP_REG3 : reg; if (SLJIT_UNLIKELY((flags & UPDATE) && (arg & REG_MASK))) { /* Update only applies if a base register exists. */ /* There is no caching here. */ other_r = OFFS_REG(arg); arg &= 0xf; flags &= ~UPDATE; if (!other_r) { if (!(argw & ~0xfff)) { FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(arg) | argw)); return push_inst32(compiler, ADDWI | RD4(arg) | RN4(arg) | IMM12(argw)); } if (compiler->cache_arg == SLJIT_MEM) { if (argw == compiler->cache_argw) { other_r = TMP_REG3; argw = 0; } else if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, argw - compiler->cache_argw) != SLJIT_ERR_UNSUPPORTED) { FAIL_IF(compiler->error); compiler->cache_argw = argw; other_r = TMP_REG3; argw = 0; } } if (argw) { FAIL_IF(load_immediate(compiler, TMP_REG3, argw)); compiler->cache_arg = SLJIT_MEM; compiler->cache_argw = argw; other_r = TMP_REG3; argw = 0; } } argw &= 0x3; if (!argw && IS_3_LO_REGS(reg, arg, other_r)) { FAIL_IF(push_inst16(compiler, sljit_mem16[flags] | RD3(reg) | RN3(arg) | RM3(other_r))); return push_inst16(compiler, ADD | SET_REGS44(arg, other_r)); } FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(other_r) | (argw << 4))); return push_inst32(compiler, ADD_W | RD4(arg) | RN4(arg) | RM4(other_r) | (argw << 6)); } flags &= ~UPDATE; SLJIT_ASSERT(!(arg & OFFS_REG_MASK)); if (compiler->cache_arg == arg) { diff = argw - compiler->cache_argw; if (!(diff & ~0xfff)) return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(TMP_REG3) | diff); if (!((compiler->cache_argw - argw) & ~0xff)) return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM8 | RT4(reg) | RN4(TMP_REG3) | (compiler->cache_argw - argw)); if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, diff) != SLJIT_ERR_UNSUPPORTED) { FAIL_IF(compiler->error); return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(TMP_REG3) | 0); } } next_arg = (arg & REG_MASK) && (arg == next_arg) && (argw != next_argw); arg &= 0xf; if (arg && compiler->cache_arg == SLJIT_MEM) { if (compiler->cache_argw == argw) return push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(TMP_REG3)); if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, argw - compiler->cache_argw) != SLJIT_ERR_UNSUPPORTED) { FAIL_IF(compiler->error); compiler->cache_argw = argw; return push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(TMP_REG3)); } } compiler->cache_argw = argw; if (next_arg && emit_set_delta(compiler, TMP_REG3, arg, argw) != SLJIT_ERR_UNSUPPORTED) { FAIL_IF(compiler->error); compiler->cache_arg = SLJIT_MEM | arg; arg = 0; } else { FAIL_IF(load_immediate(compiler, TMP_REG3, argw)); compiler->cache_arg = SLJIT_MEM; diff = argw - next_argw; if (next_arg && diff <= 0xfff && diff >= -0xfff) { FAIL_IF(push_inst16(compiler, ADD | SET_REGS44(TMP_REG3, arg))); compiler->cache_arg = SLJIT_MEM | arg; arg = 0; } } if (arg) return push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(TMP_REG3)); return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(TMP_REG3) | 0); } static SLJIT_INLINE sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw) { if (getput_arg_fast(compiler, flags, reg, arg, argw)) return compiler->error; compiler->cache_arg = 0; compiler->cache_argw = 0; return getput_arg(compiler, flags, reg, arg, argw, 0, 0); } static SLJIT_INLINE sljit_s32 emit_op_mem2(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg1, sljit_sw arg1w, sljit_s32 arg2, sljit_sw arg2w) { if (getput_arg_fast(compiler, flags, reg, arg1, arg1w)) return compiler->error; return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w); } /* --------------------------------------------------------------------- */ /* Entry, exit */ /* --------------------------------------------------------------------- */ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { sljit_s32 size, i, tmp; sljit_ins push; CHECK_ERROR(); CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size)); set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size); push = (1 << 4); tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG; for (i = SLJIT_S0; i >= tmp; i--) push |= 1 << reg_map[i]; for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) push |= 1 << reg_map[i]; FAIL_IF((push & 0xff00) ? push_inst32(compiler, PUSH_W | (1 << 14) | push) : push_inst16(compiler, PUSH | (1 << 8) | push)); /* Stack must be aligned to 8 bytes: (LR, R4) */ size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 2); local_size = ((size + local_size + 7) & ~7) - size; compiler->local_size = local_size; if (local_size > 0) { if (local_size <= (127 << 2)) FAIL_IF(push_inst16(compiler, SUB_SP | (local_size >> 2))); else FAIL_IF(emit_op_imm(compiler, SLJIT_SUB | ARG2_IMM, SLJIT_SP, SLJIT_SP, local_size)); } if (args >= 1) FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(SLJIT_S0, SLJIT_R0))); if (args >= 2) FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(SLJIT_S1, SLJIT_R1))); if (args >= 3) FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(SLJIT_S2, SLJIT_R2))); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { sljit_s32 size; CHECK_ERROR(); CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size)); set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size); size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 2); compiler->local_size = ((size + local_size + 7) & ~7) - size; return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw) { sljit_s32 i, tmp; sljit_ins pop; CHECK_ERROR(); CHECK(check_sljit_emit_return(compiler, op, src, srcw)); FAIL_IF(emit_mov_before_return(compiler, op, src, srcw)); if (compiler->local_size > 0) { if (compiler->local_size <= (127 << 2)) FAIL_IF(push_inst16(compiler, ADD_SP | (compiler->local_size >> 2))); else FAIL_IF(emit_op_imm(compiler, SLJIT_ADD | ARG2_IMM, SLJIT_SP, SLJIT_SP, compiler->local_size)); } pop = (1 << 4); tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG; for (i = SLJIT_S0; i >= tmp; i--) pop |= 1 << reg_map[i]; for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--) pop |= 1 << reg_map[i]; return (pop & 0xff00) ? push_inst32(compiler, POP_W | (1 << 15) | pop) : push_inst16(compiler, POP | (1 << 8) | pop); } /* --------------------------------------------------------------------- */ /* Operators */ /* --------------------------------------------------------------------- */ #ifdef __cplusplus extern "C" { #endif #if defined(__GNUC__) extern unsigned int __aeabi_uidivmod(unsigned int numerator, int unsigned denominator); extern int __aeabi_idivmod(int numerator, int denominator); #else #error "Software divmod functions are needed" #endif #ifdef __cplusplus } #endif SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op) { sljit_sw saved_reg_list[3]; sljit_sw saved_reg_count; CHECK_ERROR(); CHECK(check_sljit_emit_op0(compiler, op)); op = GET_OPCODE(op); switch (op) { case SLJIT_BREAKPOINT: return push_inst16(compiler, BKPT); case SLJIT_NOP: return push_inst16(compiler, NOP); case SLJIT_LMUL_UW: case SLJIT_LMUL_SW: return push_inst32(compiler, (op == SLJIT_LMUL_UW ? UMULL : SMULL) | (reg_map[SLJIT_R1] << 8) | (reg_map[SLJIT_R0] << 12) | (reg_map[SLJIT_R0] << 16) | reg_map[SLJIT_R1]); case SLJIT_DIVMOD_UW: case SLJIT_DIVMOD_SW: case SLJIT_DIV_UW: case SLJIT_DIV_SW: SLJIT_COMPILE_ASSERT((SLJIT_DIVMOD_UW & 0x2) == 0 && SLJIT_DIV_UW - 0x2 == SLJIT_DIVMOD_UW, bad_div_opcode_assignments); SLJIT_COMPILE_ASSERT(reg_map[2] == 1 && reg_map[3] == 2 && reg_map[4] == 12, bad_register_mapping); saved_reg_count = 0; if (compiler->scratches >= 4) saved_reg_list[saved_reg_count++] = 12; if (compiler->scratches >= 3) saved_reg_list[saved_reg_count++] = 2; if (op >= SLJIT_DIV_UW) saved_reg_list[saved_reg_count++] = 1; if (saved_reg_count > 0) { FAIL_IF(push_inst32(compiler, 0xf84d0d00 | (saved_reg_count >= 3 ? 16 : 8) | (saved_reg_list[0] << 12) /* str rX, [sp, #-8/-16]! */)); if (saved_reg_count >= 2) { SLJIT_ASSERT(saved_reg_list[1] < 8); FAIL_IF(push_inst16(compiler, 0x9001 | (saved_reg_list[1] << 8) /* str rX, [sp, #4] */)); } if (saved_reg_count >= 3) { SLJIT_ASSERT(saved_reg_list[2] < 8); FAIL_IF(push_inst16(compiler, 0x9002 | (saved_reg_list[2] << 8) /* str rX, [sp, #8] */)); } } #if defined(__GNUC__) FAIL_IF(sljit_emit_ijump(compiler, SLJIT_FAST_CALL, SLJIT_IMM, ((op | 0x2) == SLJIT_DIV_UW ? SLJIT_FUNC_OFFSET(__aeabi_uidivmod) : SLJIT_FUNC_OFFSET(__aeabi_idivmod)))); #else #error "Software divmod functions are needed" #endif if (saved_reg_count > 0) { if (saved_reg_count >= 3) { SLJIT_ASSERT(saved_reg_list[2] < 8); FAIL_IF(push_inst16(compiler, 0x9802 | (saved_reg_list[2] << 8) /* ldr rX, [sp, #8] */)); } if (saved_reg_count >= 2) { SLJIT_ASSERT(saved_reg_list[1] < 8); FAIL_IF(push_inst16(compiler, 0x9801 | (saved_reg_list[1] << 8) /* ldr rX, [sp, #4] */)); } return push_inst32(compiler, 0xf85d0b00 | (saved_reg_count >= 3 ? 16 : 8) | (saved_reg_list[0] << 12) /* ldr rX, [sp], #8/16 */); } return SLJIT_SUCCESS; } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_s32 dst_r, flags; sljit_s32 op_flags = GET_ALL_FLAGS(op); CHECK_ERROR(); CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src, srcw); compiler->cache_arg = 0; compiler->cache_argw = 0; dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1; op = GET_OPCODE(op); if (op >= SLJIT_MOV && op <= SLJIT_MOVU_P) { switch (op) { case SLJIT_MOV: case SLJIT_MOV_U32: case SLJIT_MOV_S32: case SLJIT_MOV_P: flags = WORD_SIZE; break; case SLJIT_MOV_U8: flags = BYTE_SIZE; if (src & SLJIT_IMM) srcw = (sljit_u8)srcw; break; case SLJIT_MOV_S8: flags = BYTE_SIZE | SIGNED; if (src & SLJIT_IMM) srcw = (sljit_s8)srcw; break; case SLJIT_MOV_U16: flags = HALF_SIZE; if (src & SLJIT_IMM) srcw = (sljit_u16)srcw; break; case SLJIT_MOV_S16: flags = HALF_SIZE | SIGNED; if (src & SLJIT_IMM) srcw = (sljit_s16)srcw; break; case SLJIT_MOVU: case SLJIT_MOVU_U32: case SLJIT_MOVU_S32: case SLJIT_MOVU_P: flags = WORD_SIZE | UPDATE; break; case SLJIT_MOVU_U8: flags = BYTE_SIZE | UPDATE; if (src & SLJIT_IMM) srcw = (sljit_u8)srcw; break; case SLJIT_MOVU_S8: flags = BYTE_SIZE | SIGNED | UPDATE; if (src & SLJIT_IMM) srcw = (sljit_s8)srcw; break; case SLJIT_MOVU_U16: flags = HALF_SIZE | UPDATE; if (src & SLJIT_IMM) srcw = (sljit_u16)srcw; break; case SLJIT_MOVU_S16: flags = HALF_SIZE | SIGNED | UPDATE; if (src & SLJIT_IMM) srcw = (sljit_s16)srcw; break; default: SLJIT_ASSERT_STOP(); flags = 0; break; } if (src & SLJIT_IMM) FAIL_IF(emit_op_imm(compiler, SLJIT_MOV | ARG2_IMM, dst_r, TMP_REG1, srcw)); else if (src & SLJIT_MEM) { if (getput_arg_fast(compiler, flags, dst_r, src, srcw)) FAIL_IF(compiler->error); else FAIL_IF(getput_arg(compiler, flags, dst_r, src, srcw, dst, dstw)); } else { if (dst_r != TMP_REG1) return emit_op_imm(compiler, op, dst_r, TMP_REG1, src); dst_r = src; } if (dst & SLJIT_MEM) { if (getput_arg_fast(compiler, flags | STORE, dst_r, dst, dstw)) return compiler->error; else return getput_arg(compiler, flags | STORE, dst_r, dst, dstw, 0, 0); } return SLJIT_SUCCESS; } if (op == SLJIT_NEG) { #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \ || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) compiler->skip_checks = 1; #endif return sljit_emit_op2(compiler, SLJIT_SUB | op_flags, dst, dstw, SLJIT_IMM, 0, src, srcw); } flags = (GET_FLAGS(op_flags) ? SET_FLAGS : 0) | ((op_flags & SLJIT_KEEP_FLAGS) ? KEEP_FLAGS : 0); if (src & SLJIT_MEM) { if (getput_arg_fast(compiler, WORD_SIZE, TMP_REG2, src, srcw)) FAIL_IF(compiler->error); else FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG2, src, srcw, dst, dstw)); src = TMP_REG2; } if (src & SLJIT_IMM) flags |= ARG2_IMM; else srcw = src; emit_op_imm(compiler, flags | op, dst_r, TMP_REG1, srcw); if (dst & SLJIT_MEM) { if (getput_arg_fast(compiler, flags | STORE, dst_r, dst, dstw)) return compiler->error; else return getput_arg(compiler, flags | STORE, dst_r, dst, dstw, 0, 0); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { sljit_s32 dst_r, flags; CHECK_ERROR(); CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); compiler->cache_arg = 0; compiler->cache_argw = 0; dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1; flags = (GET_FLAGS(op) ? SET_FLAGS : 0) | ((op & SLJIT_KEEP_FLAGS) ? KEEP_FLAGS : 0); if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, WORD_SIZE | STORE | ARG_TEST, TMP_REG1, dst, dstw)) flags |= SLOW_DEST; if (src1 & SLJIT_MEM) { if (getput_arg_fast(compiler, WORD_SIZE, TMP_REG1, src1, src1w)) FAIL_IF(compiler->error); else flags |= SLOW_SRC1; } if (src2 & SLJIT_MEM) { if (getput_arg_fast(compiler, WORD_SIZE, TMP_REG2, src2, src2w)) FAIL_IF(compiler->error); else flags |= SLOW_SRC2; } if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) { if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) { FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG2, src2, src2w, src1, src1w)); FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG1, src1, src1w, dst, dstw)); } else { FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG1, src1, src1w, src2, src2w)); FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG2, src2, src2w, dst, dstw)); } } else if (flags & SLOW_SRC1) FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG1, src1, src1w, dst, dstw)); else if (flags & SLOW_SRC2) FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG2, src2, src2w, dst, dstw)); if (src1 & SLJIT_MEM) src1 = TMP_REG1; if (src2 & SLJIT_MEM) src2 = TMP_REG2; if (src1 & SLJIT_IMM) flags |= ARG1_IMM; else src1w = src1; if (src2 & SLJIT_IMM) flags |= ARG2_IMM; else src2w = src2; if (dst == SLJIT_UNUSED) flags |= UNUSED_RETURN; emit_op_imm(compiler, flags | GET_OPCODE(op), dst_r, src1w, src2w); if (dst & SLJIT_MEM) { if (!(flags & SLOW_DEST)) { getput_arg_fast(compiler, WORD_SIZE | STORE, dst_r, dst, dstw); return compiler->error; } return getput_arg(compiler, WORD_SIZE | STORE, TMP_REG1, dst, dstw, 0, 0); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg) { CHECK_REG_INDEX(check_sljit_get_register_index(reg)); return reg_map[reg]; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg) { CHECK_REG_INDEX(check_sljit_get_float_register_index(reg)); return reg << 1; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler, void *instruction, sljit_s32 size) { CHECK_ERROR(); CHECK(check_sljit_emit_op_custom(compiler, instruction, size)); if (size == 2) return push_inst16(compiler, *(sljit_u16*)instruction); return push_inst32(compiler, *(sljit_ins*)instruction); } /* --------------------------------------------------------------------- */ /* Floating point operators */ /* --------------------------------------------------------------------- */ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_is_fpu_available(void) { #ifdef SLJIT_IS_FPU_AVAILABLE return SLJIT_IS_FPU_AVAILABLE; #else /* Available by default. */ return 1; #endif } #define FPU_LOAD (1 << 20) static sljit_s32 emit_fop_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw) { sljit_sw tmp; sljit_uw imm; sljit_sw inst = VSTR_F32 | (flags & (SLJIT_F32_OP | FPU_LOAD)); SLJIT_ASSERT(arg & SLJIT_MEM); /* Fast loads and stores. */ if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) { FAIL_IF(push_inst32(compiler, ADD_W | RD4(TMP_REG2) | RN4(arg & REG_MASK) | RM4(OFFS_REG(arg)) | ((argw & 0x3) << 6))); arg = SLJIT_MEM | TMP_REG2; argw = 0; } if ((arg & REG_MASK) && (argw & 0x3) == 0) { if (!(argw & ~0x3fc)) return push_inst32(compiler, inst | 0x800000 | RN4(arg & REG_MASK) | DD4(reg) | (argw >> 2)); if (!(-argw & ~0x3fc)) return push_inst32(compiler, inst | RN4(arg & REG_MASK) | DD4(reg) | (-argw >> 2)); } /* Slow cases */ SLJIT_ASSERT(!(arg & OFFS_REG_MASK)); if (compiler->cache_arg == arg) { tmp = argw - compiler->cache_argw; if (!(tmp & ~0x3fc)) return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG3) | DD4(reg) | (tmp >> 2)); if (!(-tmp & ~0x3fc)) return push_inst32(compiler, inst | RN4(TMP_REG3) | DD4(reg) | (-tmp >> 2)); if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, tmp) != SLJIT_ERR_UNSUPPORTED) { FAIL_IF(compiler->error); compiler->cache_argw = argw; return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG3) | DD4(reg)); } } if (arg & REG_MASK) { if (emit_set_delta(compiler, TMP_REG1, arg & REG_MASK, argw) != SLJIT_ERR_UNSUPPORTED) { FAIL_IF(compiler->error); return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG1) | DD4(reg)); } imm = get_imm(argw & ~0x3fc); if (imm != INVALID_IMM) { FAIL_IF(push_inst32(compiler, ADD_WI | RD4(TMP_REG1) | RN4(arg & REG_MASK) | imm)); return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG1) | DD4(reg) | ((argw & 0x3fc) >> 2)); } imm = get_imm(-argw & ~0x3fc); if (imm != INVALID_IMM) { argw = -argw; FAIL_IF(push_inst32(compiler, SUB_WI | RD4(TMP_REG1) | RN4(arg & REG_MASK) | imm)); return push_inst32(compiler, inst | RN4(TMP_REG1) | DD4(reg) | ((argw & 0x3fc) >> 2)); } } compiler->cache_arg = arg; compiler->cache_argw = argw; FAIL_IF(load_immediate(compiler, TMP_REG3, argw)); if (arg & REG_MASK) FAIL_IF(push_inst16(compiler, ADD | SET_REGS44(TMP_REG3, (arg & REG_MASK)))); return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG3) | DD4(reg)); } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_sw_from_f64(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { if (src & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG1, src, srcw)); src = TMP_FREG1; } FAIL_IF(push_inst32(compiler, VCVT_S32_F32 | (op & SLJIT_F32_OP) | DD4(TMP_FREG1) | DM4(src))); if (dst == SLJIT_UNUSED) return SLJIT_SUCCESS; if (FAST_IS_REG(dst)) return push_inst32(compiler, VMOV | (1 << 20) | RT4(dst) | DN4(TMP_FREG1)); /* Store the integer value from a VFP register. */ return emit_fop_mem(compiler, 0, TMP_FREG1, dst, dstw); } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_sw(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; if (FAST_IS_REG(src)) FAIL_IF(push_inst32(compiler, VMOV | RT4(src) | DN4(TMP_FREG1))); else if (src & SLJIT_MEM) { /* Load the integer value into a VFP register. */ FAIL_IF(emit_fop_mem(compiler, FPU_LOAD, TMP_FREG1, src, srcw)); } else { FAIL_IF(load_immediate(compiler, TMP_REG1, srcw)); FAIL_IF(push_inst32(compiler, VMOV | RT4(TMP_REG1) | DN4(TMP_FREG1))); } FAIL_IF(push_inst32(compiler, VCVT_F32_S32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DM4(TMP_FREG1))); if (dst & SLJIT_MEM) return emit_fop_mem(compiler, (op & SLJIT_F32_OP), TMP_FREG1, dst, dstw); return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { if (src1 & SLJIT_MEM) { emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG1, src1, src1w); src1 = TMP_FREG1; } if (src2 & SLJIT_MEM) { emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG2, src2, src2w); src2 = TMP_FREG2; } FAIL_IF(push_inst32(compiler, VCMP_F32 | (op & SLJIT_F32_OP) | DD4(src1) | DM4(src2))); return push_inst32(compiler, VMRS); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_s32 dst_r; CHECK_ERROR(); compiler->cache_arg = 0; compiler->cache_argw = 0; if (GET_OPCODE(op) != SLJIT_CONV_F64_FROM_F32) op ^= SLJIT_F32_OP; SLJIT_COMPILE_ASSERT((SLJIT_F32_OP == 0x100), float_transfer_bit_error); SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw); dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; if (src & SLJIT_MEM) { emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, dst_r, src, srcw); src = dst_r; } switch (GET_OPCODE(op)) { case SLJIT_MOV_F64: if (src != dst_r) { if (dst_r != TMP_FREG1) FAIL_IF(push_inst32(compiler, VMOV_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DM4(src))); else dst_r = src; } break; case SLJIT_NEG_F64: FAIL_IF(push_inst32(compiler, VNEG_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DM4(src))); break; case SLJIT_ABS_F64: FAIL_IF(push_inst32(compiler, VABS_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DM4(src))); break; case SLJIT_CONV_F64_FROM_F32: FAIL_IF(push_inst32(compiler, VCVT_F64_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DM4(src))); op ^= SLJIT_F32_OP; break; } if (dst & SLJIT_MEM) return emit_fop_mem(compiler, (op & SLJIT_F32_OP), dst_r, dst, dstw); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { sljit_s32 dst_r; CHECK_ERROR(); CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); compiler->cache_arg = 0; compiler->cache_argw = 0; op ^= SLJIT_F32_OP; dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; if (src1 & SLJIT_MEM) { emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG1, src1, src1w); src1 = TMP_FREG1; } if (src2 & SLJIT_MEM) { emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG2, src2, src2w); src2 = TMP_FREG2; } switch (GET_OPCODE(op)) { case SLJIT_ADD_F64: FAIL_IF(push_inst32(compiler, VADD_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DN4(src1) | DM4(src2))); break; case SLJIT_SUB_F64: FAIL_IF(push_inst32(compiler, VSUB_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DN4(src1) | DM4(src2))); break; case SLJIT_MUL_F64: FAIL_IF(push_inst32(compiler, VMUL_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DN4(src1) | DM4(src2))); break; case SLJIT_DIV_F64: FAIL_IF(push_inst32(compiler, VDIV_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DN4(src1) | DM4(src2))); break; } if (!(dst & SLJIT_MEM)) return SLJIT_SUCCESS; return emit_fop_mem(compiler, (op & SLJIT_F32_OP), TMP_FREG1, dst, dstw); } #undef FPU_LOAD /* --------------------------------------------------------------------- */ /* Other instructions */ /* --------------------------------------------------------------------- */ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw) { CHECK_ERROR(); CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw)); ADJUST_LOCAL_OFFSET(dst, dstw); /* For UNUSED dst. Uncommon, but possible. */ if (dst == SLJIT_UNUSED) return SLJIT_SUCCESS; if (FAST_IS_REG(dst)) return push_inst16(compiler, MOV | SET_REGS44(dst, TMP_REG3)); /* Memory. */ if (getput_arg_fast(compiler, WORD_SIZE | STORE, TMP_REG3, dst, dstw)) return compiler->error; /* TMP_REG3 is used for caching. */ FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(TMP_REG2, TMP_REG3))); compiler->cache_arg = 0; compiler->cache_argw = 0; return getput_arg(compiler, WORD_SIZE | STORE, TMP_REG2, dst, dstw, 0, 0); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw) { CHECK_ERROR(); CHECK(check_sljit_emit_fast_return(compiler, src, srcw)); ADJUST_LOCAL_OFFSET(src, srcw); if (FAST_IS_REG(src)) FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(TMP_REG3, src))); else if (src & SLJIT_MEM) { if (getput_arg_fast(compiler, WORD_SIZE, TMP_REG3, src, srcw)) FAIL_IF(compiler->error); else { compiler->cache_arg = 0; compiler->cache_argw = 0; FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG2, src, srcw, 0, 0)); FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(TMP_REG3, TMP_REG2))); } } else if (src & SLJIT_IMM) FAIL_IF(load_immediate(compiler, TMP_REG3, srcw)); return push_inst16(compiler, BLX | RN3(TMP_REG3)); } /* --------------------------------------------------------------------- */ /* Conditional instructions */ /* --------------------------------------------------------------------- */ static sljit_uw get_cc(sljit_s32 type) { switch (type) { case SLJIT_EQUAL: case SLJIT_MUL_NOT_OVERFLOW: case SLJIT_EQUAL_F64: return 0x0; case SLJIT_NOT_EQUAL: case SLJIT_MUL_OVERFLOW: case SLJIT_NOT_EQUAL_F64: return 0x1; case SLJIT_LESS: case SLJIT_LESS_F64: return 0x3; case SLJIT_GREATER_EQUAL: case SLJIT_GREATER_EQUAL_F64: return 0x2; case SLJIT_GREATER: case SLJIT_GREATER_F64: return 0x8; case SLJIT_LESS_EQUAL: case SLJIT_LESS_EQUAL_F64: return 0x9; case SLJIT_SIG_LESS: return 0xb; case SLJIT_SIG_GREATER_EQUAL: return 0xa; case SLJIT_SIG_GREATER: return 0xc; case SLJIT_SIG_LESS_EQUAL: return 0xd; case SLJIT_OVERFLOW: case SLJIT_UNORDERED_F64: return 0x6; case SLJIT_NOT_OVERFLOW: case SLJIT_ORDERED_F64: return 0x7; default: /* SLJIT_JUMP */ SLJIT_ASSERT_STOP(); return 0xe; } } SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler) { struct sljit_label *label; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_label(compiler)); if (compiler->last_label && compiler->last_label->size == compiler->size) return compiler->last_label; label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label)); PTR_FAIL_IF(!label); set_label(label, compiler); return label; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type) { struct sljit_jump *jump; sljit_ins cc; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_jump(compiler, type)); jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); PTR_FAIL_IF(!jump); set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP); type &= 0xff; /* In ARM, we don't need to touch the arguments. */ PTR_FAIL_IF(emit_imm32_const(compiler, TMP_REG1, 0)); if (type < SLJIT_JUMP) { jump->flags |= IS_COND; cc = get_cc(type); jump->flags |= cc << 8; PTR_FAIL_IF(push_inst16(compiler, IT | (cc << 4) | 0x8)); } jump->addr = compiler->size; if (type <= SLJIT_JUMP) PTR_FAIL_IF(push_inst16(compiler, BX | RN3(TMP_REG1))); else { jump->flags |= IS_BL; PTR_FAIL_IF(push_inst16(compiler, BLX | RN3(TMP_REG1))); } return jump; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw) { struct sljit_jump *jump; CHECK_ERROR(); CHECK(check_sljit_emit_ijump(compiler, type, src, srcw)); ADJUST_LOCAL_OFFSET(src, srcw); /* In ARM, we don't need to touch the arguments. */ if (!(src & SLJIT_IMM)) { if (FAST_IS_REG(src)) return push_inst16(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RN3(src)); FAIL_IF(emit_op_mem(compiler, WORD_SIZE, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, src, srcw)); if (type >= SLJIT_FAST_CALL) return push_inst16(compiler, BLX | RN3(TMP_REG1)); } jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); FAIL_IF(!jump); set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0)); jump->u.target = srcw; FAIL_IF(emit_imm32_const(compiler, TMP_REG1, 0)); jump->addr = compiler->size; return push_inst16(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RN3(TMP_REG1)); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw, sljit_s32 type) { sljit_s32 dst_r, flags = GET_ALL_FLAGS(op); sljit_ins cc, ins; CHECK_ERROR(); CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src, srcw); if (dst == SLJIT_UNUSED) return SLJIT_SUCCESS; op = GET_OPCODE(op); cc = get_cc(type & 0xff); dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2; if (op < SLJIT_ADD) { FAIL_IF(push_inst16(compiler, IT | (cc << 4) | (((cc & 0x1) ^ 0x1) << 3) | 0x4)); if (reg_map[dst_r] > 7) { FAIL_IF(push_inst32(compiler, MOV_WI | RD4(dst_r) | 1)); FAIL_IF(push_inst32(compiler, MOV_WI | RD4(dst_r) | 0)); } else { FAIL_IF(push_inst16(compiler, MOVSI | RDN3(dst_r) | 1)); FAIL_IF(push_inst16(compiler, MOVSI | RDN3(dst_r) | 0)); } if (dst_r != TMP_REG2) return SLJIT_SUCCESS; return emit_op_mem(compiler, WORD_SIZE | STORE, TMP_REG2, dst, dstw); } ins = (op == SLJIT_AND ? ANDI : (op == SLJIT_OR ? ORRI : EORI)); if ((op == SLJIT_OR || op == SLJIT_XOR) && FAST_IS_REG(dst) && dst == src) { /* Does not change the other bits. */ FAIL_IF(push_inst16(compiler, IT | (cc << 4) | 0x8)); FAIL_IF(push_inst32(compiler, ins | RN4(src) | RD4(dst) | 1)); if (flags & SLJIT_SET_E) { /* The condition must always be set, even if the ORRI/EORI is not executed above. */ if (reg_map[dst] <= 7) return push_inst16(compiler, MOVS | RD3(TMP_REG1) | RN3(dst)); return push_inst32(compiler, MOV_W | SET_FLAGS | RD4(TMP_REG1) | RM4(dst)); } return SLJIT_SUCCESS; } compiler->cache_arg = 0; compiler->cache_argw = 0; if (src & SLJIT_MEM) { FAIL_IF(emit_op_mem2(compiler, WORD_SIZE, TMP_REG2, src, srcw, dst, dstw)); src = TMP_REG2; srcw = 0; } else if (src & SLJIT_IMM) { FAIL_IF(load_immediate(compiler, TMP_REG2, srcw)); src = TMP_REG2; srcw = 0; } if (op == SLJIT_AND || src != dst_r) { FAIL_IF(push_inst16(compiler, IT | (cc << 4) | (((cc & 0x1) ^ 0x1) << 3) | 0x4)); FAIL_IF(push_inst32(compiler, ins | RN4(src) | RD4(dst_r) | 1)); FAIL_IF(push_inst32(compiler, ins | RN4(src) | RD4(dst_r) | 0)); } else { FAIL_IF(push_inst16(compiler, IT | (cc << 4) | 0x8)); FAIL_IF(push_inst32(compiler, ins | RN4(src) | RD4(dst_r) | 1)); } if (dst_r == TMP_REG2) FAIL_IF(emit_op_mem2(compiler, WORD_SIZE | STORE, TMP_REG2, dst, dstw, 0, 0)); if (flags & SLJIT_SET_E) { /* The condition must always be set, even if the ORR/EORI is not executed above. */ if (reg_map[dst_r] <= 7) return push_inst16(compiler, MOVS | RD3(TMP_REG1) | RN3(dst_r)); return push_inst32(compiler, MOV_W | SET_FLAGS | RD4(TMP_REG1) | RM4(dst_r)); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value) { struct sljit_const *const_; sljit_s32 dst_r; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value)); ADJUST_LOCAL_OFFSET(dst, dstw); const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const)); PTR_FAIL_IF(!const_); set_const(const_, compiler); dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1; PTR_FAIL_IF(emit_imm32_const(compiler, dst_r, init_value)); if (dst & SLJIT_MEM) PTR_FAIL_IF(emit_op_mem(compiler, WORD_SIZE | STORE, dst_r, dst, dstw)); return const_; } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr) { sljit_u16 *inst = (sljit_u16*)addr; modify_imm32_const(inst, new_addr); SLJIT_CACHE_FLUSH(inst, inst + 4); } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant) { sljit_u16 *inst = (sljit_u16*)addr; modify_imm32_const(inst, new_constant); SLJIT_CACHE_FLUSH(inst, inst + 4); }