/* * Stack-less Just-In-Time compiler * * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* mips 64-bit arch dependent functions. */ static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm) { sljit_si shift = 32; sljit_si shift2; sljit_si inv = 0; sljit_ins ins; sljit_uw uimm; if (!(imm & ~0xffff)) return push_inst(compiler, ORI | SA(0) | TA(dst_ar) | IMM(imm), dst_ar); if (imm < 0 && imm >= SIMM_MIN) return push_inst(compiler, ADDIU | SA(0) | TA(dst_ar) | IMM(imm), dst_ar); if (imm <= 0x7fffffffl && imm >= -0x80000000l) { FAIL_IF(push_inst(compiler, LUI | TA(dst_ar) | IMM(imm >> 16), dst_ar)); return (imm & 0xffff) ? push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(imm), dst_ar) : SLJIT_SUCCESS; } /* Zero extended number. */ uimm = imm; if (imm < 0) { uimm = ~imm; inv = 1; } while (!(uimm & 0xff00000000000000l)) { shift -= 8; uimm <<= 8; } if (!(uimm & 0xf000000000000000l)) { shift -= 4; uimm <<= 4; } if (!(uimm & 0xc000000000000000l)) { shift -= 2; uimm <<= 2; } if ((sljit_sw)uimm < 0) { uimm >>= 1; shift += 1; } SLJIT_ASSERT(((uimm & 0xc000000000000000l) == 0x4000000000000000l) && (shift > 0) && (shift <= 32)); if (inv) uimm = ~uimm; FAIL_IF(push_inst(compiler, LUI | TA(dst_ar) | IMM(uimm >> 48), dst_ar)); if (uimm & 0x0000ffff00000000l) FAIL_IF(push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(uimm >> 32), dst_ar)); imm &= (1l << shift) - 1; if (!(imm & ~0xffff)) { ins = (shift == 32) ? DSLL32 : DSLL; if (shift < 32) ins |= SH_IMM(shift); FAIL_IF(push_inst(compiler, ins | TA(dst_ar) | DA(dst_ar), dst_ar)); return !(imm & 0xffff) ? SLJIT_SUCCESS : push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(imm), dst_ar); } /* Double shifts needs to be performed. */ uimm <<= 32; shift2 = shift - 16; while (!(uimm & 0xf000000000000000l)) { shift2 -= 4; uimm <<= 4; } if (!(uimm & 0xc000000000000000l)) { shift2 -= 2; uimm <<= 2; } if (!(uimm & 0x8000000000000000l)) { shift2--; uimm <<= 1; } SLJIT_ASSERT((uimm & 0x8000000000000000l) && (shift2 > 0) && (shift2 <= 16)); FAIL_IF(push_inst(compiler, DSLL | TA(dst_ar) | DA(dst_ar) | SH_IMM(shift - shift2), dst_ar)); FAIL_IF(push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(uimm >> 48), dst_ar)); FAIL_IF(push_inst(compiler, DSLL | TA(dst_ar) | DA(dst_ar) | SH_IMM(shift2), dst_ar)); imm &= (1l << shift2) - 1; return !(imm & 0xffff) ? SLJIT_SUCCESS : push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(imm), dst_ar); } #define SELECT_OP(a, b) \ (!(op & SLJIT_INT_OP) ? a : b) #define EMIT_LOGICAL(op_imm, op_norm) \ if (flags & SRC2_IMM) { \ if (op & SLJIT_SET_E) \ FAIL_IF(push_inst(compiler, op_imm | S(src1) | TA(EQUAL_FLAG) | IMM(src2), EQUAL_FLAG)); \ if (CHECK_FLAGS(SLJIT_SET_E)) \ FAIL_IF(push_inst(compiler, op_imm | S(src1) | T(dst) | IMM(src2), DR(dst))); \ } \ else { \ if (op & SLJIT_SET_E) \ FAIL_IF(push_inst(compiler, op_norm | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG)); \ if (CHECK_FLAGS(SLJIT_SET_E)) \ FAIL_IF(push_inst(compiler, op_norm | S(src1) | T(src2) | D(dst), DR(dst))); \ } #define EMIT_SHIFT(op_dimm, op_dimm32, op_imm, op_dv, op_v) \ if (flags & SRC2_IMM) { \ if (src2 >= 32) { \ SLJIT_ASSERT(!(op & SLJIT_INT_OP)); \ ins = op_dimm32; \ src2 -= 32; \ } \ else \ ins = (op & SLJIT_INT_OP) ? op_imm : op_dimm; \ if (op & SLJIT_SET_E) \ FAIL_IF(push_inst(compiler, ins | T(src1) | DA(EQUAL_FLAG) | SH_IMM(src2), EQUAL_FLAG)); \ if (CHECK_FLAGS(SLJIT_SET_E)) \ FAIL_IF(push_inst(compiler, ins | T(src1) | D(dst) | SH_IMM(src2), DR(dst))); \ } \ else { \ ins = (op & SLJIT_INT_OP) ? op_v : op_dv; \ if (op & SLJIT_SET_E) \ FAIL_IF(push_inst(compiler, ins | S(src2) | T(src1) | DA(EQUAL_FLAG), EQUAL_FLAG)); \ if (CHECK_FLAGS(SLJIT_SET_E)) \ FAIL_IF(push_inst(compiler, ins | S(src2) | T(src1) | D(dst), DR(dst))); \ } static SLJIT_INLINE sljit_si emit_single_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags, sljit_si dst, sljit_si src1, sljit_sw src2) { sljit_ins ins; switch (GET_OPCODE(op)) { case SLJIT_MOV: case SLJIT_MOV_P: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM)); if (dst != src2) return push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(src2) | TA(0) | D(dst), DR(dst)); return SLJIT_SUCCESS; case SLJIT_MOV_UB: case SLJIT_MOV_SB: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM)); if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) { if (op == SLJIT_MOV_SB) { FAIL_IF(push_inst(compiler, DSLL32 | T(src2) | D(dst) | SH_IMM(24), DR(dst))); return push_inst(compiler, DSRA32 | T(dst) | D(dst) | SH_IMM(24), DR(dst)); } return push_inst(compiler, ANDI | S(src2) | T(dst) | IMM(0xff), DR(dst)); } else if (dst != src2) SLJIT_ASSERT_STOP(); return SLJIT_SUCCESS; case SLJIT_MOV_UH: case SLJIT_MOV_SH: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM)); if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) { if (op == SLJIT_MOV_SH) { FAIL_IF(push_inst(compiler, DSLL32 | T(src2) | D(dst) | SH_IMM(16), DR(dst))); return push_inst(compiler, DSRA32 | T(dst) | D(dst) | SH_IMM(16), DR(dst)); } return push_inst(compiler, ANDI | S(src2) | T(dst) | IMM(0xffff), DR(dst)); } else if (dst != src2) SLJIT_ASSERT_STOP(); return SLJIT_SUCCESS; case SLJIT_MOV_UI: SLJIT_ASSERT(!(op & SLJIT_INT_OP)); FAIL_IF(push_inst(compiler, DSLL32 | T(src2) | D(dst) | SH_IMM(0), DR(dst))); return push_inst(compiler, DSRL32 | T(dst) | D(dst) | SH_IMM(0), DR(dst)); case SLJIT_MOV_SI: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM)); return push_inst(compiler, SLL | T(src2) | D(dst) | SH_IMM(0), DR(dst)); case SLJIT_NOT: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM)); if (op & SLJIT_SET_E) FAIL_IF(push_inst(compiler, NOR | S(src2) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG)); if (CHECK_FLAGS(SLJIT_SET_E)) FAIL_IF(push_inst(compiler, NOR | S(src2) | T(src2) | D(dst), DR(dst))); return SLJIT_SUCCESS; case SLJIT_CLZ: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM)); #if (defined SLJIT_MIPS_32_64 && SLJIT_MIPS_32_64) if (op & SLJIT_SET_E) FAIL_IF(push_inst(compiler, SELECT_OP(DCLZ, CLZ) | S(src2) | TA(EQUAL_FLAG) | DA(EQUAL_FLAG), EQUAL_FLAG)); if (CHECK_FLAGS(SLJIT_SET_E)) FAIL_IF(push_inst(compiler, SELECT_OP(DCLZ, CLZ) | S(src2) | T(dst) | D(dst), DR(dst))); #else if (SLJIT_UNLIKELY(flags & UNUSED_DEST)) { FAIL_IF(push_inst(compiler, SELECT_OP(DSRL32, SRL) | T(src2) | DA(EQUAL_FLAG) | SH_IMM(31), EQUAL_FLAG)); return push_inst(compiler, XORI | SA(EQUAL_FLAG) | TA(EQUAL_FLAG) | IMM(1), EQUAL_FLAG); } /* Nearly all instructions are unmovable in the following sequence. */ FAIL_IF(push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(src2) | TA(0) | D(TMP_REG1), DR(TMP_REG1))); /* Check zero. */ FAIL_IF(push_inst(compiler, BEQ | S(TMP_REG1) | TA(0) | IMM(5), UNMOVABLE_INS)); FAIL_IF(push_inst(compiler, ORI | SA(0) | T(dst) | IMM((op & SLJIT_INT_OP) ? 32 : 64), UNMOVABLE_INS)); FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | SA(0) | T(dst) | IMM(-1), DR(dst))); /* Loop for searching the highest bit. */ FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(dst) | T(dst) | IMM(1), DR(dst))); FAIL_IF(push_inst(compiler, BGEZ | S(TMP_REG1) | IMM(-2), UNMOVABLE_INS)); FAIL_IF(push_inst(compiler, SELECT_OP(DSLL, SLL) | T(TMP_REG1) | D(TMP_REG1) | SH_IMM(1), UNMOVABLE_INS)); if (op & SLJIT_SET_E) return push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(dst) | TA(0) | DA(EQUAL_FLAG), EQUAL_FLAG); #endif return SLJIT_SUCCESS; case SLJIT_ADD: if (flags & SRC2_IMM) { if (op & SLJIT_SET_O) { if (src2 >= 0) FAIL_IF(push_inst(compiler, OR | S(src1) | T(src1) | DA(TMP_EREG1), TMP_EREG1)); else FAIL_IF(push_inst(compiler, NOR | S(src1) | T(src1) | DA(TMP_EREG1), TMP_EREG1)); } if (op & SLJIT_SET_E) FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | TA(EQUAL_FLAG) | IMM(src2), EQUAL_FLAG)); if (op & (SLJIT_SET_C | SLJIT_SET_O)) { if (src2 >= 0) FAIL_IF(push_inst(compiler, ORI | S(src1) | TA(ULESS_FLAG) | IMM(src2), ULESS_FLAG)); else { FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | SA(0) | TA(ULESS_FLAG) | IMM(src2), ULESS_FLAG)); FAIL_IF(push_inst(compiler, OR | S(src1) | TA(ULESS_FLAG) | DA(ULESS_FLAG), ULESS_FLAG)); } } /* dst may be the same as src1 or src2. */ if (CHECK_FLAGS(SLJIT_SET_E)) FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | T(dst) | IMM(src2), DR(dst))); } else { if (op & SLJIT_SET_O) FAIL_IF(push_inst(compiler, XOR | S(src1) | T(src2) | DA(TMP_EREG1), TMP_EREG1)); if (op & SLJIT_SET_E) FAIL_IF(push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG)); if (op & (SLJIT_SET_C | SLJIT_SET_O)) FAIL_IF(push_inst(compiler, OR | S(src1) | T(src2) | DA(ULESS_FLAG), ULESS_FLAG)); /* dst may be the same as src1 or src2. */ if (CHECK_FLAGS(SLJIT_SET_E)) FAIL_IF(push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(src1) | T(src2) | D(dst), DR(dst))); } /* a + b >= a | b (otherwise, the carry should be set to 1). */ if (op & (SLJIT_SET_C | SLJIT_SET_O)) FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(ULESS_FLAG) | DA(ULESS_FLAG), ULESS_FLAG)); if (!(op & SLJIT_SET_O)) return SLJIT_SUCCESS; FAIL_IF(push_inst(compiler, SELECT_OP(DSLL32, SLL) | TA(ULESS_FLAG) | DA(OVERFLOW_FLAG) | SH_IMM(31), OVERFLOW_FLAG)); FAIL_IF(push_inst(compiler, XOR | SA(TMP_EREG1) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG)); FAIL_IF(push_inst(compiler, XOR | S(dst) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG)); return push_inst(compiler, SELECT_OP(DSRL32, SLL) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG) | SH_IMM(31), OVERFLOW_FLAG); case SLJIT_ADDC: if (flags & SRC2_IMM) { if (op & SLJIT_SET_C) { if (src2 >= 0) FAIL_IF(push_inst(compiler, ORI | S(src1) | TA(TMP_EREG1) | IMM(src2), TMP_EREG1)); else { FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | SA(0) | TA(TMP_EREG1) | IMM(src2), TMP_EREG1)); FAIL_IF(push_inst(compiler, OR | S(src1) | TA(TMP_EREG1) | DA(TMP_EREG1), TMP_EREG1)); } } FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | T(dst) | IMM(src2), DR(dst))); } else { if (op & SLJIT_SET_C) FAIL_IF(push_inst(compiler, OR | S(src1) | T(src2) | DA(TMP_EREG1), TMP_EREG1)); /* dst may be the same as src1 or src2. */ FAIL_IF(push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(src1) | T(src2) | D(dst), DR(dst))); } if (op & SLJIT_SET_C) FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(TMP_EREG1) | DA(TMP_EREG1), TMP_EREG1)); FAIL_IF(push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(dst) | TA(ULESS_FLAG) | D(dst), DR(dst))); if (!(op & SLJIT_SET_C)) return SLJIT_SUCCESS; /* Set ULESS_FLAG (dst == 0) && (ULESS_FLAG == 1). */ FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(ULESS_FLAG) | DA(ULESS_FLAG), ULESS_FLAG)); /* Set carry flag. */ return push_inst(compiler, OR | SA(ULESS_FLAG) | TA(TMP_EREG1) | DA(ULESS_FLAG), ULESS_FLAG); case SLJIT_SUB: if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_U | SLJIT_SET_S)) || src2 == SIMM_MIN)) { FAIL_IF(push_inst(compiler, ADDIU | SA(0) | T(TMP_REG2) | IMM(src2), DR(TMP_REG2))); src2 = TMP_REG2; flags &= ~SRC2_IMM; } if (flags & SRC2_IMM) { if (op & SLJIT_SET_O) { if (src2 >= 0) FAIL_IF(push_inst(compiler, OR | S(src1) | T(src1) | DA(TMP_EREG1), TMP_EREG1)); else FAIL_IF(push_inst(compiler, NOR | S(src1) | T(src1) | DA(TMP_EREG1), TMP_EREG1)); } if (op & SLJIT_SET_E) FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | TA(EQUAL_FLAG) | IMM(-src2), EQUAL_FLAG)); if (op & (SLJIT_SET_C | SLJIT_SET_O)) FAIL_IF(push_inst(compiler, SLTIU | S(src1) | TA(ULESS_FLAG) | IMM(src2), ULESS_FLAG)); /* dst may be the same as src1 or src2. */ if (CHECK_FLAGS(SLJIT_SET_E)) FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | T(dst) | IMM(-src2), DR(dst))); } else { if (op & SLJIT_SET_O) FAIL_IF(push_inst(compiler, XOR | S(src1) | T(src2) | DA(TMP_EREG1), TMP_EREG1)); if (op & SLJIT_SET_E) FAIL_IF(push_inst(compiler, SELECT_OP(DSUBU, SUBU) | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG)); if (op & (SLJIT_SET_U | SLJIT_SET_C | SLJIT_SET_O)) FAIL_IF(push_inst(compiler, SLTU | S(src1) | T(src2) | DA(ULESS_FLAG), ULESS_FLAG)); if (op & SLJIT_SET_U) FAIL_IF(push_inst(compiler, SLTU | S(src2) | T(src1) | DA(UGREATER_FLAG), UGREATER_FLAG)); if (op & SLJIT_SET_S) { FAIL_IF(push_inst(compiler, SLT | S(src1) | T(src2) | DA(LESS_FLAG), LESS_FLAG)); FAIL_IF(push_inst(compiler, SLT | S(src2) | T(src1) | DA(GREATER_FLAG), GREATER_FLAG)); } /* dst may be the same as src1 or src2. */ if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_C)) FAIL_IF(push_inst(compiler, SELECT_OP(DSUBU, SUBU) | S(src1) | T(src2) | D(dst), DR(dst))); } if (!(op & SLJIT_SET_O)) return SLJIT_SUCCESS; FAIL_IF(push_inst(compiler, SELECT_OP(DSLL32, SLL) | TA(ULESS_FLAG) | DA(OVERFLOW_FLAG) | SH_IMM(31), OVERFLOW_FLAG)); FAIL_IF(push_inst(compiler, XOR | SA(TMP_EREG1) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG)); FAIL_IF(push_inst(compiler, XOR | S(dst) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG)); return push_inst(compiler, SELECT_OP(DSRL32, SRL) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG) | SH_IMM(31), OVERFLOW_FLAG); case SLJIT_SUBC: if ((flags & SRC2_IMM) && src2 == SIMM_MIN) { FAIL_IF(push_inst(compiler, ADDIU | SA(0) | T(TMP_REG2) | IMM(src2), DR(TMP_REG2))); src2 = TMP_REG2; flags &= ~SRC2_IMM; } if (flags & SRC2_IMM) { if (op & SLJIT_SET_C) FAIL_IF(push_inst(compiler, SLTIU | S(src1) | TA(TMP_EREG1) | IMM(src2), TMP_EREG1)); /* dst may be the same as src1 or src2. */ FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | T(dst) | IMM(-src2), DR(dst))); } else { if (op & SLJIT_SET_C) FAIL_IF(push_inst(compiler, SLTU | S(src1) | T(src2) | DA(TMP_EREG1), TMP_EREG1)); /* dst may be the same as src1 or src2. */ FAIL_IF(push_inst(compiler, SELECT_OP(DSUBU, SUBU) | S(src1) | T(src2) | D(dst), DR(dst))); } if (op & SLJIT_SET_C) FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(ULESS_FLAG) | DA(TMP_EREG2), TMP_EREG2)); FAIL_IF(push_inst(compiler, SELECT_OP(DSUBU, SUBU) | S(dst) | TA(ULESS_FLAG) | D(dst), DR(dst))); return (op & SLJIT_SET_C) ? push_inst(compiler, OR | SA(TMP_EREG1) | TA(TMP_EREG2) | DA(ULESS_FLAG), ULESS_FLAG) : SLJIT_SUCCESS; case SLJIT_MUL: SLJIT_ASSERT(!(flags & SRC2_IMM)); if (!(op & SLJIT_SET_O)) { #if (defined SLJIT_MIPS_32_64 && SLJIT_MIPS_32_64) if (op & SLJIT_INT_OP) return push_inst(compiler, MUL | S(src1) | T(src2) | D(dst), DR(dst)); FAIL_IF(push_inst(compiler, DMULT | S(src1) | T(src2), MOVABLE_INS)); return push_inst(compiler, MFLO | D(dst), DR(dst)); #else FAIL_IF(push_inst(compiler, SELECT_OP(DMULT, MULT) | S(src1) | T(src2), MOVABLE_INS)); return push_inst(compiler, MFLO | D(dst), DR(dst)); #endif } FAIL_IF(push_inst(compiler, SELECT_OP(DMULT, MULT) | S(src1) | T(src2), MOVABLE_INS)); FAIL_IF(push_inst(compiler, MFHI | DA(TMP_EREG1), TMP_EREG1)); FAIL_IF(push_inst(compiler, MFLO | D(dst), DR(dst))); FAIL_IF(push_inst(compiler, SELECT_OP(DSRA32, SRA) | T(dst) | DA(TMP_EREG2) | SH_IMM(31), TMP_EREG2)); return push_inst(compiler, SELECT_OP(DSUBU, SUBU) | SA(TMP_EREG1) | TA(TMP_EREG2) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG); case SLJIT_AND: EMIT_LOGICAL(ANDI, AND); return SLJIT_SUCCESS; case SLJIT_OR: EMIT_LOGICAL(ORI, OR); return SLJIT_SUCCESS; case SLJIT_XOR: EMIT_LOGICAL(XORI, XOR); return SLJIT_SUCCESS; case SLJIT_SHL: EMIT_SHIFT(DSLL, DSLL32, SLL, DSLLV, SLLV); return SLJIT_SUCCESS; case SLJIT_LSHR: EMIT_SHIFT(DSRL, DSRL32, SRL, DSRLV, SRLV); return SLJIT_SUCCESS; case SLJIT_ASHR: EMIT_SHIFT(DSRA, DSRA32, SRA, DSRAV, SRAV); return SLJIT_SUCCESS; } SLJIT_ASSERT_STOP(); return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_si emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw init_value) { FAIL_IF(push_inst(compiler, LUI | T(dst) | IMM(init_value >> 48), DR(dst))); FAIL_IF(push_inst(compiler, ORI | S(dst) | T(dst) | IMM(init_value >> 32), DR(dst))); FAIL_IF(push_inst(compiler, DSLL | T(dst) | D(dst) | SH_IMM(16), DR(dst))); FAIL_IF(push_inst(compiler, ORI | S(dst) | T(dst) | IMM(init_value >> 16), DR(dst))); FAIL_IF(push_inst(compiler, DSLL | T(dst) | D(dst) | SH_IMM(16), DR(dst))); return push_inst(compiler, ORI | S(dst) | T(dst) | IMM(init_value), DR(dst)); } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr) { sljit_ins *inst = (sljit_ins*)addr; inst[0] = (inst[0] & 0xffff0000) | ((new_addr >> 48) & 0xffff); inst[1] = (inst[1] & 0xffff0000) | ((new_addr >> 32) & 0xffff); inst[3] = (inst[3] & 0xffff0000) | ((new_addr >> 16) & 0xffff); inst[5] = (inst[5] & 0xffff0000) | (new_addr & 0xffff); SLJIT_CACHE_FLUSH(inst, inst + 6); } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant) { sljit_ins *inst = (sljit_ins*)addr; inst[0] = (inst[0] & 0xffff0000) | ((new_constant >> 48) & 0xffff); inst[1] = (inst[1] & 0xffff0000) | ((new_constant >> 32) & 0xffff); inst[3] = (inst[3] & 0xffff0000) | ((new_constant >> 16) & 0xffff); inst[5] = (inst[5] & 0xffff0000) | (new_constant & 0xffff); SLJIT_CACHE_FLUSH(inst, inst + 6); }