summaryrefslogtreecommitdiff
path: root/PyMca5/PyMcaMath/SimpleMath.py
blob: e2dde5328423ffefbc48f41e4cd6569bcc5b7d8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2015 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import numpy
import logging
from . import SGModule


_logger = logging.getLogger(__name__)


class SimpleMath(object):
    def derivate(self,xdata,ydata, xlimits=None):
        x=numpy.array(xdata, copy=False, dtype=numpy.float)
        y=numpy.array(ydata, copy=False, dtype=numpy.float)
        if xlimits is not None:
            i1=numpy.nonzero((xdata>=xlimits[0])&\
                               (xdata<=xlimits[1]))[0]
            x=numpy.take(x,i1)
            y=numpy.take(y,i1)
        i1 = numpy.argsort(x)
        x=numpy.take(x,i1)
        y=numpy.take(y,i1)
        deltax=x[1:] - x[:-1]
        i1=numpy.nonzero(abs(deltax)>0.0000001)[0]
        x=numpy.take(x, i1)
        y=numpy.take(y, i1)
        minDelta = deltax[deltax > 0]
        if minDelta.size:
            minDelta = minDelta.min()
        else:
            # all points are equal
            minDelta = 1.0
        xInter = numpy.arange(x[0]-minDelta,x[-1]+minDelta,minDelta)
        yInter = numpy.interp(xInter, x, y, left=y[0], right=y[-1])
        if len(yInter) > 499:
            npoints = 5
        else:
            npoints = 3
        degree = 1
        order = 1
        coeff = SGModule.calc_coeff(npoints, degree, order)
        N = int(numpy.size(coeff-1)/2)
        yInterPrime = numpy.convolve(yInter, coeff, mode='valid')/minDelta
        i1 = numpy.nonzero((x>=xInter[N+1]) & (x <= xInter[-N]))[0]
        x = numpy.take(x, i1)
        result = numpy.interp(x, xInter[(N+1):-N],
                              yInterPrime[1:],
                              left=yInterPrime[1],
                              right=yInterPrime[-1])
        return x, result

    def average(self, xarr, yarr, x=None):
        """
        :param xarr : List containing x values in 1-D numpy arrays
        :param yarr : List containing y Values in 1-D numpy arrays
        :param x: x values of the final average spectrum (or None)
        :return: Average spectrum. In case of invalid input (None, None) tuple is returned.

        From the spectra given in xarr & yarr, the method determines the overlap in
        the x-range. For spectra with unequal x-ranges, the method interpolates all
        spectra on the values given in x if provided or the first curve and averages them.
        """
        if (len(xarr) != len(yarr)) or\
           (len(xarr) == 0) or (len(yarr) == 0):
            _logger.debug('specAverage -- invalid input!\n'
                          'Array lengths do not match or are 0')
            return None, None

        same = True
        if x == None:
            SUPPLIED = False
            x0 = xarr[0]
        else:
            SUPPLIED = True
            x0 = x
        for x in xarr:
            if len(x0) == len(x):
                if numpy.all(x0 == x):
                    pass
                else:
                    same = False
                    break
            else:
                same = False
                break

        xsort = []
        ysort = []
        for (x,y) in zip(xarr, yarr):
            if numpy.all(numpy.diff(x) > 0.):
                # All values sorted
                xsort.append(x)
                ysort.append(y)
            else:
                # Sort values
                mask = numpy.argsort(x)
                xsort.append(x.take(mask))
                ysort.append(y.take(mask))

        if SUPPLIED:
            xmin0 = x0.min()
            xmax0 = x0.max()
        else:
            xmin0 = xsort[0][0]
            xmax0 = xsort[0][-1]
        if (not same) or (not SUPPLIED):
            # Determine global xmin0 & xmax0
            for x in xsort:
                xmin = x.min()
                xmax = x.max()
                if xmin > xmin0:
                    xmin0 = xmin
                if xmax < xmax0:
                    xmax0 = xmax
            if xmax <= xmin:
                _logger.debug('specAverage -- \n'
                              'No overlap between spectra!')
                return numpy.array([]), numpy.array([])

        # make sure x0 is sorted
        mask = numpy.argsort(x0)
        x0 = numpy.take(x0, mask)

        # Clip xRange to maximal overlap in spectra
        mask = numpy.nonzero((x0 >= xmin0) &
                             (x0 <= xmax0))[0]
        xnew = numpy.take(x0, mask)
        ynew = numpy.zeros(len(xnew))

        # Perform average
        for (x, y) in zip(xsort, ysort):
            if same:
                ynew += y
            else:
                yinter = numpy.interp(xnew, x, y)
                ynew   += numpy.asarray(yinter)
        num = len(yarr)
        ynew /= num
        idx = numpy.isfinite(ynew)
        return xnew[idx], ynew[idx]

    def smooth(self, *var, **kw):
        """
        smooth(self,*vars,**kw)
        Usage: self.smooth(y)
               self.smooth(y=y)
               self.smooth()
        """
        if 'y' in kw:
            ydata=kw['y']
        elif len(var) > 0:
            ydata=var[0]
        else:
            ydata=self.y
        f=[0.25,0.5,0.25]
        result=numpy.array(ydata, copy=False, dtype=numpy.float)
        if len(result) > 1:
            result[1:-1]=numpy.convolve(result,f,mode=0)
            result[0]=0.5*(result[0]+result[1])
            result[-1]=0.5*(result[-1]+result[-2])
        return result

if __name__ == "__main__":
    x = numpy.arange(100.)*0.25
    y = x*x + 2 * x
    a = SimpleMath()
    #print(a.average(x,y))
    xplot, yprime = a.derivate(x, y)
    print("Found:")
    for i in range(0,10):
        print("x = %f  y'= %f expected = %f" % (xplot[i], yprime[i], 2*xplot[i]+2))