summaryrefslogtreecommitdiff
path: root/PyMca5/PyMcaPhysics/xrf/LegacyFastXRFLinearFit.py
blob: 8a0b16035d922a329995da0f2cbc7dd5767a74b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2019 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__doc__ = """
Module to perform a fast linear fit on a stack of fluorescence spectra.
"""
import os
import numpy
import logging
from PyMca5.PyMcaMath.linalg import lstsq
from . import ClassMcaTheory
from PyMca5.PyMcaMath.fitting import Gefit
from . import ConcentrationsTool
from PyMca5.PyMcaMath.fitting import SpecfitFuns
from PyMca5.PyMcaIO import ConfigDict
import time

_logger = logging.getLogger(__name__)


class FastXRFLinearFit(object):
    def __init__(self, mcafit=None):
        self._config = None
        if mcafit is None:
            self._mcaTheory = ClassMcaTheory.McaTheory()
        else:
            self._mcaTheory = mcafit

    def setFitConfiguration(self, configuration):
        self._mcaTheory.setConfiguration(configuration)
        self._config = self._mcaTheory.getConfiguration()

    def setFitConfigurationFile(self, ffile):
        if not os.path.exists(ffile):
            raise IOError("File <%s> does not exists" % ffile)
        configuration = ConfigDict.ConfigDict()
        configuration.read(ffile)
        self.setFitConfiguration(configuration)

    def fitMultipleSpectra(self, x=None, y=None, xmin=None, xmax=None,
                           configuration=None, concentrations=False,
                           ysum=None, weight=None, refit=True,
                           livetime=None):
        """
        This method performs the actual fit. The y keyword is the only mandatory input argument.

        :param x: 1D array containing the x axis (usually the channels) of the spectra.
        :param y: 3D array containing the spectra as [nrows, ncolumns, nchannels]
        :param xmin: lower limit of the fitting region
        :param xmax: upper limit of the fitting region
        :param weight: 0 Means no weight, 1 Use an average weight, 2 Individual weights (slow)
        :param concentrations: 0 Means no calculation, 1 Calculate them
        :param refit: if False, no check for negative results. Default is True.
        :livetime: It will be used if not different from None and concentrations
                   are to be calculated by using fundamental parameters with
                   automatic time. The default is None.
        :return: A dictionary with the parameters, uncertainties, concentrations and names as keys.
        """
        if y is None:
            raise RuntimeError("y keyword argument is mandatory!")

        if hasattr(y, "info") and hasattr(y, "data"):
            data = y.data
            mcaIndex = y.info.get("McaIndex", -1)
        else:
            data = y
            mcaIndex = -1

        if x is None:
            if hasattr(y, "info") and hasattr(y, "x"):
                x = y.x[0]

        if livetime is None:
            if hasattr(y, "info"):
                if "McaLiveTime" in y.info:
                    livetime = y.info["McaLiveTime"]
        t0 = time.time()
        if configuration is not None:
            self._mcaTheory.setConfiguration(configuration)
        elif self._config is None:
            raise ValueError("Fit configuration missing")
        else:
            _logger.debug("Setting default configuration")
            self._mcaTheory.setConfiguration(self._config)
        # read the current configuration
        # it is a copy, we can modify it at will
        config = self._mcaTheory.getConfiguration()
        if xmin is None:
            xmin = config['fit']['xmin']
        if xmax is None:
            xmax = config['fit']['xmax']
        toReconfigure = False

        # if concentrations and use times, it needs to be reconfigured
        # without using times and correct later on. If the concentrations
        # are to be calculated from internal standard there is no need to
        # raise an exception either.
        autotime = 0
        liveTimeFactor = 1.0
        if not concentrations:
            # ignore any time information to prevent unnecessary errors when
            # setting the fitting data whithout the time information
            if config['concentrations'].get("useautotime", 0):
                config['concentrations']["useautotime"] = 0
                toReconfigure = True
        elif config["concentrations"]["usematrix"]:
            if config['concentrations'].get("useautotime", 0):
                config['concentrations']["useautotime"] = 0
                toReconfigure = True
        else:
            # we are calculating concentrations from fundamental parameters
            autotime = config['concentrations'].get("useautotime", 0)
            nSpectra = data.size // data.shape[mcaIndex]
            if autotime:
                if livetime is None:
                    txt = "Automatic time requested but no time information provided"
                    raise RuntimeError(txt)
                elif numpy.isscalar(livetime):
                    liveTimeFactor = \
                        float(config['concentrations']["time"]) / livetime
                elif livetime.size == nSpectra:
                    liveTimeFactor = \
                        float(config['concentrations']["time"]) / livetime
                else:
                    raise RuntimeError( \
                        "Number of live times not equal number of spectra")
                config['concentrations']["useautotime"] = 0
                toReconfigure = True

        # use of strategies is not supported for the time being
        strategy = config['fit'].get('strategyflag', 0)
        if strategy:
            raise RuntimeError("Strategies are incompatible with fast fit")

        # background
        if config['fit']['stripflag']:
            if config['fit']['stripalgorithm'] == 1:
                _logger.debug("SNIP")
            else:
                raise RuntimeError("Please use the faster SNIP background")

        if weight is None:
            # dictated by the file
            weight = config['fit']['fitweight']
            if weight:
                # individual pixel weights (slow)
                weightPolicy = 2
            else:
                # No weight
                weightPolicy = 0
        elif weight == 1:
            # use average weight from the sum spectrum
            weightPolicy = 1
            if not config['fit']['fitweight']:
                 config['fit']['fitweight'] = 1
                 toReconfigure = True
        elif weight == 2:
           # individual pixel weights (slow)
            weightPolicy = 2
            if not config['fit']['fitweight']:
                 config['fit']['fitweight'] = 1
                 toReconfigure = True
            weight = 1
        else:
            # No weight
            weightPolicy = 0
            if config['fit']['fitweight']:
                 config['fit']['fitweight'] = 0
                 toReconfigure = True
            weight = 0

        if not config['fit']['linearfitflag']:
            #make sure we force a linear fit
            config['fit']['linearfitflag'] = 1
            toReconfigure = True

        if toReconfigure:
            # we must configure again the fit
            self._mcaTheory.setConfiguration(config)

        if len(data.shape) != 3:
            txt = "For the time being only three dimensional arrays supported"
            raise IndexError(txt)
        elif mcaIndex not in [-1, 2]:
            txt = "For the time being only mca arrays supported"
            raise IndexError(txt)
        else:
            # if the cumulated spectrum is present it should be better
            nRows = data.shape[0]
            nColumns = data.shape[1]
            nPixels =  nRows * nColumns
            if ysum is not None:
                firstSpectrum = ysum
            elif weightPolicy == 1:
                # we need to calculate the sum spectrum to derive the uncertainties
                totalSpectra = data.shape[0] * data.shape[1]
                jStep = min(5000, data.shape[1])
                ysum = numpy.zeros((data.shape[mcaIndex],), numpy.float)
                for i in range(0, data.shape[0]):
                    if i == 0:
                        chunk = numpy.zeros((data.shape[0], jStep), numpy.float)
                    jStart = 0
                    while jStart < data.shape[1]:
                        jEnd = min(jStart + jStep, data.shape[1])
                        ysum += data[i, jStart:jEnd, :].sum(axis=0, dtype=numpy.float)
                        jStart = jEnd
                firstSpectrum = ysum
            elif not concentrations:
                # just one spectrum is enough for the setup
                firstSpectrum = data[0, 0, :]
            else:
                firstSpectrum = data[0, :, :].sum(axis=0, dtype=numpy.float)

        # make sure we calculate the matrix of the contributions
        self._mcaTheory.enableOptimizedLinearFit()

        # initialize the fit
        # print("xmin = ", xmin)
        # print("xmax = ", xmax)
        # print("firstShape = ", firstSpectrum.shape)
        self._mcaTheory.setData(x=x, y=firstSpectrum, xmin=xmin, xmax=xmax)

        # and initialize the derivatives
        self._mcaTheory.estimate()

        # now we can get the derivatives respect to the free parameters
        # These are the "derivatives" respect to the peaks
        # linearMatrix = self._mcaTheory.linearMatrix

        # but we are still missing the derivatives from the background
        nFree = 0
        freeNames = []
        nFreeBackgroundParameters = 0
        for i, param in enumerate(self._mcaTheory.PARAMETERS):
            if self._mcaTheory.codes[0][i] != ClassMcaTheory.Gefit.CFIXED:
                nFree += 1
                freeNames.append(param)
                if i < self._mcaTheory.NGLOBAL:
                    nFreeBackgroundParameters += 1
        if nFree == 0:
            txt = "No free parameters to be fitted!\n"
            txt += "No peaks inside fitting region?"
            raise ValueError(txt)

        #build the matrix of derivatives
        derivatives = None
        idx = 0
        for i, param in enumerate(self._mcaTheory.PARAMETERS):
            if self._mcaTheory.codes[0][i] == ClassMcaTheory.Gefit.CFIXED:
                continue
            deriv= self._mcaTheory.linearMcaTheoryDerivative(self._mcaTheory.parameters,
                                                             i,
                                                             self._mcaTheory.xdata)
            deriv.shape = -1
            if derivatives is None:
                derivatives = numpy.zeros((deriv.shape[0], nFree), numpy.float)
            derivatives[:, idx] = deriv
            idx += 1


        #loop for anchors
        xdata = self._mcaTheory.xdata

        if config['fit']['stripflag']:
            anchorslist = []
            if config['fit']['stripanchorsflag']:
                if config['fit']['stripanchorslist'] is not None:
                    ravelled = numpy.ravel(xdata)
                    for channel in config['fit']['stripanchorslist']:
                        if channel <= ravelled[0]:continue
                        index = numpy.nonzero(ravelled >= channel)[0]
                        if len(index):
                            index = min(index)
                            if index > 0:
                                anchorslist.append(index)
            if len(anchorslist) == 0:
                anchorlist = [0, self._mcaTheory.ydata.size - 1]
            anchorslist.sort()

        # find the indices to be used for selecting the appropriate data
        # if the original x data were not ordered we have a problem
        # TODO: check for original ordering.
        if x is None:
            # we have an enumerated channels axis
            iXMin = xdata[0]
            iXMax = xdata[-1]
        else:
            iXMin = numpy.nonzero(x <= xdata[0])[0][-1]
            iXMax = numpy.nonzero(x >= xdata[-1])[0][0]
        # numpy 1.11.0 returns an array on previous expression
        # and then complains about a future deprecation warning
        # because of using an array and not an scalar in the selection
        if hasattr(iXMin, "shape"):
            if len(iXMin.shape):
                iXMin = iXMin[0]
        if hasattr(iXMax, "shape"):
            if len(iXMax.shape):
                iXMax = iXMax[0]

        dummySpectrum = firstSpectrum[iXMin:iXMax+1].reshape(-1, 1)
        # print("dummy = ", dummySpectrum.shape)

        # allocate the output buffer
        results = numpy.zeros((nFree, nRows, nColumns), numpy.float32)
        uncertainties = numpy.zeros((nFree, nRows, nColumns), numpy.float32)

        #perform the initial fit
        _logger.debug("Configuration elapsed = %f", time.time() - t0)
        t0 = time.time()
        totalSpectra = data.shape[0] * data.shape[1]
        jStep = min(100, data.shape[1])
        if weightPolicy == 2:
            SVD = False
            sigma_b = None
        elif weightPolicy == 1:
            # the +1 is to prevent misbehavior due to weights less than 1.0
            sigma_b = 1 + numpy.sqrt(dummySpectrum)/nPixels
            SVD = True
        else:
            SVD = True
            sigma_b = None
        last_svd = None
        for i in range(0, data.shape[0]):
            #print(i)
            #chunks of nColumns spectra
            if i == 0:
                chunk = numpy.zeros((dummySpectrum.shape[0],
                                     jStep),
                                     numpy.float)
            jStart = 0
            while jStart < data.shape[1]:
                jEnd = min(jStart + jStep, data.shape[1])
                chunk[:,:(jEnd - jStart)] = data[i, jStart:jEnd, iXMin:iXMax+1].T
                if config['fit']['stripflag']:
                    for k in range(jStep):
                        # obtain the smoothed spectrum
                        background=SpecfitFuns.SavitskyGolay(chunk[:, k],
                                                config['fit']['stripfilterwidth'])
                        lastAnchor = 0
                        for anchor in anchorslist:
                            if (anchor > lastAnchor) and (anchor < background.size):
                                background[lastAnchor:anchor] =\
                                        SpecfitFuns.snip1d(background[lastAnchor:anchor],
                                                           config['fit']['snipwidth'],
                                                           0)
                                lastAnchor = anchor
                        if lastAnchor < background.size:
                            background[lastAnchor:] =\
                                    SpecfitFuns.snip1d(background[lastAnchor:],
                                                       config['fit']['snipwidth'],
                                                       0)
                        chunk[:, k] -= background

                # perform the multiple fit to all the spectra in the chunk
                #print("SHAPES")
                #print(derivatives.shape)
                #print(chunk[:,:(jEnd - jStart)].shape)
                ddict=lstsq(derivatives, chunk[:,:(jEnd - jStart)],
                            sigma_b=sigma_b,
                            weight=weight,
                            digested_output=True,
                            svd=SVD,
                            last_svd=last_svd)
                last_svd = ddict.get('svd', None)
                parameters = ddict['parameters']
                results[:, i, jStart:jEnd] = parameters
                uncertainties[:, i, jStart:jEnd] = ddict['uncertainties']
                jStart = jEnd
        t = time.time() - t0
        _logger.debug("First fit elapsed = %f", t)
        if t > 0.:
            _logger.debug("Spectra per second = %f",
                          data.shape[0]*data.shape[1]/float(t))
        t0 = time.time()

        # cleanup zeros
        # start with the parameter with the largest amount of negative values
        if refit:
            negativePresent = True
        else:
            negativePresent = False
        nFits = 0
        while negativePresent:
            zeroList = []
            #totalNegative = 0
            for i in range(nFree):
                #we have to skip the background parameters
                if i >= nFreeBackgroundParameters:
                    t = results[i] < 0
                    tsum = t.sum()
                    if tsum > 0:
                        zeroList.append((tsum, i, t))
                    #totalNegative += tsum
            #print("totalNegative = ", totalNegative)

            if len(zeroList) == 0:
                negativePresent = False
                continue

            if nFits > (2 * (nFree - nFreeBackgroundParameters)):
                # we are probably in an endless loop
                # force negative pixels
                for item in zeroList:
                    i = item[1]
                    badMask = item[2]
                    results[i][badMask] = 0.0
                    _logger.warning("WARNING: %d pixels of parameter %s forced to zero",
                                    item[0], freeNames[i])
                continue
            zeroList.sort()
            zeroList.reverse()

            badParameters = []
            badParameters.append(zeroList[0][1])
            badMask = zeroList[0][2]
            if 1:
                # prevent and endless loop if two or more parameters have common pixels where they are
                # negative and one of them remains negative when forcing other one to zero
                for i, item in enumerate(zeroList):
                    if item[1] not in badParameters:
                        if item[0] > 0:
                            #check if they have common negative pixels
                            t = badMask * item[-1]
                            if t.sum() > 0:
                                badParameters.append(item[1])
                                badMask = t
            if badMask.sum() < (0.0025 * nPixels):
                # fit not worth
                for i in badParameters:
                    results[i][badMask] = 0.0
                    uncertainties[i][badMask] = 0.0
                    _logger.debug("WARNING: %d pixels of parameter %s set to zero",
                                  badMask.sum(), freeNames[i])
            else:
                _logger.debug("Number of secondary fits = %d", nFits + 1)
                nFits += 1
                A = derivatives[:, [i for i in range(nFree) if i not in badParameters]]
                #assume we'll not have too many spectra
                if data.dtype not in [numpy.float32, numpy.float64]:
                    if data.itemsize < 5:
                        data_dtype = numpy.float32
                    else:
                        data_dtype = numpy.floa64
                else:
                    data_dtype = data.dtype
                try:
                    if data.dtype != data_dtype:
                        spectra = numpy.zeros((int(badMask.sum()), 1 + iXMax - iXMin),
                                          data_dtype)
                        spectra[:] = data[badMask, iXMin:iXMax+1]
                    else:
                        spectra = data[badMask, iXMin:iXMax+1]
                    spectra.shape = badMask.sum(), -1
                except TypeError:
                    # in case of dynamic arrays, two dimensional indices are not
                    # supported by h5py
                    spectra = numpy.zeros((int(badMask.sum()), 1 + iXMax - iXMin),
                                          data_dtype)
                    selectedIndices = numpy.nonzero(badMask > 0)
                    tmpData = numpy.zeros((1, 1 + iXMax - iXMin), data_dtype)
                    oldDataRow = -1
                    j = 0
                    for i in range(len(selectedIndices[0])):
                        j = selectedIndices[0][i]
                        if j != oldDataRow:
                            tmpData = data[j]
                            olddataRow = j
                        spectra[i] = tmpData[selectedIndices[1][i], iXMin:iXMax+1]
                spectra = spectra.T
                #
                if config['fit']['stripflag']:
                    for k in range(spectra.shape[1]):
                        # obtain the smoothed spectrum
                        background=SpecfitFuns.SavitskyGolay(spectra[:, k],
                                                config['fit']['stripfilterwidth'])
                        lastAnchor = 0
                        for anchor in anchorslist:
                            if (anchor > lastAnchor) and (anchor < background.size):
                                background[lastAnchor:anchor] =\
                                        SpecfitFuns.snip1d(background[lastAnchor:anchor],
                                                           config['fit']['snipwidth'],
                                                           0)
                                lastAnchor = anchor
                        if lastAnchor < background.size:
                            background[lastAnchor:] =\
                                    SpecfitFuns.snip1d(background[lastAnchor:],
                                                       config['fit']['snipwidth'],
                                                       0)
                        spectra[:, k] -= background
                ddict = lstsq(A, spectra,
                              sigma_b=sigma_b,
                              weight=weight,
                              digested_output=True,
                              svd=SVD)
                idx = 0
                for i in range(nFree):
                    if i in badParameters:
                        results[i][badMask] = 0.0
                        uncertainties[i][badMask] = 0.0
                    else:
                        results[i][badMask] = ddict['parameters'][idx]
                        uncertainties[i][badMask] = ddict['uncertainties'][idx]
                        idx += 1

        if refit:
            t = time.time() - t0
            _logger.debug("Fit of negative peaks elapsed = %f", t)
            t0 = time.time()

        outputDict = {'parameters':results, 'uncertainties':uncertainties, 'names':freeNames}

        if concentrations:
            # check if an internal reference is used and if it is set to auto
            ####################################################
            # CONCENTRATIONS
            cTool = ConcentrationsTool.ConcentrationsTool()
            cToolConf = cTool.configure()
            cToolConf.update(config['concentrations'])

            fitFirstSpectrum = False
            if config['concentrations']['usematrix']:
                _logger.debug("USING MATRIX")
                if config['concentrations']['reference'].upper() == "AUTO":
                    fitFirstSpectrum = True
            elif autotime:
                # we have to calculate with the time in the configuration
                # and correct later on
                cToolConf["autotime"] = 0

            fitresult = {}
            if fitFirstSpectrum:
                # we have to fit the "reference" spectrum just to get the reference element
                mcafitresult = self._mcaTheory.startfit(digest=0, linear=True)
                # if one of the elements has zero area this cannot be made directly
                fitresult['result'] = self._mcaTheory.imagingDigestResult()
                fitresult['result']['config'] = config
                concentrationsResult, addInfo = cTool.processFitResult(config=cToolConf,
                                                    fitresult=fitresult,
                                                    elementsfrommatrix=False,
                                                    fluorates=self._mcaTheory._fluoRates,
                                                    addinfo=True)
                # and we have to make sure that all the areas are positive
                for group in fitresult['result']['groups']:
                    if fitresult['result'][group]['fitarea'] <= 0.0:
                        # give a tiny area
                        fitresult['result'][group]['fitarea'] = 1.0e-6
                config['concentrations']['reference'] = addInfo['ReferenceElement']
            else:
                fitresult['result'] = {}
                fitresult['result']['config'] = config
                fitresult['result']['groups'] = []
                idx = 0
                for i, param in enumerate(self._mcaTheory.PARAMETERS):
                    if self._mcaTheory.codes[0][i] == Gefit.CFIXED:
                        continue
                    if i < self._mcaTheory.NGLOBAL:
                        # background
                        pass
                    else:
                        fitresult['result']['groups'].append(param)
                        fitresult['result'][param] = {}
                        # we are just interested on the factor to be applied to the area to get the
                        # concentrations
                        fitresult['result'][param]['fitarea'] = 1.0
                        fitresult['result'][param]['sigmaarea'] = 1.0
                    idx += 1
            concentrationsResult, addInfo = cTool.processFitResult(config=cToolConf,
                                                    fitresult=fitresult,
                                                    elementsfrommatrix=False,
                                                    fluorates=self._mcaTheory._fluoRates,
                                                    addinfo=True)
            nValues = 1
            if len(concentrationsResult['layerlist']) > 1:
                nValues += len(concentrationsResult['layerlist'])
            nElements = len(list(concentrationsResult['mass fraction'].keys()))
            massFractions = numpy.zeros((nValues * nElements, nRows, nColumns),
                                        numpy.float32)


            referenceElement = addInfo['ReferenceElement']
            referenceTransitions = addInfo['ReferenceTransitions']
            _logger.debug("Reference <%s>  transition <%s>",
                          referenceElement, referenceTransitions)
            if referenceElement in ["", None, "None"]:
                _logger.debug("No reference")
                counter = 0
                for i, group in enumerate(fitresult['result']['groups']):
                    if group.lower().startswith("scatter"):
                        _logger.debug("skept %s", group)
                        continue
                    outputDict['names'].append("C(%s)" % group)
                    if counter == 0:
                        if hasattr(liveTimeFactor, "shape"):
                            liveTimeFactor.shape = results[nFreeBackgroundParameters+i].shape
                    massFractions[counter] = liveTimeFactor * \
                        results[nFreeBackgroundParameters+i] * \
                        (concentrationsResult['mass fraction'][group] / \
                         fitresult['result'][group]['fitarea'])
                    counter += 1
                    if len(concentrationsResult['layerlist']) > 1:
                        for layer in concentrationsResult['layerlist']:
                            outputDict['names'].append("C(%s)-%s" % (group, layer))
                            massFractions[counter] = liveTimeFactor * \
                                    results[nFreeBackgroundParameters+i] * \
                                    (concentrationsResult[layer]['mass fraction'][group] / \
                                     fitresult['result'][group]['fitarea'])
                            counter += 1
            else:
                _logger.debug("With reference")
                idx = None
                testGroup = referenceElement+ " " + referenceTransitions.split()[0]
                for i, group in enumerate(fitresult['result']['groups']):
                    if group == testGroup:
                        idx = i
                if idx is None:
                    raise ValueError("Invalid reference:  <%s> <%s>" %\
                                     (referenceElement, referenceTransitions))

                group = fitresult['result']['groups'][idx]
                referenceArea = fitresult['result'][group]['fitarea']
                referenceConcentrations = concentrationsResult['mass fraction'][group]
                goodIdx = results[nFreeBackgroundParameters+idx] > 0
                massFractions[idx] = referenceConcentrations
                counter = 0
                for i, group in enumerate(fitresult['result']['groups']):
                    if group.lower().startswith("scatter"):
                        _logger.debug("skept %s", group)
                        continue
                    outputDict['names'].append("C(%s)" % group)
                    goodI = results[nFreeBackgroundParameters+i] > 0
                    tmp = results[nFreeBackgroundParameters+idx][goodI]
                    massFractions[counter][goodI] = (results[nFreeBackgroundParameters+i][goodI]/(tmp + (tmp == 0))) *\
                                ((referenceArea/fitresult['result'][group]['fitarea']) *\
                                (concentrationsResult['mass fraction'][group]))
                    counter += 1
                    if len(concentrationsResult['layerlist']) > 1:
                        for layer in concentrationsResult['layerlist']:
                            outputDict['names'].append("C(%s)-%s" % (group, layer))
                            massFractions[counter][goodI] = (results[nFreeBackgroundParameters+i][goodI]/(tmp + (tmp == 0))) *\
                                ((referenceArea/fitresult['result'][group]['fitarea']) *\
                                (concentrationsResult[layer]['mass fraction'][group]))
                            counter += 1
            outputDict['concentrations'] = massFractions
            t = time.time() - t0
            _logger.debug("Calculation of concentrations elapsed = %f", t)
            ####################################################
        return outputDict

def getFileListFromPattern(pattern, begin, end, increment=None):
    if type(begin) == type(1):
        begin = [begin]
    if type(end) == type(1):
        end = [end]
    if len(begin) != len(end):
        raise ValueError(\
            "Begin list and end list do not have same length")
    if increment is None:
        increment = [1] * len(begin)
    elif type(increment) == type(1):
        increment = [increment]
    if len(increment) != len(begin):
        raise ValueError(\
            "Increment list and begin list do not have same length")
    fileList = []
    if len(begin) == 1:
        for j in range(begin[0], end[0] + increment[0], increment[0]):
            fileList.append(pattern % (j))
    elif len(begin) == 2:
        for j in range(begin[0], end[0] + increment[0], increment[0]):
            for k in range(begin[1], end[1] + increment[1], increment[1]):
                fileList.append(pattern % (j, k))
    elif len(begin) == 3:
        raise ValueError("Cannot handle three indices yet.")
        for j in range(begin[0], end[0] + increment[0], increment[0]):
            for k in range(begin[1], end[1] + increment[1], increment[1]):
                for l in range(begin[2], end[2] + increment[2], increment[2]):
                    fileList.append(pattern % (j, k, l))
    else:
        raise ValueError("Cannot handle more than three indices.")
    return fileList


def save(result, outputDir, fileRoot=None, tif=False, csv=True):
    from PyMca5.PyMca import ArraySave
    if 'concentrations' in result:
        imageNames = result['names']
        images = numpy.concatenate((result['parameters'],
                                    result['concentrations']), axis=0)
    else:
        images = result['parameters']
        imageNames = result['names']
    nImages = images.shape[0]

    if fileRoot in [None, ""]:
        fileRoot = "images"
    if not os.path.exists(outputDir):
        os.mkdir(outputDir)
    imagesDir = os.path.join(outputDir, "IMAGES")
    if not os.path.exists(imagesDir):
        os.mkdir(imagesDir)
    imageList = [None] * (nImages + len(result['uncertainties']))
    fileImageNames = [None] * (nImages + len(result['uncertainties']))
    j = 0
    for i in range(nImages):
        name = imageNames[i].replace(" ","-")
        fileImageNames[j] = name
        imageList[j] = images[i]
        j += 1
        if not imageNames[i].startswith("C("):
            # fitted parameter
            fileImageNames[j] = "s(%s)" % name
            imageList[j] = result['uncertainties'][i]
            j += 1
    fileName = os.path.join(imagesDir, fileRoot+".edf")
    ArraySave.save2DArrayListAsEDF(imageList, fileName,
                                    labels=fileImageNames)
    if csv:
        ext = '.csv'
    else:
        ext = '.dat'
    fileName = os.path.join(imagesDir, fileRoot+ext)
    ArraySave.save2DArrayListAsASCII(imageList, fileName, csv=csv,
                                     labels=fileImageNames)
    if tif:
        i = 0
        for i in range(len(fileImageNames)):
            label = fileImageNames[i]
            if label.startswith("s("):
                continue
            elif label.startswith("C("):
                mass_fraction = "_" + label[2:-1] + "_mass_fraction"
            else:
                mass_fraction  = "_" + label
            fileName = os.path.join(imagesDir,
                                    fileRoot + mass_fraction + ".tif")
            ArraySave.save2DArrayListAsMonochromaticTiff([imageList[i]],
                                    fileName,
                                    labels=[label],
                                    dtype=numpy.float32)


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    _logger.setLevel(logging.DEBUG)
    import glob
    import sys
    import getopt
    from PyMca5.PyMca import EDFStack
    options     = ''
    longoptions = ['cfg=', 'outdir=', 'concentrations=', 'weight=', 'refit=',
                   'tif=', #'listfile=',
                   'filepattern=', 'begin=', 'end=', 'increment=',
                   "outfileroot="]
    try:
        opts, args = getopt.getopt(
                     sys.argv[1:],
                     options,
                     longoptions)
    except:
        print(sys.exc_info()[1])
        sys.exit(1)
    fileRoot = ""
    outputDir = None
    refit = None
    fileindex = 0
    filepattern=None
    begin = None
    end = None
    increment=None
    backend=None
    weight=0
    tif=0
    concentrations=0
    for opt, arg in opts:
        if opt in ('--cfg'):
            configurationFile = arg
        elif opt in '--begin':
            if "," in arg:
                begin = [int(x) for x in arg.split(",")]
            else:
                begin = [int(arg)]
        elif opt in '--end':
            if "," in arg:
                end = [int(x) for x in arg.split(",")]
            else:
                end = int(arg)
        elif opt in '--increment':
            if "," in arg:
                increment = [int(x) for x in arg.split(",")]
            else:
                increment = int(arg)
        elif opt in '--filepattern':
            filepattern = arg.replace('"', '')
            filepattern = filepattern.replace("'", "")
        elif opt in '--outdir':
            outputDir = arg
        elif opt in '--weight':
            weight = int(arg)
        elif opt in '--refit':
            refit = int(arg)
        elif opt in '--concentrations':
            concentrations = int(arg)
        elif opt in '--outfileroot':
            fileRoot = arg
        elif opt in ['--tif', '--tiff']:
            tif = int(arg)
    if filepattern is not None:
        if (begin is None) or (end is None):
            raise ValueError(\
                "A file pattern needs at least a set of begin and end indices")
    if filepattern is not None:
        fileList = getFileListFromPattern(filepattern, begin, end, increment=increment)
    else:
        fileList = args
    if refit is None:
        refit = 0
        print("WARNING: --refit=%d taken as default" % refit)
    if len(fileList):
        if (not os.path.exists(fileList[0])) and \
           os.path.exists(fileList[0].split("::")[0]):
            # odo convention to get a dataset form an HDF5
            fname, dataPath = fileList[0].split("::")
            # compared to the ROI imaging tool, this way of reading puts data
            # into memory while with the ROI imaging tool, there is a check.
            if 0:
                import h5py
                h5 = h5py.File(fname, "r")
                dataStack = h5[dataPath][:]
                h5.close()
            else:
                from PyMca5.PyMcaIO import HDF5Stack1D
                # this way reads information associated to the dataset (if present)
                if dataPath.startswith("/"):
                    pathItems = dataPath[1:].split("/")
                else:
                    pathItems = dataPath.split("/")
                if len(pathItems) > 1:
                    scanlist = ["/" + pathItems[0]]
                    selection = {"y":"/" + "/".join(pathItems[1:])}
                else:
                    selection = {"y":dataPath}
                    scanlist = None
                print(selection)
                print("scanlist = ", scanlist)
                dataStack = HDF5Stack1D.HDF5Stack1D([fname],
                                                    selection,
                                                    scanlist=scanlist)
        else:
            dataStack = EDFStack.EDFStack(fileList, dtype=numpy.float32)
    else:
        print("OPTIONS:", longoptions)
        sys.exit(0)
    if outputDir is None:
        print("RESULTS WILL NOT BE SAVED: No output directory specified")
    t0 = time.time()
    fastFit = FastXRFLinearFit()
    fastFit.setFitConfigurationFile(configurationFile)
    print("Main configuring Elapsed = % s " % (time.time() - t0))
    result = fastFit.fitMultipleSpectra(y=dataStack,
                                         weight=weight,
                                         refit=refit,
                                         concentrations=concentrations)
    print("Total Elapsed = % s " % (time.time() - t0))
    if outputDir is not None:
        save(result, outputDir, fileRoot=fileRoot, tif=False)