summaryrefslogtreecommitdiff
path: root/PyMca5/PyMcaPlugins/MultipleScanToMeshPlugin.py
blob: 7da49c2b1da5e6f43ad6c9a26bed151b009c004c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#/*##########################################################################
# Copyright (C) 2004-2016 M. Rovezzi, V.A. Sole European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "Mauro Rovezzi - ID26, V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import sys
import os
import numpy
from matplotlib.mlab import griddata

from PyMca5 import Plugin1DBase
from PyMca5.PyMcaGui import MaskImageWidget
from PyMca5.PyMcaGui import PyMcaQt as qt

DEBUG = 0

class MultipleScanToMeshPlugin(Plugin1DBase.Plugin1DBase):
    def __init__(self, plotWindow, **kw):
        Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw)
        self.methodDict = {}
        self.methodDict['Show RIXS Image'] = [self._rixsID26,
                                              "Show curves as RIXS image",
                                              None]

        self._rixsWidget = None

    #Methods to be implemented by the plugin
    def getMethods(self, plottype=None):
        """
        A list with the NAMES  associated to the callable methods
        that are applicable to the specified plot.

        Plot type can be "SCAN", "MCA", None, ...
        """
        names = list(self.methodDict.keys())
        names.sort()
        return names

    def getMethodToolTip(self, name):
        """
        Returns the help associated to the particular method name or None.
        """
        return self.methodDict[name][1]

    def getMethodPixmap(self, name):
        """
        Returns the pixmap associated to the particular method name or None.
        """
        return self.methodDict[name][2]

    def applyMethod(self, name):
        """
        The plugin is asked to apply the method associated to name.
        """
        if DEBUG:
                self.methodDict[name][0]()
        else:
            try:
                self.methodDict[name][0]()
            except:
                print(sys.exc_info())
                raise

    def _rixsID26(self):
        allCurves = self.getAllCurves()

        nCurves = len(allCurves)
        if  nCurves < 2:
            msg = "ID26 RIXS scans are built combining several single scans"
            raise ValueError(msg)

        self._xLabel = self.getGraphXLabel()
        self._yLabel = self.getGraphYLabel()

        if self._xLabel not in ["energy", "Spec.Energy", "arr_hdh_ene", "Mono.Energy"]:
            msg = "X axis does not correspond to a BM20 or ID26 RIXS scan"
            raise ValueError(msg)

        motorNames = allCurves[0][3]["MotorNames"]
        if self._xLabel == "Spec.Energy":
            # ID26
            fixedMotorMne = "Mono.Energy"
        elif (self._xLabel == "energy") and ("xes_en" in motorNames):
            # BM20 case
            fixedMotorMne = "xes_en"
        elif "Spec.Energy" in motorNames:
            # ID26
            fixedMotorMne = "Spec.Energy"
        else:
            # TODO: Show a combobox to allow the selection of the "motor"
            msg = "Cannot automatically recognize motor mnemomnic to be used"
            raise ValueError(msg)
        fixedMotorIndex = allCurves[0][3]["MotorNames"].index(fixedMotorMne)


        #get the min and max values of the curves
        if fixedMotorMne == "Mono.Energy":
            info = allCurves[0][3]
            xMin = info["MotorValues"][fixedMotorIndex]
            xMax = xMin
            nData = 0
            i = 0
            minValues = numpy.zeros((nCurves,), numpy.float64)
            for curve in allCurves:
                info = curve[3]
                tmpMin = info['MotorValues'][fixedMotorIndex]
                tmpMax = info['MotorValues'][fixedMotorIndex]
                minValues[i] = tmpMin
                if tmpMin < xMin:
                    xMin = tmpMin
                if tmpMax > xMax:
                    xMax =tmpMax
                nData += len(curve[0])
                i += 1
        else:
            xMin = allCurves[0][0][0] # ID26 data are already ordered
            xMax = allCurves[0][0][-1]

            minValues = numpy.zeros((nCurves,), numpy.float64)
            minValues[0] = xMin
            nData = len(allCurves[0][0])
            i = 0
            for curve in allCurves[1:]:
                i += 1
                tmpMin = curve[0][0]
                tmpMax = curve[0][-1]
                minValues[i] = tmpMin
                if tmpMin < xMin:
                    xMin = tmpMin
                if tmpMax > xMax:
                    xMax =tmpMax
                nData += len(curve[0])

        #sort the curves
        orderIndex = minValues.argsort()

        #print "ORDER INDEX = ", orderIndex
        # express data in eV
        if (xMax - xMin) < 5.0 :
            # it seems data need to be multiplied
            factor = 1000.
        else:
            factor = 1.0

        motor2Values = numpy.zeros((nCurves,), numpy.float64)
        xData = numpy.zeros((nData,), numpy.float32)
        yData = numpy.zeros((nData,), numpy.float32)
        zData = numpy.zeros((nData,), numpy.float32)
        start = 0
        for i in range(nCurves):
            idx = orderIndex[i]
            curve = allCurves[idx]
            info = curve[3]
            nPoints = max(curve[0].shape)
            end = start + nPoints
            x = curve[0]
            z = curve[1]
            x.shape = -1
            z.shape = -1
            if fixedMotorMne == "Mono.Energy":
                xData[start:end] = info["MotorValues"][fixedMotorIndex] * factor
                yData[start:end] = x * factor
            else:
                xData[start:end] = x * factor
                yData[start:end] = info["MotorValues"][fixedMotorIndex] * factor
            zData[start:end] = z
            start = end

        # construct the grid in steps of eStep eV
        eStep = 0.05
        n = (xMax - xMin) * (factor / eStep)
        grid0 = numpy.linspace(xMin * factor, xMax * factor, n)
        grid1 = numpy.linspace(yData.min(), yData.max(), n)

        # create the meshgrid
        xx, yy = numpy.meshgrid(grid0, grid1)

        if 0:
            # get the interpolated values
            try:
                zz = griddata(xData, yData, zData, xx, yy)
            except RuntimeError:
                zz = griddata(xData, yData, zData, xx, yy, interp='linear')

            # show them
            if self._rixsWidget is None:
                self._rixsWidget = MaskImageWidget.MaskImageWidget(\
                                            imageicons=False,
                                            selection=False,
                                            profileselection=True,
                                            scanwindow=self)
            self._rixsWidget.setImageData(zz,
                                          xScale=(xx.min(), xx.max()),
                                          yScale=(yy.min(), yy.max()))
            self._rixsWidget.show()
        elif 1:
            etData = xData - yData
            grid3 = numpy.linspace(etData.min(), etData.max(), n)
            # create the meshgrid
            xx, yy = numpy.meshgrid(grid0, grid3)

            # get the interpolated values
            try:
                zz = griddata(xData, etData, zData, xx, yy)
            except RuntimeError:
                # Natural neighbor interpolation not always possible
                zz = griddata(xData, etData, zData, xx, yy, interp='linear')

            if self._rixsWidget is None:
                self._rixsWidget = MaskImageWidget.MaskImageWidget(\
                                            imageicons=False,
                                            selection=False,
                                            aspect=True,
                                            profileselection=True,
                                            scanwindow=self)
                self._rixsWidget.setLineProjectionMode('X')
            #actualMax = zData.max()
            #actualMin = zData.min()
            #zz = numpy.where(numpy.isfinite(zz), zz, actualMax)
            shape = zz.shape
            xScale = (xx.min(), (xx.max() - xx.min())/float(zz.shape[1]))
            yScale = (yy.min(), (yy.max() - yy.min())/float(zz.shape[0]))
            self._rixsWidget.setImageData(zz,
                                          xScale=xScale,
                                          yScale=yScale)
            self._rixsWidget.setXLabel("Incident Energy (eV)")
            self._rixsWidget.setYLabel("Energy Transfer (eV)")
            self._rixsWidget.show()
        return

MENU_TEXT = "MultipleScanToMeshPlugin"
def getPlugin1DInstance(plotWindow, **kw):
    ob = MultipleScanToMeshPlugin(plotWindow)
    return ob

if __name__ == "__main__":
    from PyMca5.PyMcaGraph import Plot
    app = qt.QApplication([])
    #w = ConfigurationWidget()
    #w.exec_()
    #sys.exit(0)

    DEBUG = 1
    x = numpy.arange(100.)
    y = x * x
    plot = Plot.Plot()
    plot.addCurve(x, y, "dummy")
    plot.addCurve(x+100, -x*x)
    plugin = getPlugin1DInstance(plot)
    for method in plugin.getMethods():
        print(method, ":", plugin.getMethodToolTip(method))
    plugin.applyMethod(plugin.getMethods()[0])
    curves = plugin.getAllCurves()
    for curve in curves:
        print(curve[2])
    print("LIMITS = ", plugin.getGraphYLimits())