summaryrefslogtreecommitdiff
path: root/src/ChezScheme/s/x86_64.ss
blob: 84904c2d79e18427c6d0f84be113fd9848e1b664 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
;;; x86_64.ss
;;; Copyright 1984-2017 Cisco Systems, Inc.
;;; 
;;; Licensed under the Apache License, Version 2.0 (the "License");
;;; you may not use this file except in compliance with the License.
;;; You may obtain a copy of the License at
;;; 
;;; http://www.apache.org/licenses/LICENSE-2.0
;;; 
;;; Unless required by applicable law or agreed to in writing, software
;;; distributed under the License is distributed on an "AS IS" BASIS,
;;; WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
;;; See the License for the specific language governing permissions and
;;; limitations under the License.

;;; SECTION 1: registers
(if-feature windows
  (define-registers
    (reserved
      [%tc  %r14           #t 14 uptr]
      [%sfp %r13           #t 13 uptr]
      [%ap  %rdi           #t  7 uptr]
      #;[%esp]
      #;[%eap]
      #;[%trap])
    (allocable
      [%ac0 %rbp           #t  5 uptr]
      [%xp  %r12           #t 12 uptr]
      [%ts  %rax %Cretval  #f  0 uptr]
      [%td  %rbx           #t  3 uptr]
      [%ac1 %r10 %deact    #f 10 uptr]
      [%yp  %r11           #f 11 uptr]
      [%cp  %r15           #t 15 uptr]
      [#;%ret %rsi         #t  6 uptr]
      [     %rdx %Carg2    #f  2 uptr]
      [     %r8  %Carg3    #f  8 uptr]
      [     %r9  %Carg4    #f  9 uptr]
      [     %rcx %Carg1    #f  1 uptr] ; last to avoid use as a Scheme argument
      [%fp1                #f  4 fp]
      [%fp2                #f  5 fp]
      [%fp3                #t  6 fp]
      [%fp4                #t  7 fp]
      [%fp5                #t  8 fp]
      [%fp6                #t  9 fp]
      [%fp7                #t  10 fp]
      [%fp8                #t  11 fp])
    (machine-dependent
      [%Cfparg1 %Cfpretval #f  0 fp]  ; xmm 0-5 are caller-save
      [%Cfparg2            #f  1 fp]  ; xmm 6-15 are callee-save
      [%Cfparg3            #f  2 fp]
      [%Cfparg4            #f  3 fp]
      [%sp                 #t  4 uptr]))
  (define-registers
    (reserved
      [%tc  %r14           #t 14 uptr]
      [%sfp %r13           #t 13 uptr]
      [%ap  %r9  %Carg6    #f  9 uptr]
      #;[%esp]
      #;[%eap]
      #;[%trap])
    (allocable
      [%ac0 %rbp           #t  5 uptr]
      [%xp  %r12           #t 12 uptr]
      [%ts  %rax %Cretval  #f  0 uptr]
      [%td  %rbx           #t  3 uptr]
      [%ac1 %r10 %deact    #f 10 uptr]
      [%yp  %r11           #f 11 uptr]
      [%cp  %r15           #t 15 uptr]
      [#;%ret %r8  %Carg5  #f  8 uptr]
      [     %rdi %Carg1    #f  7 uptr]
      [     %rsi %Carg2    #f  6 uptr]
      [     %rdx %Carg3    #f  2 uptr]
      [     %rcx %Carg4    #f  1 uptr]
      [%fp1                #f  8 fp]
      [%fp2                #f  9 fp]
      [%fp3                #f  10 fp]
      [%fp4                #f  11 fp]
      [%fp5                #f  12 fp]
      [%fp6                #f  13 fp]
      [%fp7                #f  14 fp]
      [%fp8                #f  15 fp])
    (machine-dependent
      [%Cfparg1 %Cfpretval #f  0 fp] ; no FP registers are callee-save
      [%Cfparg2            #f  1 fp]
      [%Cfparg3            #f  2 fp]
      [%Cfparg4            #f  3 fp]
      [%Cfparg5            #f  4 fp]
      [%Cfparg6            #f  5 fp]
      [%Cfparg7            #f  6 fp]
      [%Cfparg8            #f  7 fp]
      [%sp                 #t  4 uptr])))

;;; SECTION 2: instructions
(module (md-handle-jump  ; also sets primitive handlers
         mem->mem
         fpmem->fpmem
         coercible?
         coerce-opnd
         acsame-mem
         acsame-ur)
  (import asm-module)

  (define real-imm32?
    (lambda (x)
      (nanopass-case (L15c Triv) x
        [(immediate ,imm)
         (constant-case ptr-bits
           [(32) #t]                   ; allows 2^31...2^32-1 per immediate?
           [(64) (signed-32? imm)])]   ; 2^31...2^32-1 aren't 32-bit values on 64-bit machines
        [else #f])))

  (define negatable-real-imm32?
    (lambda (x)
      (nanopass-case (L15c Triv) x
        [(immediate ,imm) (<= #x-7FFFFFFF imm #x7FFFFFFF)]
        [else #f])))

  (define mref->mref
    (lambda (a k)
      (define return
        (lambda (x0 x1 imm type)
          (k (with-output-language (L15d Triv) `(mref ,x0 ,x1 ,imm ,type)))))
      (nanopass-case (L15c Triv) a
        [(mref ,lvalue0 ,lvalue1 ,imm ,type)
         (lvalue->ur lvalue0
           (lambda (x0)
             (lvalue->ur lvalue1
               (lambda (x1)
                 (if (signed-32? imm)
                     (return x0 x1 imm type)
                     (let ([u (make-tmp 'u)])
                       (seq
                         (build-set! ,u (immediate ,imm))
                         (if (eq? x1 %zero)
                             (return x0 u 0 type)
                             (seq
                               (build-set! ,u (asm ,null-info ,asm-add ,u ,x1))
                               (return x0 u 0 type))))))))))])))

  (define mem->mem
    (lambda (a k)
      (cond
        [(literal@? a)
         (let ([u (make-tmp 'u)])
           (seq
             (build-set! ,u ,(literal@->literal a))
             (k (with-output-language (L15d Lvalue) `(mref ,u ,%zero 0 ptr)))))]
        [else (mref->mref a k)])))

  (define fpmem->fpmem mem->mem)

  ;; `define-instruction` code takes care of `ur` and `fpur`, to which
  ;; all type-compatible values must convert
  (define-syntax coercible?
    (syntax-rules ()
      [(_ ?a ?aty*)
       (let ([a ?a] [aty* ?aty*])
         (or (and (memq 'imm32 aty*) (imm32? a))
             (and (memq 'imm aty*) (imm? a))
             (and (memq 'zero aty*) (imm0? a))
             (and (memq 'real-imm32 aty*) (real-imm32? a))
             (and (memq 'negatable-real-imm32 aty*) (negatable-real-imm32? a))
             (and (memq 'mem aty*) (mem? a))
             (and (memq 'fpmem aty*) (fpmem? a))))]))

  ;; `define-instruction` doesn't try to cover `ur` and `fpur`
  (define-syntax coerce-opnd ; passes k something compatible with aty*
    (syntax-rules ()
      [(_ ?a ?aty* ?k)
       (let ([a ?a] [aty* ?aty*] [k ?k])
         (cond
           [(and (memq 'mem aty*) (mem? a)) (mem->mem a k)]
           [(and (memq 'fpmem aty*) (fpmem? a)) (mem->mem a k)]
           [(and (memq 'imm32 aty*) (imm32? a)) (k (imm->imm a))]
           [(and (memq 'imm aty*) (imm? a)) (k (imm->imm a))]
           [(and (memq 'zero aty*) (imm0? a)) (k (imm->imm a))]
           [(and (memq 'real-imm32 aty*) (real-imm32? a)) (k (imm->imm a))]
           [(and (memq 'negatable-real-imm32 aty*) (negatable-real-imm32? a)) (k (imm->imm a))]
           [(memq 'ur aty*)
            (cond
              [(ur? a) (k a)]
              [(imm? a)
               (let ([u (make-tmp 'u)])
                 (seq
                   (build-set! ,u ,(imm->imm a))
                   (k u)))]
              [(mem? a)
               (mem->mem a
                 (lambda (a)
                   (let ([u (make-tmp 'u)])
                     (seq
                       (build-set! ,u ,a)
                       (k u)))))]
              [else (sorry! 'coerce-opnd "unexpected operand ~s" a)])]
           [(memq 'fpur aty*)
            (cond
              [(fpur? a) (k a)]
              [(fpmem? a)
               (mem->mem a
                 (lambda (a)
                   (let ([u (make-tmp 'u 'fp)])
                     (seq
                       (build-set! ,u ,a)
                       (k u)))))]
              [else
               (sorry! 'coerce-opnd "unexpected operand ~s" a)])]
           [else (sorry! 'coerce-opnd "cannot coerce ~s to ~s" a aty*)]))]))

  (define-who extract-imm
    (lambda (e)
      (nanopass-case (L15d Triv) e
        [(immediate ,imm) imm]
        [else (sorry! who "~s is not an immediate" e)])))

  (define md-handle-jump
    (lambda (t)
      (with-output-language (L15d Tail)
        (nanopass-case (L15c Triv) t
          [,lvalue
           (if (mem? lvalue)
               (mem->mem lvalue
                 (lambda (mref)
                   (values '() `(jump ,mref))))
               (values '() `(jump ,lvalue)))]
          [(literal ,info)
           (guard (and (not (info-literal-indirect? info))
                       (memq (info-literal-type info) '(entry library-code))))
           (values '() `(jump (literal ,info)))]
          [(label-ref ,l ,offset)
           (values '() `(jump (label-ref ,l ,offset)))]
          [else
           (let ([tmp (make-tmp 'utmp)])
             (values
               (with-output-language (L15d Effect) `(set! ,(make-live-info) ,tmp ,t))
               `(jump ,tmp)))]))))

  (define-syntax acsame-mem
    (lambda (stx)
      (syntax-case stx ()
        [(_ orig c cty (b bty* ...) k)
         #'(mem->mem c
             (lambda (c)
               (k c b)))]
        [(_ orig c cty k)
         #'(mem->mem c
                     (lambda (c)
                       (k c)))])))

  (define-syntax acsame-ur
    (lambda (stx)
      (syntax-case stx ()
        [(moi orig c cty (b bty* ...) k)
         #`(cond
             [(ur? c) (k c b)]
             [(lmem? c)
              (nanopass-case (L15c Triv) c
                [(mref ,lvalue0 ,lvalue1 ,imm ,type)
                 ;; TODO: does this use too many registers? (no longer special casing fv x0, x1 case)
                 (lvalue->ur
                  lvalue0
                  (lambda (x0)
                    (lvalue->ur
                     lvalue1
                     (lambda (x1)
                       (let ([u1 (make-tmp 'u)])
                         (if (signed-32? imm)
                             (seq
                              (build-set! ,u1 (mref ,x0 ,x1 ,imm ,type))
                              (k u1 b)
                              (build-set! (mref ,x0 ,x1 ,imm ,type) ,u1))
                             (let ([u2 (make-tmp 'u)])
                               (seq
                                (build-set! ,u2 ,imm)
                                (build-set! ,x1 (asm ,null-info ,asm-add ,x1 ,u2))
                                (build-set! ,u1 (mref ,x0 ,x1 0 ,type))
                                (k u1 b)
                                (build-set! (mref ,x0 ,x1 0 ,type) ,u1)))))))))])]
             ;; can't be literal@ since literals can't be lvalues
             [else (sorry! 'moi "unexpected operand ~s" c)])]
        [(moi orig c cty k)
         #`(if (ur? c)
               (k c)
               (mem->mem c
                         (lambda (c)
                           (let ([u (make-tmp 'u)])
                             (seq
                              (build-set! ,u ,c)
                              (k u)
                              (build-set! ,c ,u))))))])))

  ; x is not the same as z in any clause that follows a clause where (x z)
  ; and y is coercible to one of its types, however:
  ; WARNING: do not assume that if x isn't the same as z then x is independent
  ; of z, since x might be an mref with z as it's base or index

  (define-instruction value (-)
    [(op (z mem) (x z) (y ur imm32))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-sub ,x ,y))]
    [(op (z mem) (x zero) (y z))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-negate ,y))]
    [(op (z ur) (x z) (y ur mem imm32))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-sub ,x ,y))]
    [(op (z ur) (x zero) (y ur))
     (seq
       `(set! ,(make-live-info) ,z ,y)
       `(set! ,(make-live-info) ,z (asm ,info ,asm-negate ,z)))]
    [(op (z ur) (x ur mem imm32) (y z))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-sub-negate ,y ,x))]
    [(op (z ur) (x ur) (y negatable-real-imm32))
     (seq
       `(move-related ,z ,x)
       `(set! ,(make-live-info) ,z (asm ,info ,(asm-lea1 (- (extract-imm y))) ,x)))]
    [(op (z ur) (x mem imm32) (y ur))
     (let ([t (make-tmp 'u)])
       (seq
         `(set! ,(make-live-info) ,t ,y)
         `(set! ,(make-live-info) ,t (asm ,info ,asm-sub-negate ,t ,x))
         `(set! ,(make-live-info) ,z ,t)))]
    [(op (z ur) (x ur) (y ur mem imm32))
     (let ([t (make-tmp 'u)])
       (seq
         `(set! ,(make-live-info) ,t ,x)
         `(set! ,(make-live-info) ,t (asm ,info ,asm-sub ,t ,y))
         `(set! ,(make-live-info) ,z ,t)))])

  (define-instruction value (-/ovfl -/eq -/pos) ; must set condition codes, so can't use lea or sub-negate
    [(op (z mem) (x z) (y ur imm32))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-sub ,x ,y))]
    [(op (z mem) (x zero) (y z))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-negate ,y))]
    [(op (z ur) (x z) (y ur mem imm32))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-sub ,x ,y))]
    [(op (z ur) (x zero) (y ur))
     (seq
       `(set! ,(make-live-info) ,z ,y)
       `(set! ,(make-live-info) ,z (asm ,info ,asm-negate ,z)))]
    [(op (z ur) (x ur) (y ur mem imm32))
     (let ([t (make-tmp 'u)])
       (seq
         `(set! ,(make-live-info) ,t ,x)
         `(set! ,(make-live-info) ,t (asm ,info ,asm-sub ,t ,y))
         `(set! ,(make-live-info) ,z ,t)))])

  (define-instruction value (+)
    [(op (z mem) (x z) (y ur imm32))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-add ,z ,y))]
    [(op (z mem) (x ur imm32) (y z))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-add ,z ,x))]
    [(op (z ur) (x z) (y ur mem imm32))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-add ,z ,y))]
    [(op (z ur) (x ur mem imm32) (y z))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-add ,z ,x))]
    [(op (z ur) (x ur) (y real-imm32))
     (seq
       `(move-related ,z ,x)
       `(set! ,(make-live-info) ,z (asm ,info ,(asm-lea1 (extract-imm y)) ,x)))]
    [(op (z ur) (x real-imm32) (y ur))
     (seq
       `(move-related ,z ,y)
       `(set! ,(make-live-info) ,z (asm ,info ,(asm-lea1 (extract-imm x)) ,y)))]
    [(op (z ur) (x ur) (y mem imm32))
     (let ([t (make-tmp 'u)])
       (seq
         `(set! ,(make-live-info) ,t ,x)
         `(set! ,(make-live-info) ,t (asm ,info ,asm-add ,t ,y))
         `(set! ,(make-live-info) ,z ,t)))]
    [(op (z ur) (x mem imm32) (y ur))
     (let ([t (make-tmp 'u)])
       (seq
         `(set! ,(make-live-info) ,t ,y)
         `(set! ,(make-live-info) ,t (asm ,info ,asm-add ,t ,x))
         `(set! ,(make-live-info) ,z ,t)))]
    [(op (z ur) (x ur) (y ur))
     (seq
       `(move-related ,z ,y)
       `(move-related ,z ,x)
       `(set! ,(make-live-info) ,z (asm ,info ,(asm-lea2 0) ,x ,y)))])

  (define-instruction value (+/ovfl +/carry) ; must set condition codes, so can't use lea
    [(op (z mem) (x z) (y ur imm32))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-add ,z ,y))]
    [(op (z mem) (x ur imm32) (y z))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-add ,z ,x))]
    [(op (z ur) (x z) (y ur mem imm32))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-add ,z ,y))]
    [(op (z ur) (x ur mem imm32) (y z))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-add ,z ,x))]
    [(op (z ur) (x ur) (y mem imm32))
     (let ([t (make-tmp 'u)])
       (seq
         `(set! ,(make-live-info) ,t ,x)
         `(set! ,(make-live-info) ,t (asm ,info ,asm-add ,t ,y))
         `(set! ,(make-live-info) ,z ,t)))]
    [(op (z ur) (x mem imm32) (y ur))
     (let ([t (make-tmp 'u)])
       (seq
         `(set! ,(make-live-info) ,t ,y)
         `(set! ,(make-live-info) ,t (asm ,info ,asm-add ,t ,x))
         `(set! ,(make-live-info) ,z ,t)))]
    [(op (z ur) (x ur) (y ur))
     (let ([t (make-tmp 'u)])
       (seq
         `(set! ,(make-live-info) ,t ,x)
         `(set! ,(make-live-info) ,t (asm ,info ,asm-add ,t ,y))
         `(set! ,(make-live-info) ,z ,t)))])

  (define-instruction value (* */ovfl) ; */ovfl must set multiply-overflow flag on overflow
    [(op (z ur) (x z) (y ur mem))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-mul ,z ,y))]
    [(op (z ur) (x ur mem) (y z))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-mul ,z ,x))]
    [(op (z ur) (x ur mem) (y imm32))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-muli ,x ,y))]
    [(op (z ur) (x imm32) (y ur mem))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-muli ,y ,x))]
    [(op (z ur) (x ur) (y ur))
     (let ([t (make-tmp 'u)])
       (seq
         `(set! ,(make-live-info) ,t ,x)
         `(set! ,(make-live-info) ,t (asm ,info ,asm-mul ,t ,y))
         `(set! ,(make-live-info) ,z ,t)))])

  (define-instruction value (/)
    (definitions
      (define go
        (lambda (z x y)
          (let ([urax (make-precolored-unspillable 'urax %rax)]
                [urdx (make-precolored-unspillable 'urdx %rdx)])
            (with-output-language (L15d Effect)
              (seq
                `(set! ,(make-live-info) ,urax ,x)
                `(set! ,(make-live-info) ,urdx (asm ,null-info ,asm-sext-rax->rdx ,urax))
                `(set! ,(make-live-info) ,urax (asm ,null-info ,asm-div ,urax ,urdx ,y))
                `(set! ,(make-live-info) ,z ,urax)))))))
    [(op (z mem) (x ur mem imm) (y ur mem)) (go z x y)]
    [(op (z ur) (x ur mem imm) (y ur mem)) (go z x y)])

  (define-instruction value (logand logor logxor)
    [(op (z mem) (x z) (y ur imm32))
     `(set! ,(make-live-info) ,z (asm ,info ,(asm-addop op) ,z ,y))]
    [(op (z mem) (x ur imm32) (y z))
     `(set! ,(make-live-info) ,z (asm ,info ,(asm-addop op) ,z ,x))]
    [(op (z ur) (x z) (y ur mem imm32))
     `(set! ,(make-live-info) ,z (asm ,info ,(asm-addop op) ,z ,y))]
    [(op (z ur) (x ur mem imm32) (y z))
     `(set! ,(make-live-info) ,z (asm ,info ,(asm-addop op) ,z ,x))]
    [(op (z ur) (x ur) (y mem imm32))
     (let ([t (make-tmp 'u)])
       (seq
         `(set! ,(make-live-info) ,t ,x)
         `(set! ,(make-live-info) ,t (asm ,info ,(asm-addop op) ,t ,y))
         `(set! ,(make-live-info) ,z ,t)))]
    [(op (z ur) (x ur mem imm32) (y ur))
     (let ([t (make-tmp 'u)])
       (seq
         `(set! ,(make-live-info) ,t ,y)
         `(set! ,(make-live-info) ,t (asm ,info ,(asm-addop op) ,t ,x))
         `(set! ,(make-live-info) ,z ,t)))])

  (define-instruction value (lognot)
    [(op (z mem) (x z))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-lognot ,x))]
    [(op (z ur) (x z))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-lognot ,x))]
    [(op (z ur) (x ur mem imm32))
     (seq
        `(set! ,(make-live-info) ,z ,x)
        `(set! ,(make-live-info) ,z (asm ,info ,asm-lognot ,z)))])

  ; TODO: use lea for certain constant shifts when x != z
  (define-instruction value (sll srl sra)
    (definitions
      (define go
        (lambda (info op z x y)
          (let ([urcx (make-precolored-unspillable 'urcx %rcx)])
            (with-output-language (L15d Effect)
              (seq
                `(set! ,(make-live-info) ,urcx ,y)
                `(set! ,(make-live-info) ,z (asm ,info ,(asm-shiftop op) ,x ,urcx))))))))
    [(op (z mem) (x z) (y imm32))
     `(set! ,(make-live-info) ,z (asm ,info ,(asm-shiftop op) ,x ,y))]
    ;; NB: need to return in these cases?
    [(op (z mem) (x z) (y ur mem imm)) (go info op z x y)]
    [(op (z ur) (x z) (y imm32))
     `(set! ,(make-live-info) ,z (asm ,info ,(asm-shiftop op) ,x ,y))]
    [(op (z ur) (x z) (y ur mem imm)) (go info op z x y)]
    [(op (z ur) (x ur mem imm32) (y imm32))
     (let ([t (make-tmp 'u)])
       (seq
         `(set! ,(make-live-info) ,t ,x)
         `(set! ,(make-live-info) ,t (asm ,info ,(asm-shiftop op) ,t ,y))
         `(set! ,(make-live-info) ,z ,t)))]
    [(op (z ur) (x ur mem imm32) (y ur mem imm))
     (let ([t (make-tmp 'u)])
       (seq
         `(set! ,(make-live-info) ,t ,x)
         (go info op t t y)
         `(set! ,(make-live-info) ,z ,t)))])

  (define-instruction value popcount
    [(op (z ur) (x ur mem))
     ;; Direct POPCNT instruction variant, works with corresponding `popcount-op`:
     #;
     `(set! ,(make-live-info) ,z (asm ,info ,(asm-popcount (info-inline? info)) ,x))

     ;; Link-editable variant, for corresponding `popcount-op`:
     (let ([urcx (make-precolored-unspillable 'urcx %rcx)]
           [urax (make-precolored-unspillable 'urax %rax)])
       (seq
        `(set! ,(make-live-info) ,urcx ,x)
        `(set! ,(make-live-info) ,urax (asm ,info ,(asm-popcount (info-inline? info)) ,urcx))
        `(set! ,(make-live-info) ,z ,urax)))])

  (define-instruction value move
    [(op (z mem) (x ur imm32))
     `(set! ,(make-live-info) ,z ,x)]
    [(op (z ur) (x ur mem imm))
     ; NOTE: risc arch's will need to deal with limitations on imm
     `(set! ,(make-live-info) ,z ,x)])

  (define-instruction value lea1
    [(op (z ur) (x ur))
     (let ([offset (info-lea-offset info)])
       (if (signed-32? offset)
           `(set! ,(make-live-info) ,z (asm ,info ,(asm-lea1 (info-lea-offset info)) ,x))
           (let ([u (make-tmp 'u)])
             (seq
               `(set! ,(make-live-info) ,u (immediate ,offset))
               `(set! ,(make-live-info) ,z (asm ,info ,(asm-lea2 0) ,x ,u))))))])

  (define-instruction value lea2
    [(op (z ur) (x ur) (y ur))
     (let ([offset (info-lea-offset info)])
       (if (signed-32? offset)
           `(set! ,(make-live-info) ,z (asm ,info ,(asm-lea2 (info-lea-offset info)) ,x ,y))
           (let ([u (make-tmp 'u)])
             (seq
               `(set! ,(make-live-info) ,u (immediate ,offset))
               `(set! ,(make-live-info) ,u (asm ,null-info ,asm-add ,u ,y))
               `(set! ,(make-live-info) ,z (asm ,info ,(asm-lea2 0) ,x ,u))))))])

  (define-instruction value (sext8 sext16 sext32 zext8 zext16 zext32)
    [(op (z ur) (x ur mem)) `(set! ,(make-live-info) ,z (asm ,info ,(asm-move/extend op) ,x))])

  (define-instruction value (load)
    (definitions
      (define maybe-swap
        (lambda (info z expr)
          (with-output-language (L15d Effect)
            (if (info-load-swapped? info)
                (seq
                  expr
                  `(set! ,(make-live-info) ,z (asm ,info ,(asm-swap (info-load-type info)) ,z)))
                expr)))))
    [(op (z ur) (x ur) (y ur) (w imm32))
     (maybe-swap info z
       `(set! ,(make-live-info) ,z (asm ,info ,(asm-load (info-load-type info)) ,x ,y ,w)))]
    [(op (z ur) (x ur) (y ur) (w ur))
     (maybe-swap info z
       (if (eq? y %zero)
           `(set! ,(make-live-info) ,z (asm ,info ,(asm-load (info-load-type info)) ,x ,w (immediate 0)))
           (let ([u (make-tmp 'u)])
             (seq
               `(set! ,(make-live-info) ,u (asm ,null-info ,(asm-lea2 0) ,y ,w))
               `(set! ,(make-live-info) ,z (asm ,info ,(asm-load (info-load-type info)) ,x ,u (immediate 0)))))))])

  (define-instruction effect (store)
    (definitions
      (define maybe-swap
        (lambda (info w k)
          (with-output-language (L15d Effect)
            (if (info-load-swapped? info)
                (let ([u (make-tmp 'u)])
                  (seq
                    `(set! ,(make-live-info) ,u ,w)
                    `(set! ,(make-live-info) ,u (asm ,info ,(asm-swap (info-load-type info)) ,u))
                    (k u)))
                (k w))))))
    [(op (x ur) (y ur) (z imm32) (w ur real-imm32))
     (maybe-swap info w
       (lambda (w)
         `(asm ,info ,(asm-store (info-load-type info)) ,x ,y ,z ,w)))]
    [(op (x ur) (y ur) (z ur) (w ur real-imm32))
     (maybe-swap info w
       (lambda (w)
         (if (eq? y %zero)
             `(asm ,info ,(asm-store (info-load-type info)) ,x ,z (immediate 0) ,w)
             (let ([u (make-tmp 'u)])
               (seq
                 `(set! ,(make-live-info) ,u (asm ,null-info ,(asm-lea2 0) ,y ,z))
                 `(asm ,info ,(asm-store (info-load-type info)) ,x ,u (immediate 0) ,w))))))])

  (define-instruction value (load-single->double)
    [(op (x fpur) (y fpmem))
     `(set! ,(make-live-info) ,x (asm ,info ,(asm-fl-cvt 'single->double) ,y))])

  (define-instruction value (single->double double->single)
    [(op (x fpur) (y fpmem fpur))
     `(set! ,(make-live-info) ,x (asm ,info ,(asm-fl-cvt op) ,y))])

  (define-instruction effect (store-double->single)
    [(op (x fpmem) (y fpmem fpur))
     (let ([u (make-tmp 'u 'fp)])
       (seq
        `(set! ,(make-live-info) ,u (asm ,null-info ,(asm-fl-cvt 'double->single) ,y))
        `(asm ,info ,asm-store-single ,x ,u)))])

  (define-instruction effect (store-single)
    [(op (x fpmem) (y fpur))
     `(asm ,info ,asm-store-single ,x ,y)])

  (define-instruction value (load-single)
    [(op (x fpur) (y fpmem))
     `(set! ,(make-live-info) ,x (asm ,info ,asm-load-single ,y))])

  (define-instruction value (get-double)
    [(op (z ur) (y fpur))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-get-double ,y))])

  (define-instruction value (fpt)
    [(op (x fpur) (y ur)) `(set! ,(make-live-info) ,x (asm ,info ,asm-fpt ,y))])

  (define-instruction value (fpmove)
    [(op (x fpmem) (y fpur)) `(set! ,(make-live-info) ,x (asm ,info ,asm-fpmove ,y))]
    [(op (x fpur) (y fpmem)) `(set! ,(make-live-info) ,x (asm ,info ,asm-fpmove ,y))]
    [(op (x fpur) (y fpur)) `(set! ,(make-live-info) ,x ,y)])

  (define-instruction value (fpcastto)
    [(op (x mem) (y fpur)) `(set! ,(make-live-info) ,x (asm ,info ,asm-fpmove ,y))]
    [(op (x ur) (y fpmem)) `(set! ,(make-live-info) ,x (asm ,info ,asm-move ,y))]
    [(op (x ur) (y fpur)) `(set! ,(make-live-info) ,x (asm ,info ,asm-fpcast ,y))])

  (define-instruction value (fpcastfrom)
    [(op (x fpmem) (y ur)) `(set! ,(make-live-info) ,x (asm ,info ,asm-move ,y))]
    [(op (x fpur) (y mem)) `(set! ,(make-live-info) ,x (asm ,info ,asm-fpmove ,y))]
    [(op (x fpur) (y ur)) `(set! ,(make-live-info) ,x (asm ,info ,asm-fpcast ,y))])

  (define-instruction value (fp+ fp- fp* fp/)
    [(op (x fpur) (y fpur) (z fpmem fpur))
     (seq
      `(move-related ,x ,y)
      `(set! ,(make-live-info) ,x (asm ,info ,(asm-fpop-2 op) ,y ,z)))]
    [(op (x fpur) (y fpmem) (z fpmem fpur))
     `(set! ,(make-live-info) ,x (asm ,info ,(asm-fpop-2 op) ,y ,z))])

  (define-instruction value (fpsqrt)
    [(op (x fpur) (y fpmem fpur)) `(set! ,(make-live-info) ,x (asm ,info ,asm-fpsqrt ,y))])

  (define-instruction value (fpsingle)
    [(op (x fpur) (y fpmem fpur)) `(set! ,(make-live-info) ,x (asm ,info ,asm-fpsingle ,y))])

  (define-instruction effect inc-cc-counter
    [(op (x ur) (y imm32 ur) (z imm32 ur)) `(asm ,info ,asm-inc-cc-counter ,x ,y ,z)])

  (define-instruction effect inc-profile-counter 
    [(op (x ur mem) (y imm32 ur)) `(asm ,info ,asm-inc-profile-counter ,x ,y)])

  (define-instruction value (fptrunc)
    [(op (z ur) (x fpmem fpur)) `(set! ,(make-live-info) ,z (asm ,info ,asm-fptrunc ,x))])

  (define-instruction value get-tc
    [(op (z ur))
     ; always used with %rax as the lhs.  we take advantage of this to use z also
     ; as the jump temp (rax is assumed by linker's x86_64_set_jump)
     (safe-assert (eq? z %rax))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-get-tc))])

  (define-instruction value activate-thread
    [(op (z ur))
     (safe-assert (eq? z %rax)) ; see get-tc
     `(set! ,(make-live-info) ,z (asm ,info ,asm-activate-thread))])

  (define-instruction effect deactivate-thread
    [(op)
     `(asm ,info ,asm-deactivate-thread)])

  (define-instruction effect unactivate-thread
    [(op (x ur))
     (safe-assert (eq? x %Carg1))
     `(asm ,info ,asm-unactivate-thread ,x)])

  ; TODO: risc architectures will have to take info-asmlib-save-ra? into account
  (define-instruction value asmlibcall
    [(op (z ur))
     (let ([urax (make-precolored-unspillable 'urax %rax)]) ; rax is assumed by linker's x86_64_set_jump
       (seq
         `(set! ,(make-live-info) ,urax (asm ,null-info ,asm-kill))
         `(set! ,(make-live-info) ,z (asm ,info ,(asm-library-call (info-asmlib-libspec info)) ,urax ,(info-kill*-live*-live* info) ...))))])

  (define-instruction effect asmlibcall!
    [(op)
     (let ([urax (make-precolored-unspillable 'urax %rax)]) ; rax is assumed by linker's x86_64_set_jump
       (seq
         `(set! ,(make-live-info) ,urax (asm ,null-info ,asm-kill))
         `(asm ,info ,(asm-library-call (info-asmlib-libspec info)) ,urax ,(info-kill*-live*-live* info) ...)))])

  (safe-assert (reg-callee-save? %tc)) ; no need to save-restore
  (define-instruction effect (c-simple-call)
    [(op)
     (let ([urax (make-precolored-unspillable 'urax %rax)]) ; rax is assumed by linker's x86_64_set_jump
       (seq
         `(set! ,(make-live-info) ,urax (asm ,null-info ,asm-kill))
         `(asm ,info ,(asm-c-simple-call (info-c-simple-call-entry info)) ,urax)))])
  
  (define-instruction value pop
    [(op (z ur)) `(set! ,(make-live-info) ,z (asm ,info ,asm-pop))])

  (define-instruction pred (fp= fp< fp<=)
    [(op (x fpmem) (y fpur))
     (let ([info (make-info-condition-code op #t #f)]) ; NB: reversed? flag is assumed to be #t
       (values '() `(asm ,info ,(asm-fp-relop info) ,x ,y)))]
    [(op (x fpur) (y fpur))
     (let ([info (make-info-condition-code op #t #f)]) ; NB: reversed? flag is assumed to be #t
       (values '() `(asm ,info ,(asm-fp-relop info) ,x ,y)))])

  (define-instruction pred (eq? u< < > <= >=)
    ; the idea (following from the intel x86/x86_64 documentation)
    ; is that we want to squeeze this into a CMP that allows one of
    ; the following formats:
    ; CMP r/m, imm
    ; CMP r/m, r
    ; CMP r, r/m
    ; the last format we may want to drop, since it uses a different
    ; format from the one above it, but is interchangable with it,
    ; if we reverse the operands.
    [(op (x mem) (y ur imm32))
     (let ([info (make-info-condition-code op #f #t)])
       (values '() `(asm ,info ,(asm-relop info) ,x ,y)))]
    [(op (x ur) (y mem))
     (let ([info (make-info-condition-code op #t #t)])
       (values '() `(asm ,info ,(asm-relop info) ,y ,x)))]
    [(op (x imm32) (y ur mem))
     (let ([info (make-info-condition-code op #t #t)])
       (values '() `(asm ,info ,(asm-relop info) ,y ,x)))]
    [(op (x ur) (y ur imm32))
     (let ([info (make-info-condition-code op #f #t)])
       (values '() `(asm ,info ,(asm-relop info) ,x ,y)))])

  (define-instruction pred (condition-code)
    [(op) (values '() `(asm ,info ,(asm-condition-code info)))])

  (let ()
    (define imm->imm32
      (lambda (y w k)
        (nanopass-case (L15d Triv) w
          [(immediate ,imm)
           (if (signed-32? imm)
               (k y w)
               (let ([tmp (make-tmp 'u)]
                     [zero (with-output-language (L15d Triv)
                             `(immediate 0))])
                 (with-output-language (L15d Effect)
                   (seq
                    `(set! ,(make-live-info) ,tmp ,w)
                    (if (eq? y %zero)
                        (k tmp zero)
                        (seq
                         `(set! ,(make-live-info) ,tmp (asm ,null-info ,asm-add ,tmp ,y))
                         (k tmp zero)))))))])))

    (let* ([info-cc-eq (make-info-condition-code 'eq? #f #t)]
           [asm-eq (asm-relop info-cc-eq)])
      (define-instruction pred (type-check?)
        [(op (x ur mem) (mask imm32 ur) (type imm32 ur))
         (let ([tmp (make-tmp 'u)])
           (values
            (with-output-language (L15d Effect)
              (seq
               `(set! ,(make-live-info) ,tmp ,x)
               `(set! ,(make-live-info) ,tmp (asm ,null-info ,asm-logand ,tmp ,mask))))
            `(asm ,info-cc-eq ,asm-eq ,tmp ,type)))])

      (define-instruction pred (logtest log!test)
        [(op (x mem) (y ur imm32))
         (values '() `(asm ,info-cc-eq ,(asm-logtest (eq? op 'log!test) info-cc-eq) ,x ,y))]
        [(op (x ur imm32) (y mem))
         (values '() `(asm ,info-cc-eq ,(asm-logtest (eq? op 'log!test) info-cc-eq) ,y ,x))]
        [(op (x imm32) (y ur))
         (values '() `(asm ,info-cc-eq ,(asm-logtest (eq? op 'log!test) info-cc-eq) ,y ,x))]
        [(op (x ur) (y ur imm32))
         (values '() `(asm ,info-cc-eq ,(asm-logtest (eq? op 'log!test) info-cc-eq) ,x ,y))])

      (define-instruction pred (lock!)
        [(op (x ur) (y ur) (w imm))
         (imm->imm32
          y w
          (lambda (y w)
            (let ([uts (make-precolored-unspillable 'uts %ts)])
              (values
               (nanopass-case (L15d Triv) w
                 [(immediate ,imm)
                  (with-output-language (L15d Effect)
                    (seq
                     `(set! ,(make-live-info) ,uts (immediate 1))
                     `(set! ,(make-live-info) ,uts
                            (asm ,info ,asm-exchange ,uts
                                 (mref ,x ,y ,imm uptr)))))])
               `(asm ,info-cc-eq ,asm-eq ,uts (immediate 0))))))]))

    (define-instruction effect (locked-incr!)
      [(op (x ur) (y ur) (w imm))
       (imm->imm32
        y w
        (lambda (y w)
          `(asm ,info ,asm-locked-incr ,x ,y ,w)))])

    (define-instruction effect (locked-decr!)
      [(op (x ur) (y ur) (w imm))
       (imm->imm32
        y w
        (lambda (y w)
          `(asm ,info ,asm-locked-decr ,x ,y ,w)))])

    (define-instruction effect (cas)
      [(op (x ur) (y ur) (w imm) (old ur) (new ur))
       (imm->imm32
        y w
        (lambda (y w)
          (let ([urax (make-precolored-unspillable 'urax %rax)])
            (with-output-language (L15d Effect)
              (seq
               `(set! ,(make-live-info) ,urax ,old)
               ;; NB: may modify %rax:
               `(asm ,info ,asm-locked-cmpxchg ,x ,y ,w ,urax ,new))))))]))

  (define-instruction effect (pause)
    [(op) `(asm ,info ,asm-pause)])

  (define-instruction effect (debug)
    [(op) `(asm ,info ,asm-debug)])

  (define-instruction value read-performance-monitoring-counter
    [(op (z ur) (x ur mem imm))
     (safe-assert (eq? z %rax))
     (safe-assert (and (info-kill*? info) (memq %rdx (info-kill*-kill* info))))
     (let ([urcx (make-precolored-unspillable 'urcx %rcx)])
       (seq
         `(set! ,(make-live-info) ,urcx ,x)
         `(set! ,(make-live-info) ,z (asm ,info ,asm-read-performance-monitoring-counter ,urcx))))])

  (define-instruction value read-time-stamp-counter
    [(op (z ur))
     (safe-assert (eq? z %rax))
     (safe-assert (and (info-kill*? info) (memq %rdx (info-kill*-kill* info))))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-read-time-stamp-counter))])

  ;; currently returns ECX from CPUID function 1
  (define-instruction value cpuid
    [(op (z ur))
     (safe-assert (eq? z %rax))
     (safe-assert (and (info-kill*? info)
                       (memq %rbx (info-kill*-kill* info))
                       (memq %rcx (info-kill*-kill* info))
                       (memq %rdx (info-kill*-kill* info))))
     `(set! ,(make-live-info) ,z (asm ,info ,asm-cpuid))])

  ; NB: shouldn't need to list (info-kill*-live*-live* info) ... here, since we've already
  ; NB: computed spillable/register live sets
  (define-instruction effect (c-call)
    [(op (x ur mem)) `(asm ,info ,asm-indirect-call ,x ,(info-kill*-live*-live* info) ...)])

  (define-instruction effect (push)
    [(op (x ur)) `(asm ,info ,asm-push ,x)])

  (define-instruction effect save-flrv
    [(op) `(asm ,info ,asm-save-flrv)])

  (define-instruction effect restore-flrv
    [(op) `(asm ,info ,asm-restore-flrv)])

  (define-instruction effect invoke-prelude
   ; align sp on 16-byte boundary, taking into account 8-byte
   ; return address already pushed by caller
    [(op)
     (seq
       `(set! ,(make-live-info) ,%sp (asm ,info ,asm-sub ,%sp (immediate 8)))
       `(set! ,(make-live-info) ,%tc ,%Carg1))])
  )

;;; SECTION 3: assembler
(module asm-module (; required exports
                     asm-move asm-move/extend asm-load asm-store asm-swap asm-library-call asm-library-jump
                     asm-mul asm-muli asm-addop asm-add asm-sub asm-negate asm-sub-negate
                     asm-pop asm-shiftop asm-sll asm-logand asm-lognot
                     asm-logtest asm-fp-relop asm-relop asm-push asm-indirect-jump asm-literal-jump
                     asm-direct-jump asm-return-address asm-jump asm-conditional-jump
                     asm-lea1 asm-lea2 asm-indirect-call asm-condition-code
                     asm-fl-cvt asm-store-single asm-load-single asm-fpt asm-fptrunc asm-div asm-popcount
                     asm-exchange asm-pause asm-debug asm-locked-incr asm-locked-decr asm-locked-cmpxchg
                     asm-fpsqrt asm-fpop-2 asm-fpmove asm-fpcast asm-fpsingle
                     asm-c-simple-call
                     asm-save-flrv asm-restore-flrv asm-return asm-c-return asm-size
                     asm-enter asm-foreign-call asm-foreign-callable
                     asm-inc-profile-counter
                     asm-inc-cc-counter asm-read-time-stamp-counter asm-read-performance-monitoring-counter
                     asm-cpuid
                     ; threaded version specific
                     asm-get-tc asm-activate-thread asm-deactivate-thread asm-unactivate-thread
                     ; machine dependent exports
                     asm-sext-rax->rdx asm-store-single->double asm-kill asm-get-double)

  (define ax-register?
    (case-lambda
      [(x) (record-case x [(reg) r #t] [else #f])]
      [(x reg) (record-case x [(reg) r (eq? r reg)] [else #f])]))

  (define ax-fp-register?
    (lambda (x) (record-case x [(reg) r (eq? 'fp (reg-type r))] [else #f])))

  (define ax-ea-reg-code
    (lambda (ea)
      (record-case ea
        [(reg) r (reg-mdinfo r)]
        [else (sorry! 'ax-ea-reg-code "ea=~s" ea)])))

  (define ax-imm-data
    (lambda (ea)
      (record-case ea
        [(imm) (n) n]
        [else ($oops 'assembler-internal "ax-imm-data ea=~s" ea)])))

  ; define-op sets up assembly op macros--
  ; suffixes are a sub-list of (b w l 1)--
  ; the opcode, the size (byte word, long, quad), and all other expressions
  ; are passed to the specified handler--
  ; for prefix 'p' and each suffix 's' a macro of the form 'ps' is set up--
  ; if no suffix is specified the prefix is defined as a macro
  (define-syntax define-op
    (lambda (x)
      (syntax-case x ()
        [(k prefix (suffix ...) handler e ...)
         (let ([suffix* (datum (suffix ...))])
           (unless (andmap (lambda (x) (memq x '(b w l *))) suffix*)
             (syntax-error x (format "invalid suffix list ~s" suffix*)))
           (with-syntax ([(op ...) (map (lambda (x)
                                          (if (eq? x '*)
                                              (construct-name #'k "asmop-" #'prefix)
                                              (construct-name #'k "asmop-" #'prefix x)))
                                     suffix*)]
                         [(size ...) (map (lambda (x)
                                            (case x [(b) #'byte] [(w) #'word] [(l) #'long] [(*) #'quad]))
                                       suffix*)])
             #'(begin
                 (define-syntax op
                   (syntax-rules ()
                     [(_ mneu arg (... ...))
                      (handler 'mneu 'size e ... arg (... ...))]))
                 ...)))]
        [(k op handler e ...)
         (with-syntax ([op (construct-name #'k "asmop-" #'op)])
           #'(define-syntax op
               (syntax-rules ()
                 [(_ mneu arg (... ...))
                  (handler 'mneu e ... arg (... ...))])))])))

  (define-syntax emit
    (lambda (x)
      (syntax-case x ()
        [(k op x ...)
         (with-syntax ([emit-op (construct-name #'k "asmop-" #'op)])
           #'(emit-op op x ...))])))

  ;;; note that the assembler isn't clever--you must be very explicit about
  ;;; which flavor you want, and there are a few new varieties introduced
  ;;; (commented-out opcodes are not currently used by the assembler--
  ;;; spaces are left to indicate possible size extensions)

  (define-op asl  (*) unary-op  #b1101001 #b100) ; shifts by CL
  (define-op lsr  (*) unary-op  #b1101001 #b101) ; shifts by CL
  (define-op asr  (*) unary-op  #b1101001 #b111) ; shifts by CL
  (define-op asli (*) shifti-op #b1100000 #b100)
  (define-op lsri (*) shifti-op #b1100000 #b101)
  (define-op asri (*) shifti-op #b1100000 #b111)

  (define-op addi (#;b *) addi-op   #b100000 #b000)
  (define-op subi (#;b *) addi-op   #b100000 #b101)
  (define-op cmpi (b *) addi-op   #b100000 #b111)

  (define-op ori  (#;b *) logi-op #b001)
  (define-op andi (b *) logi-op #b100)
  (define-op xori (#;b *) logi-op #b110)
  (define-op testi (b *) testi-op #b1111011 #b000)

  (define-op movi (b w l *) movi-op #b000)

  (define-op mov    (b w l *) binary-op #b100010)
  (define-op movsb            mulq-op #b10111110)
  (define-op movsw            mulq-op #b10111111)
  (define-op movsl            quad-op #b01100011)
  (define-op movzb            mulq-op #b10110110)
  (define-op movzw            mulq-op #b10110111)

  (define-op add  (#;b *) binary-op #b000000)
  (define-op or   (#;b *) binary-op #b000010)
  (define-op and  (#;b *) binary-op #b001000)
  (define-op sub  (#;b *) binary-op #b001010)
  (define-op xor  (#;b *) binary-op #b001100)
  (define-op test (#;b *) test-op   #b1000010)
  (define-op cmp  (#;b *) binary-op #b001110)
  (define-op xchg (#;b *) xchg-op   #b1000011)
  (define-op bswap (#;l *) bswap-op)
 
  (define-op divsax (*) unary-op   #b1111011  #b111)
  #;(define-op mulsax (*) unary-op   #b1111011  #b100)
  (define-op muls mulq-op #b10101111)
  (define-op mulsi muliq-op    #b01101001)

  (define-op lea       quad-op     #b10001101)

  (define-op pop      push-op #b01011)
  (define-op push     push-op #b01010)
  (define-op pushi    pushi-op)
  (define-op pushf     byte-op     #b10011100)
  (define-op popf      byte-op     #b10011101)

  #;(define-op nop       byte-op    #b10010000)
  (define-op ret       byte-op    #b11000011)
  (define-op extad quad-byte-op   #b10011001) ; extend rax to rdx

  (define-op rdtsc     two-byte-op     #b1111 #b00110001) ; read time-stamp counter
  (define-op rdpmc     two-byte-op     #b1111 #b00110011) ; read performance monitoring counter
  (define-op pause     two-byte-op #b11110011 #b10010000) ; equivalent to rep nop

  (define-op int3      byte-op     #b11001100)

  (define-op dec (#;b *) unary-op  #b1111111 #b001)
  (define-op inc (#;b *) unary-op  #b1111111 #b000)
  (define-op neg (b *) unary-op  #b1111011 #b011) ; was commented out in x86_64macros
  (define-op not (#;b *) unary-op  #b1111011 #b010)

  (define-op locked-dec (#;b *) locked-unary-op #b1111111 #b001)
  (define-op locked-inc (#;b *) locked-unary-op #b1111111 #b000)

  (define-op locked-cmpxchg (*) locked-cmpxchg-op)

  (define-op popcount (*) popcount-op)

  (define-op cpuid     two-byte-op     #b1111 #b10100010)

  ; also do inc-reg dec-reg

  ; the following are forms of the call instruction and push the return address
  (define-op call      jump-op #b010) ; reg/mem indirect
  #;(define-op bsrl      branch-always-op long #b11101000) ; pc-relative
  (define-op bsr       bsr-op)

  ; the followin<g are forms of the jmp instruction
  (define-op jmp       jump-op #b100) ; reg/mem indirect
  (define-op bra       bra-op)

  (define-op bvs branch-op #b0000) ; jump on overflow
  (define-op bvc branch-op #b0001) ; jump on not overflow
  (define-op bcs branch-op #b0010) ; jump on below (carry set)
  (define-op bcc branch-op #b0011) ; jump on not below (carry clear)
  (define-op beq branch-op #b0100) ; jump on equal
  (define-op bne branch-op #b0101) ; jump on not equal
  (define-op bls branch-op #b0110) ; jump on less or same (below or equal)
  (define-op bhi branch-op #b0111) ; jump on higher (above)
  (define-op blt branch-op #b1100) ; jump on less than
  (define-op bge branch-op #b1101) ; jump on greater than or equal
  (define-op ble branch-op #b1110) ; jump on less than or equal
  (define-op bgt branch-op #b1111) ; jump on greater than

  ; SSE2 instructions
  (define-op sse.addsd     sse-op1 #xF2 #x58 0)
  (define-op sse.andpd     sse-op1 #x66 #x54 0)
  (define-op sse.cvtss2sd  sse-op1 #xF3 #x5A 0)
  (define-op sse.cvtsd2ss  sse-op1 #xF2 #x5A 0)
  (define-op sse.cvttsd2si sse-op1 #xF2 #x2C 1)
  (define-op sse.cvtsi2sd  sse-op1 #xF2 #x2A 1)
  (define-op sse.divsd     sse-op1 #xF2 #x5E 0)
  (define-op sse.movd      sse-op2 #x66 #x6E #x7E 1)
  (define-op sse.movsd     sse-op2 #xF2 #x10 #x11 0)
  (define-op sse.movss     sse-op2 #xF3 #x10 #x11 0)
  (define-op sse.mulsd     sse-op1 #xF2 #x59 0)
  (define-op sse.sqrtsd    sse-op1 #xF2 #x51 0)
  (define-op sse.subsd     sse-op1 #xF2 #x5C 0)
  (define-op sse.ucomisd   sse-op1 #x66 #x2E 0)
  (define-op sse.xorpd     sse-op1 #x66 #x57 0)

  (define sse-op1
    (lambda (op prefix-code op-code w source dest-reg code*)
      (emit-code (op source dest-reg code*)
        (build byte prefix-code)
        (ax-ea-rex w source dest-reg #f)
        (build byte #x0F)
        (build byte op-code)
        (ax-ea-modrm-reg source dest-reg)
        (ax-ea-sib source)
        (ax-ea-addr-disp source))))

  (define sse-op2
    (lambda (op prefix-code dstreg-op-code srcreg-op-code w source dest code*)
      (cond
        [(ax-fp-register? source)
         (emit-code (op source dest code*)
           (build byte prefix-code)
           (ax-ea-rex w dest source #f)
           (build byte #x0F)
           (build byte srcreg-op-code)
           (ax-ea-modrm-reg dest source)
           (ax-ea-sib dest)
           (ax-ea-addr-disp dest))]
        [(ax-fp-register? dest)
         (emit-code (op source dest code*)
           (build byte prefix-code)
           (ax-ea-rex w source dest #f)
           (build byte #x0F)
           (build byte dstreg-op-code)
           (ax-ea-modrm-reg source dest)
           (ax-ea-sib source)
           (ax-ea-addr-disp source))]
        [else
          ($oops 'assembler-internal "sse-op2 source=~s dest=~s" source dest)])))

  (define mulq-op
    ; used for movs/movz as well as mulsq
    (lambda (op op-code source-ea dest-reg code*)
      (emit-code (op source-ea dest-reg code*)
        (ax-ea-rex 1 source-ea dest-reg 'quad)
        (build byte #b00001111)
        (build byte op-code)
        (ax-ea-modrm-reg source-ea dest-reg)
        (ax-ea-sib source-ea)
        (ax-ea-addr-disp source-ea))))

  (define muliq-op
    (lambda (op op-code imm-data source-ea dest-reg code*)
      (emit-code (op imm-data source-ea dest-reg code*)
        (ax-ea-rex 1 source-ea dest-reg 'quad)
        (build byte op-code)
        (ax-ea-modrm-reg source-ea dest-reg)
        (ax-ea-sib source-ea)
        (ax-ea-addr-disp source-ea)
        (build long (ax-imm-data imm-data)))))

  (define quad-op
    (lambda (op op-code source-ea dest-reg code*)
      (emit-code (op source-ea dest-reg code*)
        (ax-ea-rex 1 source-ea dest-reg 'quad)
        (build byte op-code)
        (ax-ea-modrm-reg source-ea dest-reg)
        (ax-ea-sib source-ea)
        (ax-ea-addr-disp source-ea))))

  (define test-op
    (lambda (op size op-code source-ea reg code*)
      (emit-code (op source-ea reg code*)
        (ax-ea-rex (if (eq? size 'quad) 1 0) source-ea reg size)
        (build byte
          (byte-fields
            [1 op-code]
            [0 (ax-size-code size)]))
        (ax-ea-modrm-reg source-ea reg)
        (ax-ea-sib source-ea)
        (ax-ea-addr-disp source-ea))))

  (define unary-op
    (lambda (op size op-code ttt-code dest-ea code*)
      (emit-code (op dest-ea code*)
        (ax-ea-rex (if (eq? size 'quad) 1 0) dest-ea #f size)
        (build byte
          (byte-fields
            [1 op-code]
            [0 (ax-size-code size)]))
        (ax-ea-modrm-ttt dest-ea ttt-code)
        (ax-ea-sib dest-ea)
        (ax-ea-addr-disp dest-ea))))

  (define locked-unary-op
    (lambda (op size op-code ttt-code dest-ea code*)
      (emit-code (op dest-ea code*)
        (build byte #xf0) ; lock prefix
        (ax-ea-rex (if (eq? size 'quad) 1 0) dest-ea #f size)
        (build byte
          (byte-fields
            [1 op-code]
            [0 (ax-size-code size)]))
        (ax-ea-modrm-ttt dest-ea ttt-code)
        (ax-ea-sib dest-ea)
        (ax-ea-addr-disp dest-ea))))

  (define locked-cmpxchg-op
    (lambda (op size dest-ea new-reg code*)
      (begin
        (emit-code (op dest-ea new-reg code*)
          (build byte #xf0) ; lock prefix
          (ax-ea-rex (if (eq? size 'quad) 1 0) dest-ea new-reg size)
          (build byte #x0f)
          (build byte
            (byte-fields
              [1 #b1011000]
              [0 (ax-size-code size)]))
          (ax-ea-modrm-reg dest-ea new-reg)
          (ax-ea-sib dest-ea)
          (ax-ea-addr-disp dest-ea)))))

  (define pushi-op
    (lambda (op imm-ea code*)
      (if (ax-range? -128 imm-ea 127)
          (emit-code (op imm-ea code*)
            (build byte 106)
            (ax-ea-imm-data 'byte imm-ea))
          (emit-code (op imm-ea code*)
            (build byte 104)
            (ax-ea-imm-data 'long imm-ea)))))

  ; imm-data can be either an (imm n) or else a (literal size addr) record.
  ;
  (define testi-op
    (lambda (op size op-code ttt-code imm-ea dest-ea code*)
      (emit-code (op imm-ea dest-ea code*)
        (ax-ea-rex (if (eq? size 'quad) 1 0) dest-ea #f size)
        (build byte
          (byte-fields
            [1 op-code]
            [0 (ax-size-code size)]))
        (ax-ea-modrm-ttt dest-ea ttt-code)
        (ax-ea-sib dest-ea)
        (ax-ea-addr-disp dest-ea)
        (ax-ea-imm-data size imm-ea))))

  (define logi-op
    (lambda (op size ttt-code imm-ea dest-ea code*)
      (if (and (eq? size 'quad)
               (record-case imm-ea
                 [(imm) (n) (<= -128 n 127)]
                 [else #f]))
          (emit-code (op imm-ea dest-ea code*)
            (ax-ea-rex 1 dest-ea #f size)
            (build byte
              (byte-fields
                [1 #b1000001]
                [0 (ax-size-code size)]))
            (ax-ea-modrm-ttt dest-ea ttt-code)
            (ax-ea-sib dest-ea)
            (ax-ea-addr-disp dest-ea)
            (ax-ea-imm-data 'byte imm-ea))
          (emit-code (op imm-ea dest-ea code*)
            (ax-ea-rex 1 dest-ea #f size)
            (build byte
              (byte-fields
                [1 #b1000000]
                [0 (ax-size-code size)]))
            (ax-ea-modrm-ttt dest-ea ttt-code)
            (ax-ea-sib dest-ea)
            (ax-ea-addr-disp dest-ea)
            (ax-ea-imm-data size imm-ea)))))

  (define addi-op
    (lambda (op size op-code ttt-code imm-ea dest-ea code*)
      (if (and (eq? size 'quad)
               (record-case imm-ea
                 [(imm) (n) (<= -128 n 127)]
                 [else #f]))
          (emit-code (op imm-ea dest-ea code*)
            (ax-ea-rex 1 dest-ea #f size)
            (build byte
              (byte-fields
                [2 op-code]
                [1 1]
                [0 (ax-size-code size)]))
            (ax-ea-modrm-ttt dest-ea ttt-code)
            (ax-ea-sib dest-ea)
            (ax-ea-addr-disp dest-ea)
            (ax-ea-imm-data 'byte imm-ea))
          (emit-code (op imm-ea dest-ea code*)
            (ax-ea-rex (if (eq? size 'quad) 1 0) dest-ea #f size)
            (build byte
              (byte-fields
                [2 op-code]
                [1 0]
                [0 (ax-size-code size)]))
            (ax-ea-modrm-ttt dest-ea ttt-code)
            (ax-ea-sib dest-ea)
            (ax-ea-addr-disp dest-ea)
            (ax-ea-imm-data size imm-ea)))))

  (define movi-op
    (lambda (op size ttt-code imm-ea dest-ea code*)
      (cond
        [(and (eq? size 'quad)
              (record-case dest-ea [(reg) stuff #t] [else #f])
              (not (ax-range? #x-80000000 imm-ea #x7fffffff)))
         (emit-code (op imm-ea dest-ea code*)
           (ax-ea-rex 1 dest-ea #f 'quad)
           (build byte
             (byte-fields
               [4 #b1011]
               [3 (ax-size-code size)]
               [0 (fxlogand (ax-ea-reg-code dest-ea) 7)]))
           (ax-ea-imm-data 'full-quad imm-ea))]
        [else
          (emit-code (op imm-ea dest-ea code*)
            (and (eq? size 'word) (build byte 102))
            (ax-ea-rex (if (eq? size 'quad) 1 0) dest-ea #f size)
            (build byte
              (byte-fields
                [1 #b1100011]
                [0 (ax-size-code size)]))
            (ax-ea-modrm-ttt dest-ea ttt-code)
            (ax-ea-sib dest-ea)
            (ax-ea-addr-disp dest-ea)
            (ax-ea-imm-data size imm-ea))])))

  ;;; always need byte immediate data for shift ops
  (define shifti-op
    (lambda (op size op-code ttt-code imm-ea dest-ea code*)
      (emit-code (op imm-ea dest-ea code*)
        (ax-ea-rex (if (eq? size 'quad) 1 0) dest-ea #f size)
        (build byte
          (byte-fields
            [1 op-code]
            [0 (ax-size-code size)]))
        (ax-ea-modrm-ttt dest-ea ttt-code)
        (ax-ea-sib dest-ea)
        (ax-ea-addr-disp dest-ea)
        (ax-ea-imm-data 'byte imm-ea))))

  (define binary-op
    (lambda (op size op-code source dest code*)
      (cond
        [(ax-register? source)
         (emit-code (op source dest code*)
           (and (eq? size 'word) (build byte 102))
           (ax-ea-rex (if (eq? size 'quad) 1 0) dest source size)
           (build byte
             (byte-fields
               [2 op-code]
               [1 0]
               [0 (ax-size-code size)]))
           (ax-ea-modrm-reg dest source)
           (ax-ea-sib dest)
           (ax-ea-addr-disp dest))]
        [(ax-register? dest)
         (emit-code (op source dest code*)
           (and (eq? size 'word) (build byte 102))
           (ax-ea-rex (if (eq? size 'quad) 1 0) source dest size)
           (build byte
             (byte-fields
               [2 op-code]
               [1 1]
               [0 (ax-size-code size)]))
           (ax-ea-modrm-reg source dest)
           (ax-ea-sib source)
           (ax-ea-addr-disp source))]
        [else
          ($oops 'assembler-internal "binary-op source=~s dest=~s" source dest)])))

  (define xchg-op
    (lambda (op size op-code source dest code*)
      (cond
        [(ax-register? source)
         (emit-code (op source dest code*)
           (ax-ea-rex (if (eq? size 'quad) 1 0) dest source size)
           (build byte
             (byte-fields
               [1 op-code]
               [0 (ax-size-code size)]))
           (ax-ea-modrm-reg dest source)
           (ax-ea-sib dest)
           (ax-ea-addr-disp dest))]
        [(ax-register? dest)
         (emit-code (op source dest code*)
           (ax-ea-rex (if (eq? size 'quad) 1 0) source dest size)
           (build byte
             (byte-fields
               [1 op-code]
               [0 (ax-size-code size)]))
           (ax-ea-modrm-reg source dest)
           (ax-ea-sib source)
           (ax-ea-addr-disp source))]
        [else
          ($oops 'assembler-internal "xchg-op source=~s dest=~s" source dest)])))

  (define branch-op
    (lambda (op condition-code disp code*)
      (record-case disp
        [(label) (offset l)
                 (if (and (fixnum? offset) (fx<= -128 offset 127))
                     (emit-code (op disp code*)
                       (build byte
                         (byte-fields
                           [4 7]
                           [0 condition-code]))
                       (build byte offset))
                     (emit-code (op disp code*)
                       (build byte 15)
                       (build byte
                         (byte-fields
                           [4 8]
                           [0 condition-code]))
                       (build long offset)))]
        [else
          (emit-code (op disp code*)
            (build byte 15)
            (build byte
              (byte-fields
                [4 8]
                [0 condition-code]))
            (ax-ea-branch-disp disp))])))

  (define jump-op
    (lambda (op ttt-code dest-ea code*)
      (emit-code (op dest-ea code*)
        (ax-ea-rex 0 dest-ea #f 'quad)
        (build byte 255)
        (ax-ea-modrm-ttt dest-ea ttt-code)
        (ax-ea-sib dest-ea)
        (ax-ea-addr-disp dest-ea))))

  (define bra-op
    (lambda (op disp code*)
      (record-case disp
        [(label) (offset l)
                 (if (and (fixnum? offset) (fx<= -128 offset 127))
                     (emit-code (op disp code*)
                       (build byte #b11101011)
                       (build byte offset))
                     (emit-code (op disp code*)
                       (build byte #b11101001)
                       (build long offset)))]
        [else 
          (emit-code (op disp code*)
            (build byte #b11101001)
            (ax-ea-branch-disp disp))])))

  ;; TODO: not useful on x86_64?
  (define bsr-op
    (lambda (op disp code*)
      (emit-code (op disp code*)
        (build byte #b11101000)
        (if (pair? disp)
            (ax-ea-branch-disp disp)
            (build long disp)))))

  (define byte-op
    (lambda (op op-code code*)
      (emit-code (op code*)
        (build byte op-code))))

  (define two-byte-op
    (lambda (op op-code1 op-code2 code*)
      (emit-code (op code*)
        (build byte op-code1)
        (build byte op-code2))))

  (define bswap-op
    (lambda (op size reg code*)
      (begin
        (unless (ax-register? reg)
          ($oops 'assembler-internal "(bswap-op) ~s is not a real register" reg))
        (emit-code (op reg code*)
          (ax-ea-rex (if (eq? size 'quad) 1 0) reg #f size)
          (build byte #b00001111)
          (build byte
            (byte-fields
              [3 #b11001]
              [0 (fxlogand (ax-ea-reg-code reg) 7)]))))))

  (define quad-byte-op
    (lambda (op op-code code*)
      (emit-code (op code*)
        (build byte #x48) ; rex prefix w/rex.w bit set
        (build byte op-code))))

  (define push-op
    (lambda (op op-code reg code*)
      (begin
        (unless (ax-register? reg)
          ($oops 'assembler-internal "(push-op) ~s is not a real register" reg))
        (emit-code (op reg code*)
          (ax-ea-rex 0 reg #f 'quad)
          (build byte
            (byte-fields
              [3 op-code]
              [0 (fxlogand (ax-ea-reg-code reg) 7)]))))))

  ;; Direct POPCNT instruction variant:
  #;
  (define popcount-op
    (lambda (op size dest-reg src-ea inline? code*)
      (let ([code* (emit-code (op src-ea dest-reg code*)
                     (build byte #xF3)
                     (ax-ea-rex (if (eq? size 'quad) 1 0) src-ea dest-reg size)
                     (build byte #x0F)
                     (build byte #xB8)
                     (ax-ea-modrm-reg src-ea dest-reg)
                     (ax-ea-sib src-ea)
                     (ax-ea-addr-disp src-ea))])
        (if (not (and (ax-register? src-ea)
                      (fx= (ax-ea-reg-code src-ea)
                           (ax-ea-reg-code dest-reg))))
            (emit xor dest-reg dest-reg code*) ; avoid false dependency
            code*))))

  ;; Link-editable variant:
  (define popcount-op
    (let ([target `(x86_64-popcount ,(constant code-data-disp) (library ,(lookup-libspec popcount-slow)))])
      (lambda (op size dest-rax src-rcx inline? code*)
        (safe-assert (and (ax-register? dest-rax) (ax-register? src-rcx)))
        (record-case dest-rax
          [(reg) dest-rax
           (record-case src-rcx
            [(reg) src-rcx
             (safe-assert (and (eq? dest-rax %rax) (eq? src-rcx %rcx)))
             (cond
              [(not inline?)
               ;; Set up a call to `popcount-slow`, which the linker
               ;; can replace with a POPCNT instruction:
               (asm-helper-call code* target dest-rax)]
              [else
               ;; Used for the body of `popcount-slow`.
               ;; This is the sequence generated by LLVM's __builtin_popcountl(),
               ;; but with pushes and pops to save used registers other than the
               ;; result register %rax.
               (emit-literal-code (op dest-rax src-rcx code*)
                 51              ; pushq   %rcx
                 57              ; pushq   %rdi
                 48 89 c8        ; movq    %rcx, %rax
                 48 d1 e8        ; shrq    %rax
                 48 bf 55 55 55 55 55 55 55 55 ; movabsq $6148914691236517205, %rdi
                 48 21 c7        ; andq    %rax, %rdi
                 48 29 f9        ; subq    %rdi, %rcx
                 48 b8 33 33 33 33 33 33 33 33 ; movabsq $3689348814741910323, %rax
                 48 89 cf        ; movq    %rcx, %rdi
                 48 21 c7        ; andq    %rax, %rdi
                 48 c1 e9 02     ; shrq    $2, %rcx
                 48 21 c1        ; andq    %rax, %rcx
                 48 01 f9        ; addq    %rdi, %rcx
                 48 89 c8        ; movq    %rcx, %rax
                 48 c1 e8 04     ; shrq    $4, %rax
                 48 8d 04 08     ; leaq    (%rax,%rcx), %rax
                 48 bf 0f 0f 0f 0f 0f 0f 0f 0f ; movabsq $1085102592571150095, %rdi
                 48 21 c7        ; andq    %rax, %rdi
                 48 b8 01 01 01 01 01 01 01 01 ; movabsq $72340172838076673, %rax
                 48 0f af c7     ; imulq   %rdi, %rax
                 48 c1 e8 38     ; shrq    $56, %rax
                 5f              ; popq    %rdi
                 59)])])]))))    ; popq    %rcx

  (define-syntax emit-code
    (lambda (x)
      (define build-maybe-cons*
        (lambda (e* e-ls)
          (if (null? e*)
              e-ls
              #`(let ([t #,(car e*)] [ls #,(build-maybe-cons* (cdr e*) e-ls)])
                  (if t (cons t ls) ls)))))
      (syntax-case x ()
        [(_ (op opnd ... ?code*) chunk ...)
         (build-maybe-cons* #'(chunk ...)
           #'(aop-cons* `(asm ,op ,opnd ...) ?code*))])))

  (define-syntax emit-literal-code
    (lambda (x)
      (syntax-case x ()
        [(_ (op opnd ... ?code*) hexlike ...)
         #`(emit-code (op opnd ... ?code*) (encode-hex-like hexlike) ...)])))

  (define-syntax encode-hex-like
    (lambda (x)
      (syntax-case x ()
        [(k hexlike)
         (let ([n (let ([v (syntax->datum #'hexlike)])
                    (if (number? v)
                        ;; parsed as decimal; reparse as hex
                        (string->number (number->string v) 16)
                        ;; parsed as ymbol
                        (string->number (symbol->string v) 16)))])
           (with-syntax ([n (datum->syntax #'k n)])
             #`(build byte n)))])))

  (define-who ax-size-code
    (lambda (x)
      (case x
        [(byte) 0]
        [(word) 1]
        [(long) 1]
        [(quad) 1]
        [else (sorry! who "invalid size ~s" x)])))

  (define-syntax build
    (syntax-rules ()
      [(_ x e)
       (and (memq (datum x) '(byte word long quad)) (integer? (datum e)))
       (quote (x . e))]
      [(_ x e)
       (memq (datum x) '(byte word long quad))
       (cons 'x e)]))

  (define-syntax byte-fields
    (syntax-rules ()
      [(byte-fields (n e) ...)
       (andmap fixnum? (datum (n ...)))
       (fx+ (fxsll e n) ...)]))

  (define ax-ea-rex
    (lambda (w ea maybe-reg size)
      (define (rex-required? x)
        ; rex prefix is required to access lsb of RSP, RBP, RSI, RDI
        ; (and R8-R15, but they require rex prefix anyway)
        (and (eq? size 'byte)
             (record-case x
               [(reg) r (fx<= 4 (reg-mdinfo r) 7)]
               [else #f])))
      (define (rex.r)
        (if maybe-reg
            (record-case maybe-reg
              [(reg) r (fxsrl (reg-mdinfo r) 3)]
              [else ($oops 'assembler-internal "maybe-reg=~s" maybe-reg)])
            0))
      (define (build-rex x b)
        (let ([b (build byte
                   (byte-fields
                     [4 #b0100]
                     [3 w]
                     [2 (rex.r)]
                     [1 x]
                     [0 b]))])
          (and (or (not (fx= (cdr b) #x40))
                   (rex-required? ea)
                   (and maybe-reg (rex-required? maybe-reg)))
               b)))
      (record-case ea
        [(index) (size index-reg base-reg) 
         (build-rex
           (fxsrl (reg-mdinfo index-reg) 3)
           (fxsrl (reg-mdinfo base-reg) 3))]
        [(riprel) stuff (build-rex 0 0)]
        [(disp) (size reg) (build-rex 0 (fxsrl (reg-mdinfo reg) 3))]
        [(reg) r (build-rex 0 (fxsrl (reg-mdinfo r) 3))]
        [else ($oops 'assembler-internal "ax-ea-rex ea ~s" ea)])))

  (define ax-ea-addr-disp
    (lambda (dest-ea)
      (record-case dest-ea
        [(index) (size index-reg base-reg)
         (cond
           [(and (fxzero? size) (not (eq? base-reg %rbp)) (not (eq? base-reg %r13))) #f]
           [(ax-byte-size? size) (build byte size)]
           [else (build long size)])]
        [(riprel) (disp) (build long disp)]
        [(disp) (size reg)
         (cond
           [(and (fxzero? size) (not (eq? reg %rbp)) (not (eq? reg %r13))) #f] ; indirect
           [(ax-byte-size? size) (build byte size)]
           [else (build long size)])]
        [(reg) r #f]
        [else ($oops 'assembler-internal "ax-ea-addr-disp dest-ea=~s" dest-ea)])))

  (define ax-ea-sib
    (let ([ax-ss-index-base
           (lambda (index-reg base-reg)
             (build byte
               (byte-fields
                 [6 #b00]          ; 2 bits, scaled by bytes.
                 [3 index-reg]     ; 3 bits, index register.
                 [0 base-reg])))]) ; 3 bits, base register.
      (lambda (dest-ea)
        (record-case dest-ea
          [(index) (size index-reg base-reg)
           (ax-ss-index-base (fxlogand (reg-mdinfo index-reg) 7)
             (fxlogand (reg-mdinfo base-reg) 7))]
          [(riprel) stuff #f]
          [(disp) (size reg)
           (and (or (eq? reg %sp) (eq? reg %r12))
                (ax-ss-index-base #b100 #b100))]
          [(reg) r #f]
          [else ($oops 'assembler-internal "ax-ea-sib dest-ea=~s" dest-ea)]))))

  (define ax-ea-modrm-reg
    (lambda (dest-ea reg)
      (ax-ea-modrm-ttt dest-ea (fxlogand (ax-ea-reg-code reg) 7))))

  (define ax-ea-modrm-ttt
    (letrec
      ([ax-mod-ttt-r/m
        (lambda (mod ttt r/m)
          (build byte
            (byte-fields
              [6 mod]     ; 2 bits
              [3 ttt]     ; 3 bits
              [0 r/m])))] ; 3 bits
       [ax-r/m ; 3 bits
        (lambda (dest-ea)
          (record-case dest-ea
            [(index) (size index-reg base-reg) #b100]
            [(riprel) stuff #b101]
            [(disp) (size reg) (fxlogand (reg-mdinfo reg) 7)]
            [(reg) r (fxlogand (reg-mdinfo r) 7)]
            [else ($oops 'assembler-internal
                    "ax-r/m dest-ea=~s" dest-ea)]))]
       [ax-mod ; 2 bits
        (lambda (dest-ea)
          (record-case dest-ea
            [(index) (size index-reg base-reg)
             (cond
               [(and (fxzero? size) (not (eq? base-reg %rbp)) (not (eq? base-reg %r13))) #b00]
               [(ax-byte-size? size) #b01]
               [else #b10])]
            [(riprel) stuff #b00]
            [(disp) (size reg)
             (cond
               [(and (fxzero? size) (not (eq? reg %rbp)) (not (eq? reg %r13))) #b00] ; indirect
               [(ax-byte-size? size) #b01]
               [else #b10])]
            [(reg) r #b11]
            [else ($oops 'assembler-internal "ax-mod dest-ea ~s" dest-ea)]))])
      (lambda (dest-ea ttt)
        (ax-mod-ttt-r/m (ax-mod dest-ea) ttt (ax-r/m dest-ea)))))

  (define ax-ea-imm-data
    (lambda (size imm-data)
      (case size
        [(full-quad)
         (record-case imm-data
           [(literal) stuff (cons 'abs stuff)]
           [(funcrel) stuff (cons 'funcrel (ax-ea-imm-data 'quad stuff))] ; added, not sure if this works for x86_64
           [(imm) (n) (cons 'quad n)]
           [else ($oops 'assembler-internal
                   "ax-ea-imm-data size=~s imm-data=~s" size imm-data)])]
        [else
         (record-case imm-data
           [(imm) (n) (cons (if (eq? size 'quad) 'long size) n)]
           [else ($oops 'assembler-internal
                   "ax-ea-imm-data size=~s imm-data=~s" size imm-data)])])))

  (define ax-byte-size?
    (lambda (n)
      (<= -128 n 127)))

  (define ax-range?
    (lambda (low x high)
      (record-case x
        [(imm) (n) (<= low n high)]
        [else #f])))

  (define ax-ea-branch-disp
    (lambda (dest-ea)
      (record-case dest-ea
        [(literal) stuff (cons 'rel stuff)]
        [else ($oops 'assembler-internal
                "ax-ea-branch-disp dest-ea=~s" dest-ea)])))

  (define asm-size
    (lambda (x)
      (case (car x)
        [(asm x86_64-jump x86_64-call x86_64-popcount) 0]
        [(byte) 1]
        [(word) 2]
        [(long) 4]
        [else 8])))

  (define-who asm-move
    (lambda (code* dest src)
      (Trivit (dest src)
        (record-case src
          [(imm) (n)
                 (if (and (eqv? n 0) (record-case dest [(reg) r #t] [else #f]))
                     (emit xor dest dest code*)
                     (emit movi src dest code*))]
          [(literal) stuff (emit movi src dest code*)]
          [else (emit mov src dest code*)]))))

  (define-who asm-move/extend
    (lambda (op)
      (lambda (code* dest src)
        (Trivit (dest src)
          (case op
            [(sext8) (emit movsb src dest code*)]
            [(sext16) (emit movsw src dest code*)]
            [(sext32) (emit movsl src dest code*)]
            [(zext8) (emit movzb src dest code*)]
            [(zext16) (emit movzw src dest code*)]
            [(zext32) (emit movl src dest code*)]
            [else (sorry! who "unexpected op ~s" op)])))))

  (define asm-fl-cvt
    (lambda (op)
      (lambda (code* dest-reg src)
        (Trivit (src)
          (case op
            [(single->double) (emit sse.cvtss2sd src (cons 'reg dest-reg) code*)]
            [(double->single) (emit sse.cvtsd2ss src (cons 'reg dest-reg) code*)])))))

  (define asm-fpsingle
    (lambda (code* dest src)
      (Trivit (dest src)
        (emit sse.cvtsd2ss src dest
          (emit sse.cvtss2sd dest dest code*)))))

  (define asm-store-single->double
    (lambda (flreg)
      (lambda (code* base index offset)
        (let ([dest (build-mem-opnd base index offset)] [flreg (cons 'reg flreg)])
          (emit sse.cvtss2sd flreg flreg
            (emit sse.movsd flreg dest code*))))))

  (define asm-store-single
    (lambda (code* dest flreg)
      (Trivit (dest)
        (emit sse.movss (cons 'reg flreg) dest code*))))

  (define asm-load-single
    (lambda (code* flreg src)
      (Trivit (src)
        (emit sse.movss src (cons 'reg flreg) code*))))

  (define asm-get-double
    (lambda (code* dst flreg)
      (emit sse.movd (cons 'reg flreg) (cons 'reg dst) code*)))

  (define asm-fpt
    (lambda (code* dest src)
      (Trivit (dest src)
         (emit sse.cvtsi2sd src dest code*))))

  (define asm-fpop-2
    (lambda (op)
      (lambda (code* dest-reg src1 src2)
        (define (emit-it src dest code*)
          (case op
            [(fp+) (emit sse.addsd src dest code*)]
            [(fp-) (emit sse.subsd src dest code*)]
            [(fp*) (emit sse.mulsd src dest code*)]
            [(fp/) (emit sse.divsd src dest code*)]))
        (cond
          [(eq? dest-reg src1)
           (Trivit (dest-reg src2)
             (emit-it src2 dest-reg code*))]
          [(eq? dest-reg src2)
           (if (memq op '(fp+ fp*))
               (Trivit (dest-reg src1)
                 (emit-it src1 dest-reg code*))
               ;; Assuming that any subtraction or division will be
               ;; done before we try to fill C arguments...
               (Trivit (dest-reg src1 src2)
                 (emit sse.movsd src2 (cons 'reg %Cfparg1)
                   (emit sse.movsd src1 dest-reg
                         (emit-it (cons 'reg %Cfparg1) dest-reg code*)))))]
          [else
           (Trivit (dest-reg src1 src2)
             (if (equal? src1 src2)
                 ;; avoid redundant load
                 (emit sse.movsd src1 dest-reg
                       (emit-it dest-reg dest-reg code*))
                 (emit sse.movsd src1 dest-reg
                       (emit-it src2 dest-reg code*))))]))))

  (define asm-fpsqrt
    (lambda (code* dest-reg src)
      (Trivit (dest-reg src)
        (emit sse.sqrtsd src dest-reg code*))))

  (define asm-fpmove
    (lambda (code* dest src)
      (Trivit (dest src)
        (emit sse.movsd src dest code*))))

  (define asm-fpcast
    (lambda (code* dest src)
      (Trivit (dest src)
        (emit sse.movd src dest code*))))

  (define asm-fptrunc
    (lambda (code* dest src)
      (Trivit (dest src)
        (emit sse.cvttsd2si src dest code*))))

  (define asm-load
    (lambda (type)
      (lambda (code* dest base index offset)
        (Trivit (dest)
          (let ([src (build-mem-opnd base index offset)])
            (case type
              [(integer-64 unsigned-64) (emit mov src dest code*)]
              [(integer-32) (emit movsl src dest code*)]
              [(unsigned-32) (emit movl src dest code*)] ; clears upper 32 bits of destination register
              [(integer-16) (emit movsw src dest code*)]
              [(unsigned-16) (emit movzw src dest code*)]
              [(integer-8) (emit movsb src dest code*)]
              [(unsigned-8) (emit movzb src dest code*)]
              [else (sorry! 'asm-load "unexpected mref type ~s" type)]))))))

  (define asm-store
    (lambda (type)
      (lambda (code* base index offset src)
        (define imm8 (lambda (n) `(imm ,(modulo n #x100))))
        (define imm16 (lambda (n) `(imm ,(modulo n #x10000))))
        (Trivit (src)
          (let ([dest (build-mem-opnd base index offset)])
            (record-case src
              [(imm) (n)
               (case type
                 [(integer-64 unsigned-64) (emit movi src dest code*)]
                 [(integer-32 unsigned-32) (emit movil src dest code*)]
                 [(integer-16 unsigned-16) (emit moviw (imm16 n) dest code*)]
                 [(integer-8 unsigned-8) (emit movib (imm8 n) dest code*)]
                 [else (sorry! 'asm-store "unexpected mset! type ~s" type)])]
              [(literal) stuff
               (case type
                 [(integer-64 unsigned-64) (emit movi src dest code*)]
                 [(integer-32 unsigned-32) (emit movil src dest code*)]
                 [(integer-16 unsigned-16) (emit moviw src dest code*)]
                 [(integer-8 unsigned-8) (emit movib src dest code*)]
                 [else (sorry! 'asm-store "unexpected mset! type ~s" type)])]
              [else
                (case type
                  [(integer-64 unsigned-64) (emit mov src dest code*)]
                  [(integer-32 unsigned-32) (emit movl src dest code*)]
                  [(integer-16 unsigned-16) (emit movw src dest code*)]
                  [(integer-8 unsigned-8) (emit movb src dest code*)]
                  [else (sorry! 'asm-store "unexpected mset! type ~s" type)])]))))))

  (define asm-swap
    (lambda (type)
      (lambda (code* dest src)
        (Trivit (dest)
          (safe-assert (equal? (Triv->rand src) dest))
          (emit bswap dest
            (case type
              [(integer-16) (emit asri '(imm 48) dest code*)]
              [(unsigned-16) (emit lsri '(imm 48) dest code*)]
              [(integer-32) (emit asri '(imm 32) dest code*)]
              [(unsigned-32) (emit lsri '(imm 32) dest code*)]
              [(integer-64 unsigned-64) code*]
              [else ($oops 'assembler-internal "unexpected asm-swap type argument ~s" type)]))))))

  (define asm-mul
    (lambda (code* dest src0 src1)
      (Trivit (dest src1)
        (safe-assert (equal? (Triv->rand src0) dest))
        (emit muls src1 dest code*))))

  (define asm-div
    (lambda (code* dest-rax src-rax src-rdx src2)
      (Trivit (src2)
        (safe-assert (and (eq? dest-rax %rax) (eq? src-rax %rax) (eq? src-rdx %rdx)))
        (emit divsax src2 code*))))

  (define asm-sext-rax->rdx
    (lambda (code* dest-rdx src-rax)
      (safe-assert (and (eq? dest-rdx %rdx) (eq? src-rax %rax)))
      (emit extad code*)))

  (define asm-muli
    (lambda (code* dest src0 src1)
      (Trivit (dest src0 src1)
        (emit mulsi src1 src0 dest code*))))

  (define asm-popcount
    (lambda (inline?)
      (lambda (code* dest src)
        (Trivit (dest src)
          (emit popcount dest src inline? code*)))))

  (define-who asm-addop
    (lambda (op)
      (case op
        [(+) asm-add]
        [(logand) asm-logand]
        [(logor) asm-logor]
        [(logxor) asm-logxor]
        [else ($oops who "unsupported op ~s" op)])))

  (define asm-add
    (lambda (code* dest src0 src1)
      (Trivit (dest src1)
        (safe-assert (equal? (Triv->rand src0) dest))
        (record-case src1
          [(imm literal) stuff (emit addi src1 dest code*)]
          [else (emit add src1 dest code*)]))))

  (define asm-read-performance-monitoring-counter
    (lambda (code* dest src)
      ; rdx is an implied dest and included in info's kill list
      (safe-assert (eq? dest %rax))
      (safe-assert (eq? src %rcx))
      (emit rdpmc code*)))

  (define asm-read-time-stamp-counter
    (lambda (code* dest)
      ; rdx is an implied dest and included in info's kill list
      (safe-assert (eq? dest %rax))
      (emit rdtsc code*)))

  (define asm-cpuid
    (lambda (code* dest)
      ; rbx/rcx/rdx is an implied dest and included in info's kill list
      (safe-assert (eq? dest %rax))
      (emit movi '(imm 1) (cons 'reg %rax)
        (emit cpuid
          (emit mov (cons 'reg %rcx) (cons 'reg %rax)
             code*)))))

  (define asm-inc-profile-counter
    (lambda (code* dest src)
      (Trivit (dest src)
        (record-case src
          [(imm) (n) (if (eqv? n 1) (emit inc dest code*) (emit addi src dest code*))]
          [else (emit add src dest code*)]))))

  (define-who asm-inc-cc-counter
    (lambda (code* base offset val)
      (let ([dest (nanopass-case (L16 Triv) offset
                    [(immediate ,imm) `(disp ,imm ,base)]
                    [,x `(index 0 ,x ,base)]
                    [else ($oops who "unexpected increment offset ~s" offset)])])
        (nanopass-case (L16 Triv) val
          [(immediate ,imm)
           (if (fx= imm 1)
               (emit inc dest code*)
               (emit addi `(imm ,imm) dest code*))]
          [,x (emit add (cons 'reg x) dest code*)]
          [else ($oops who "unsupported increment ~s" val)]))))

  (define asm-sub
    (lambda (code* dest src0 src1)
      (Trivit (dest src1)
        (safe-assert (equal? (Triv->rand src0) dest))
        (record-case src1
          [(imm literal) stuff (emit subi src1 dest code*)]
          [else (emit sub src1 dest code*)]))))

  (define asm-negate
    (lambda (code* dest src)
      (Trivit (dest)
        (safe-assert (equal? (Triv->rand src) dest))
        (emit neg dest code*))))

  (define asm-sub-negate
    (lambda (code* dest src0 src1)
      (Trivit (dest src1)
        (safe-assert (equal? (Triv->rand src0) dest))
        (let ([code* (emit neg dest code*)])
          (record-case src1
            [(imm literal) stuff (emit subi src1 dest code*)]
            [else (emit sub src1 dest code*)])))))

  (define asm-pop
    (lambda (code* dest)
      (Trivit (dest)
        (emit pop dest code*))))

  (define asm-return
    (lambda ()
      (emit addi '(imm 8) (cons 'reg %sp)
        (emit ret '()))))

  (define asm-c-return
    (lambda (info)
      (emit ret '())))

  (define asm-locked-incr
    (lambda (code* base index offset)
      (let ([dest (build-mem-opnd base index offset)])
        (emit locked-inc dest code*))))

  (define asm-locked-decr
    (lambda (code* base index offset)
      (let ([dest (build-mem-opnd base index offset)])
        (emit locked-dec dest code*))))

  (define asm-locked-cmpxchg
    (lambda (code* base index offset old-v new-v)
      (let ([dest (build-mem-opnd base index offset)])
        (emit locked-cmpxchg dest (cons 'reg new-v) code*))))

  (define asm-pause
    (lambda (code*)
      (emit pause code*)))

  (define asm-debug
    (lambda (code*)
      (emit int3 code*)))

  (define asm-exchange
    (lambda (code* dest src0 src1)
      (Trivit (dest src1)
        (safe-assert (equal? (Triv->rand src0) dest))
        (emit xchg src1 dest code*))))

  (define-who asm-shiftop
    (lambda (op)
      (case op
        [(sll) asm-sll]
        [(srl) asm-srl]
        [(sra) asm-sra]
        [else ($oops who "unsupported op ~s" op)])))

  (define asm-sll
    (lambda (code* dest src0 src1)
      (Trivit (dest src1)
        (safe-assert (equal? (Triv->rand src0) dest))
        (record-case src1
          [(imm literal) stuff (emit asli src1 dest code*)]
          [else
            (safe-assert (ax-register? src1 %rcx))
            (emit asl dest code*)]))))

  (define asm-srl
    (lambda (code* dest src0 src1)
      (Trivit (dest src1)
        (safe-assert (equal? (Triv->rand src0) dest))
        (record-case src1
          [(imm literal) stuff (emit lsri src1 dest code*)]
          [else
            (safe-assert (ax-register? src1 %rcx))
            (emit lsr dest code*)]))))

  (define asm-sra
    (lambda (code* dest src0 src1)
      (Trivit (dest src1)
        (safe-assert (equal? (Triv->rand src0) dest))
        (record-case src1
          [(imm literal) stuff (emit asri src1 dest code*)]
          [else
            (safe-assert (ax-register? src1 %rcx))
            (emit asr dest code*)]))))

  (define asm-logand
    (lambda (code* dest src0 src1)
      (Trivit (dest src1)
        (safe-assert (equal? (Triv->rand src0) dest))
        (record-case src1
          [(imm literal) stuff (emit andi src1 dest code*)]
          [else (emit and src1 dest code*)]))))

  (define asm-logor
    (lambda (code* dest src0 src1)
      (Trivit (dest src1)
        (safe-assert (equal? (Triv->rand src0) dest))
        (record-case src1
          [(imm literal) stuff (emit ori src1 dest code*)]
          [else (emit or src1 dest code*)]))))

  (define asm-logxor
    (lambda (code* dest src0 src1)
      (Trivit (dest src1)
        (safe-assert (equal? (Triv->rand src0) dest))
        (record-case src1
          [(imm literal) stuff (emit xori src1 dest code*)]
          [else (emit xor src1 dest code*)]))))

  (define asm-lognot
    (lambda (code* dest src)
      (Trivit (dest)
        (safe-assert (equal? (Triv->rand src) dest))
        (emit not dest code*))))

  (define asm-lea1
    (lambda (offset)
      (rec asm-lea1-internal
        (lambda (code* dest src)
          (if (eq? src dest)
              (Trivit (dest)
                (emit addi `(imm ,offset) dest code*))
              (Trivit (dest)
                (emit lea `(disp ,offset ,src) dest code*)))))))

  (define asm-lea2
    (lambda (offset)
      (rec asm-lea2-internal
        (lambda (code* dest src1 src2)
          (cond
            [(and (eq? src1 dest) (fx= offset 0))
             (Trivit (dest src2)
               (emit add src2 dest code*))]
            [(and (eq? src2 dest) (fx= offset 0))
             (Trivit (dest src1)
               (emit add src1 dest code*))]
            [else
              (Trivit (dest)
                (emit lea `(index ,offset ,src1 ,src2)
                  dest code*))])))))

  (define asm-logtest
    (lambda (i? info)
      (lambda (l1 l2 offset x y)
        (Trivit (x y)
          (safe-assert
            (record-case x
              [(disp reg index literal@) stuff #t]
              [else #f]))
          (values
            (record-case y
              [(imm) (n)
               (if (and (fixnum? n)
                        (fx= (fxlogand n #xff) n)
                        (record-case x
                          [(reg) r #t]
                          ; counting on little-endian byte order
                          [(disp index) stuff #t]))
                   (emit testib y x '())
                   (emit testi y x '()))]
              [(literal) stuff (emit testi y x '())]
              [else (emit test x y '())])
            (let-values ([(l1 l2) (if i? (values l2 l1) (values l1 l2))])
              (asm-conditional-jump info l2 l1 offset)))))))

  (define asm-fp-relop
    (lambda (info)
      (lambda (l1 l2 offset x y)
        (values
          (Trivit (x y)
            (emit sse.ucomisd x y '()))
          (asm-conditional-jump info l1 l2 offset)))))

  (define asm-relop
    (lambda (info)
      (rec asm-relop-internal
        (lambda (l1 l2 offset x y)
          (Trivit (x y)
            (safe-assert
              (record-case x
                [(reg disp index) ignore #t]
                [else #f]))
            (values
              (record-case y
                [(imm literal) stuff (emit cmpi y x '())]
                [else (emit cmp y x '())])
              (asm-conditional-jump info l1 l2 offset)))))))

  (define asm-condition-code
    (lambda (info)
      (rec asm-check-flag-internal
        (lambda (l1 l2 offset)
          (values '() (asm-conditional-jump info l1 l2 offset))))))

  ; TODO: should this also handle pushil?
  (define asm-push
    (lambda (code* x)
      (Trivit (x)
        (emit push x code*))))

  (define asm-save-flrv
    (lambda (code*)
      ; save float return value in case we're calling into C
      ; from the foreign-procedure return path to allocate a flonum
      ; return value.  need 16 bytes rather than 8 to maintain
      ; 16-byte stack alignment
      (emit subi '(imm 16) (cons 'reg %sp)
        (emit sse.movsd (cons 'reg %Cfpretval) `(disp 0 ,%sp) code*))))

  (define asm-restore-flrv
    (lambda (code*)
      (emit sse.movsd `(disp 0 ,%sp) (cons 'reg %Cfpretval)
        (emit addi '(imm 16) (cons 'reg %sp) code*))))

  (define asm-library-jump
    (lambda (l)
      (asm-helper-jump '()
        `(x86_64-jump ,(constant code-data-disp) (library-code ,(libspec-label-libspec l))))))

  (define asm-library-call
    (lambda (libspec)
      (let ([target `(x86_64-call ,(constant code-data-disp) (library-code ,libspec))])
        (rec asm-asm-call-internal
          (lambda (code* jmp-reg . ignore)
            (asm-helper-call code* target jmp-reg))))))

  (define asm-c-simple-call
    (lambda (entry)
      (rec asm-c-simple-call-internal
        (lambda (code* jmp-reg)
          (let ([sp-opnd (cons 'reg %sp)])
            (if (fx= entry (lookup-c-entry Sreturn))
                ; pretend S_generic_invoke called Sreturn directly by wiping out
                ; pad added by invoke-prelude and jumping rather than calling
                (emit addi '(imm 8) sp-opnd
                  (asm-helper-jump code* `(x86_64-jump 0 (entry ,entry))))
                (let ([target `(x86_64-call 0 (entry ,entry))])
                  (if-feature windows
                    ; must leave room for callee to store argument registers,
                    ; even if there are no arguments
                    (emit subi '(imm 32) sp-opnd
                      (asm-helper-call (emit addi '(imm 32) sp-opnd code*) target jmp-reg))
                    (asm-helper-call code* target jmp-reg)))))))))

  (define asm-get-tc
    (let ([target `(x86_64-call 0 (entry ,(lookup-c-entry get-thread-context)))])
      (lambda (code* jmp-reg) ; dest is ignored, since it is always the first C argument (rax in this case)
        (asm-helper-call code* target jmp-reg))))

  (define asm-activate-thread
    (let ([target `(x86_64-call 0 (entry ,(lookup-c-entry activate-thread)))])
      (lambda (code* jmp-reg)
        (asm-helper-call code* target jmp-reg))))

  (define asm-deactivate-thread
    (let ([target `(x86_64-call 0 (entry ,(lookup-c-entry deactivate-thread)))])
      (lambda (code*)
        (asm-helper-call code* target %rax))))

  (define asm-unactivate-thread
    (let ([target `(x86_64-call 0 (entry ,(lookup-c-entry unactivate-thread)))])
      (lambda (code* arg-reg)
        (asm-helper-call code* target %rax))))

  (define asm-indirect-call
    (lambda (code* t . ignore)
      ; NB: c-call is already required to be a register or memory operand, so
      ; no need to build a relocation entry.
      (Trivit (t)
        (emit call t code*))))

  (define asm-direct-jump
    (lambda (l offset)
      (let ([offset (adjust-return-point-offset offset l)])
        (asm-helper-jump '() (make-funcrel 'x86_64-jump l offset)))))

  (define asm-literal-jump
    (lambda (info)
      (asm-helper-jump '()
        `(x86_64-jump ,(info-literal-offset info)
           (,(info-literal-type info) ,(info-literal-addr info))))))

  (define asm-indirect-jump
    (lambda (t)
      (Trivit (t)
        (safe-assert (record-case t [(imm) (n) (signed-32? n)] [else #t]))
        (emit jmp t '()))))

  (define-who asm-return-address
    (lambda (dest l incr-offset next-addr)
      (make-rachunk dest l incr-offset next-addr
        (or (cond
              [(local-label-offset l) =>
               (lambda (offset)
                 (let ([incr-offset (adjust-return-point-offset incr-offset l)])
                   (let ([disp (fx- next-addr (fx- offset incr-offset))])
                     (and (signed-32? disp)
                          (Trivit (dest)
                            (emit lea `(riprel ,disp) dest '()))))))]
               [else #f])
            (asm-move '() dest (with-output-language (L16 Triv) `(label-ref ,l ,incr-offset)))))))

  (define asm-jump
    (lambda (l next-addr)
      (make-gchunk l next-addr
        (cond
          [(local-label-offset l) =>
           (lambda (offset)
             (let ([disp (fx- next-addr offset)])
               (safe-assert (signed-32? disp))
               (if (fx= disp 0)
                   '()
                   (emit bra `(label ,disp ,l) '()))))]
          [else
           ; label must be somewhere above.  generate something so that a hard loop
           ; doesn't get dropped.  this also has some chance of being the right size
           ; for the final branch instruction.
           (emit bra `(label 0 ,l) '())]))))

  (define-who asm-conditional-jump
    (lambda (info l1 l2 next-addr)
      (define get-disp-opnd
        (lambda (next-addr l)
          (cond
            [(and (local-label? l) (local-label-offset l)) =>
             (lambda (offset)
               (let ([disp (fx- next-addr offset)])
                 (safe-assert (signed-32? disp))
                 (values disp `(label ,disp ,l))))]
            [else (values 0 `(label 0 ,l))])))
      (safe-assert (and (local-label? l1) (local-label? l2)))
      (let ([type (info-condition-code-type info)]
            [reversed? (info-condition-code-reversed? info)])
        (make-cgchunk info l1 l2 next-addr
          (let ()
            (define-syntax pred-case
              (lambda (x)
                (define build-bop-seq
                  (lambda (bop opnd1 opnd2 l2 body)
                    #`(let ([code* (emit #,bop #,opnd1 code*)])
                        (let-values ([(disp #,opnd2) (get-disp-opnd (fx+ next-addr (asm-size* code*)) #,l2)])
                          #,body))))
                (define handle-or
                  (lambda (e opnd l)
                    (syntax-case e (or)
                      [(or bop1 bop2)
                       (build-bop-seq #'bop2 opnd opnd l
                         #`(emit bop1 #,opnd code*))]
                      [bop #`(emit bop #,opnd code*)])))
                (define handle-reverse
                  (lambda (e opnd l)
                    (syntax-case e (r?)
                      [(r? c1 c2) #`(if reversed? #,(handle-or #'c1 opnd l) #,(handle-or #'c2 opnd l))]
                      [_ (handle-or e opnd l)])))
                (define handle-inverse
                  (lambda (e)
                    (syntax-case e (i?)
                      [(i? c1 c2)
                       #`(cond
                           [(fx= disp1 0) #,(handle-reverse #'c1 #'opnd2 #'l2)]
                           [(fx= disp2 0) #,(handle-reverse #'c2 #'opnd1 #'l1)]
                           [else #,(build-bop-seq #'bra #'opnd2 #'opnd1 #'l1
                                     (handle-reverse #'c2 #'opnd1 #'l1))])]
                      [_ #`(cond ; treating e as c1: inverted condition, branching to false label
                             [(fx= disp1 0) #,(handle-reverse e #'opnd2 #'l2)]
                             [else #,(build-bop-seq #'bra #'opnd1 #'opnd2 #'l2
                                       (handle-reverse e #'opnd2 #'l2))])])))
                (syntax-case x ()
                  [(_ [(pred ...) cl-body] ...)
                   (with-syntax ([(cl-body ...) (map handle-inverse #'(cl-body ...))])
                     #'(let ([code* '()])
                         (let-values ([(disp1 opnd1) (get-disp-opnd next-addr l1)]
                                      [(disp2 opnd2) (get-disp-opnd next-addr l2)])
                           (case type
                             [(pred ...) cl-body] ...
                             [else ($oops who "~s branch type is currently unsupported" type)]))))])))
            (pred-case
              [(eq?) (i? bne beq)]
              [(u<) (i? (r? bls bcc) (r? bhi bcs))]
              [(<) (i? (r? ble bge) (r? bgt blt))]
              [(<=) (i? (r? blt bgt) (r? bge ble))]
              [(>) (i? (r? bge ble) (r? blt bgt))]
              [(>=) (i? (r? bgt blt) (r? ble bge))]
              [(overflow multiply-overflow) (i? bvc bvs)]
              [(positive) (i? ble bgt)]
              [(carry) (i? bcc bcs)]
              ; unordered: zf,pf,cf <- 111; gt: 000; lt: 001; eq: 100
              ; reversed & inverted: !(fl< y x) = !(fl> x y) iff zf = 1 & cf = 1
              [(fp<) bls]
              ; reversed & inverted: !(fl<= y x) = !(fl>= x y) iff cf = 1
              [(fp<=) bcs]
              ; inverted: !(fl= x y) iff zf = 0 or cf (or pf) = 1
              [(fp=) (or bne bcs)]))))))

  (define asm-helper-jump
    (lambda (code* reloc)
      (let ([jmp-reg (cons 'reg %ts)])
        (emit movi '(imm #xffffffff) jmp-reg
          (emit jmp jmp-reg
            (asm-helper-relocation code* reloc))))))

  (define asm-kill
    (lambda (code* dest)
      code*))

  (define asm-helper-call
    (lambda (code* reloc jmp-reg)
      (emit movi '(imm #xffffffff) (cons 'reg jmp-reg)
        (emit call (cons 'reg jmp-reg)
          (asm-helper-relocation code* reloc)))))

  (define asm-helper-relocation
    (lambda (code* reloc)
      (cons* reloc (aop-cons* `(asm "relocation:" ,reloc) code*))))

  (define-syntax asm-enter
    (lambda (x)
      (syntax-case x ()
        [(k e)
         (with-implicit (k %seq %inline)
           #'(%seq
               ; adjust to 16-byte boundary, accounting for 8-byte return address pushed by call
               (set! ,%sp ,(%inline - ,%sp (immediate 8)))
               ,e))])))

  (module (asm-foreign-call asm-foreign-callable)
    (if-feature windows
      (begin
        (define vint (vector %Carg1 %Carg2 %Carg3 %Carg4))
        (define vfp (vector %Cfparg1 %Cfparg2 %Cfparg3 %Cfparg4)))
      (begin
        (define vint (vector %Carg1 %Carg2 %Carg3 %Carg4 %Carg5 %Carg6))
        (define vfp (vector %Cfparg1 %Cfparg2 %Cfparg3 %Cfparg4 %Cfparg5 %Cfparg6 %Cfparg7 %Cfparg8))))

    (define (align n size)
      (fxlogand (fx+ n (fx- size 1)) (fx- size)))

    (define (classify-type type)
      (nanopass-case (Ltype Type) type
        [(fp-ftd& ,ftd) (classify-eightbytes ftd)]
        [else #f]))

    (define (classified-size type)
      (nanopass-case (Ltype Type) type
        [(fp-ftd& ,ftd) ($ftd-size ftd)]
        [else #f]))

    ;; classify-eightbytes: returns '(memory) or a nonemtpy list of 'integer/'sse
    (if-feature windows
      ;; Windows: either passed in one register or not
      (define (classify-eightbytes ftd)
	(cond
	 [($ftd-compound? ftd)
	  (if (memv ($ftd-size ftd) '(1 2 4 8))
	      '(integer)
	      '(memory))]
	 [(eq? 'float (caar ($ftd->members ftd)))
	  '(sse)]
	 [else '(integer)]))
      ;; Non-Windows: SYSV ABI is a more general classification of
      ;; 8-byte segments into 'integer, 'sse, or 'memory modes
      (define (classify-eightbytes ftd)
	(define (merge t1 t2)
	  (cond
	   [(eq? t1 t2) t1]
	   [(eq? t1 'no-class) t2]
	   [(eq? t2 'no-class) t1]
	   [(eq? t1 'memory) 'memory]
	   [(eq? t2 'memory) 'memory]
	   [else 'integer]))
	(cond
	 [(or (> ($ftd-size ftd) 16) ; more than 2 eightbytes => passed in memory
	      (fx= 0 ($ftd-size ftd)))
	  '(memory)]
	 [else
	  (let ([classes (make-vector (fxsrl (align ($ftd-size ftd) 8) 3) 'no-class)])
	    (let loop ([mbrs ($ftd->members ftd)])
	      (cond
	       [(null? mbrs)
		(vector->list classes)]
	       [else
		(let ([kind (caar mbrs)]
		      [size (cadar mbrs)]
		      [offset (caddar mbrs)])
		  (cond
		   [(not (fx= offset (align offset size)))
		    ;; misaligned
		    '(memory)]
		   [else
		    (let* ([pos (fxsrl offset 3)]
			   [class (vector-ref classes pos)]
			   [new-class (merge class (if (eq? kind 'float) 'sse 'integer))])
		      (cond
		       [(eq? new-class 'memory)
			'(memory)]
		       [else
			(vector-set! classes pos new-class)
			(loop (cdr mbrs))]))]))])))])))

    (define (count v l)
      (cond
       [(null? l) 0]
       [(eq? (car l) v) (fx+ 1 (count v (cdr l)))]
       [else (count v (cdr l))]))

    ;; A result is put in registers if it has up to two
    ;; eightbytes, each 'integer or 'sse. On Windows,
    ;; `result-classes` always has only one item.
    (define (result-fits-in-registers? result-classes)
      (and result-classes
           (not (eq? 'memory (car result-classes)))
           (or (null? (cdr result-classes))
               (null? (cddr result-classes)))))

    ;; An argument is put in registeres depending on how many
    ;; registers are left
    (define (pass-here-by-stack? classes iint ints ifp fps)
      (or (eq? 'memory (car classes))
          (fx> (fx+ iint ints) 6)
          (fx> (fx+ ifp fps) 8)))

    (module (push-registers pop-registers push-registers-size)
      (define (move-registers regs load?)
        (define (fp-reg? reg) (eq? (reg-type reg) 'fp))
        (with-output-language (L13 Effect)
          (let loop ([regs regs] [offset 0])
            (let* ([reg (car regs)]
                   [e (cond
                       [(fp-reg? reg)
                        (if load?
                            `(set! ,reg ,(%mref ,%sp ,%zero ,offset fp))
                            `(set! ,(%mref ,%sp ,%zero ,offset fp) ,reg))]
                       [load? `(set! ,reg ,(%mref ,%sp ,offset))]
                       [else `(set! ,(%mref ,%sp ,offset) ,reg)])]
                   [regs (cdr regs)])
              (if (null? regs)
                  e
                  `(seq ,e ,(loop regs (fx+ offset 8))))))))
      (define (push-registers-size regs)
        (align (fx* 8 (length regs)) 16))
      (define (push-registers regs)
        (with-output-language (L13 Effect)
          (%seq
            (set! ,%sp ,(%inline - ,%sp (immediate ,(push-registers-size regs))))
            ,(move-registers regs #f))))
      (define (pop-registers regs)
        (with-output-language (L13 Effect)
          (%seq
            ,(move-registers regs #t)
            (set! ,%sp ,(%inline + ,%sp (immediate ,(push-registers-size regs))))))))

    (define (as-c-call e)
      (if-feature windows
        (with-output-language (L13 Effect)
          (%seq
           (set! ,%sp ,(%inline - ,%sp (immediate 32)))
           ,e
           (set! ,%sp ,(%inline + ,%sp (immediate 32)))))
        e))

    (define asm-foreign-call
      (with-output-language (L13 Effect)
        (letrec ([load-double-stack
                  (lambda (offset)
                    (lambda (x) ; unboxed
                      `(set! ,(%mref ,%sp ,%zero ,offset fp) ,x)))]
                 [load-single-stack
                  (lambda (offset)
                    (lambda (x) ; unboxed
                      (%inline store-double->single ,(%mref ,%sp ,%zero ,offset fp) ,x)))]
                 [load-int-stack
                  (lambda (offset)
                    (lambda (rhs) ; requires rhs
                      `(set! ,(%mref ,%sp ,offset) ,rhs)))]
                 [load-double-reg
                  (lambda (fpreg)
                    (lambda (x) ; unboxed
                      `(set! ,fpreg ,x)))]
                 [load-double-reg2
                  (lambda (fpreg ireg)
                    (lambda (x) ; unboxed
                      (%seq
                        (set! ,fpreg ,x)
                        ;; To support the varargs convention, copy the value into a GP register
                        (set! ,ireg ,(%inline get-double ,fpreg)))))]
                 [load-single-reg
                  (lambda (fpreg)
                    (lambda (x) ; unboxed
                      `(set! ,fpreg ,(%inline double->single ,x))))]
                 [load-int-reg
                  (lambda (type ireg)
                    (lambda (x)
                      (cond
                        [(nanopass-case (Ltype Type) type [(fp-integer ,bits) (fx= bits 32)] [else #f])
                         ; original code generated movil or movl
                         (nanopass-case (L13 Rhs) x
                           [,t `(set! ,ireg ,(%inline zext32 ,t))]
                           ; here we use ireg twice to get around needing a temporary when
                           ; x is a non-triv right-hand-side
                           [else (%seq (set! ,ireg ,x) (set! ,ireg ,(%inline zext32 ,ireg)))])]
                        [else `(set! ,ireg ,x)])))]
                 [load-content-stack
                  (lambda (offset len)
                    (lambda (x) ; requires var
                      (let loop ([offset offset] [x-offset 0] [len len])
                        (cond
                         [(= len 0) `(nop)]
                         [(>= len 8)
                          `(seq
                            (set! ,(%mref ,%sp ,offset) (inline ,(make-info-load 'integer-64 #f)
                                                                ,%load ,x ,%zero (immediate ,x-offset)))
                            ,(loop (fx+ offset 8) (fx+ x-offset 8) (fx- len 8)))]
                         [(>= len 4)
                          `(seq
                            (set! ,(%mref ,%sp ,offset) (inline ,(make-info-load 'integer-32 #f)
                                                                ,%load ,x ,%zero (immediate ,x-offset)))
                            ,(loop (fx+ offset 4) (fx+ x-offset 4) (fx- len 4)))]
                         [(>= len 2)
                          `(seq
                            (set! ,(%mref ,%sp ,offset) (inline ,(make-info-load 'integer-16 #f)
                                                                ,%load ,x ,%zero (immediate ,x-offset)))
                            ,(loop (fx+ offset 2) (fx+ x-offset 2) (fx- len 2)))]
                         [else
                          `(set! ,(%mref ,%sp ,offset) (inline ,(make-info-load 'integer-8 #f)
                                                               ,%load ,x ,%zero (immediate ,x-offset)))]))))]
                 [load-content-regs
                  (lambda (classes size unsigned? iint ifp)
                    (lambda (x) ; requires var
                      (let loop ([size size] [iint iint] [ifp ifp] [classes classes] [x-offset 0])
                        (cond
                         [(null? classes) `(nop)]
                         [(eq? 'sse (car classes))
                          (cond
                           [(fx= size 4)
                            ;; Must be the last element
                            `(set! ,(vector-ref vfp ifp) ,(%inline load-single ,(%mref ,x ,%zero ,x-offset fp)))]
                           [else
                            `(seq
                              (set! ,(vector-ref vfp ifp) ,(%mref ,x ,%zero ,x-offset fp))
                              ,(loop (fx- size 8) iint (fx+ ifp 1) (cdr classes) (fx+ x-offset 8)))])]
                         ;; Remaining cases are integers:
                         [(>= size 8)
                          `(seq
                            (set! ,(vector-ref vint iint) (inline ,(make-info-load 'integer-64 #f)
                                                                  ,%load ,x ,%zero (immediate ,x-offset)))
                            ,(loop (fx- size 8) (fx+ iint 1) ifp (cdr classes) (fx+ x-offset 8)))]
                         ;; Remaining cases must be the last element
                         [else
                          (let loop ([reg (vector-ref vint iint)] [size size] [x-offset x-offset])
                            (cond
                             [(= size 4)
                              `(set! ,reg (inline ,(make-info-load (if unsigned? 'unsigned-32 'integer-32) #f)
                                                  ,%load ,x ,%zero (immediate ,x-offset)))]
                             [(= size 2)
                              `(set! ,reg (inline ,(make-info-load (if unsigned? 'unsigned-16 'integer-16) #f)
                                                  ,%load ,x ,%zero (immediate ,x-offset)))]
                             [(= size 1)
                              `(set! ,reg (inline ,(make-info-load (if unsigned? 'unsigned-8 'integer-8) #f)
                                                  ,%load ,x ,%zero (immediate ,x-offset)))]
                             [(> size 4)
                              ;; 5, 6, or 7: multiple steps to avoid reading too many bytes
                              (let ([tmp %rax]) ;; ?? ok to use %rax?
                                (%seq
                                 ,(loop reg (fx- size 4) (fx+ x-offset 4))
                                 (set! ,reg ,(%inline sll ,reg (immediate 32)))
                                 ,(loop tmp 4 x-offset)
                                 (set! ,reg ,(%inline + ,reg ,tmp))))]
                             [else
                              ;; 3: multiple steps to avoid reading too many bytes
                              (let ([tmp %rax]) ;; ?? ok to use %rax?
                                (%seq
                                 ,(loop reg (fx- size 2) (fx+ x-offset 2))
                                 (set! ,reg ,(%inline sll ,reg (immediate 16)))
                                 ,(loop tmp 2 x-offset)
                                 (set! ,reg ,(%inline + ,reg ,tmp))))]))]))))]
                 [add-regs
                  (lambda (ints ir vr regs)
                    (cond
                     [(fx= 0 ints) regs]
                     [else
                      (add-regs (fx- ints 1) (fx+ ir 1) vr
                                (cons (vector-ref vr ir) regs))]))]
                 [do-args
                  (lambda (types)
                    (if-feature windows
                      (let loop ([types types] [locs '()] [regs '()] [fp-regs '()] [i 0] [isp 0])
                        (if (null? types)
                            (values isp 0 locs regs fp-regs)
                            (nanopass-case (Ltype Type) (car types)
                              [(fp-double-float)
                               (if (< i 4)
                                   (let ([reg (vector-ref vint i)])
                                     (loop (cdr types)
                                       (cons (load-double-reg2 (vector-ref vfp i) reg) locs)
                                       (cons reg regs) (cons (vector-ref vfp i) fp-regs) (fx+ i 1) isp))
                                   (loop (cdr types)
                                     (cons (load-double-stack isp) locs)
                                     regs fp-regs i (fx+ isp 8)))]
                              [(fp-single-float)
                               (if (< i 4)
                                   (loop (cdr types)
                                     (cons (load-single-reg (vector-ref vfp i)) locs)
                                     regs (cons (vector-ref vfp i) fp-regs) (fx+ i 1) isp)
                                   (loop (cdr types)
                                     (cons (load-single-stack isp) locs)
                                     regs fp-regs i (fx+ isp 8)))]
                              [(fp-ftd& ,ftd)
                               (cond
                                [(memv ($ftd-size ftd) '(1 2 4 8))
                                 ;; pass as value in register or as value on the stack
                                 (cond
                                  [(< i 4)
                                   ;; pass as value in register
                                   (cond
                                    [(and (not ($ftd-compound? ftd))
                                          (eq? 'float (caar ($ftd->members ftd))))
                                     ;; float or double
                                     (loop (cdr types)
                                       (cons (load-content-regs '(sse) ($ftd-size ftd) #t i i) locs)
                                       (add-regs 1 i vint regs) (add-regs 1 i vfp fp-regs) (fx+ i 1) isp)]
                                    [else
                                     ;; integer
                                     (loop (cdr types)
                                       (cons (load-content-regs '(integer) ($ftd-size ftd) ($ftd-unsigned? ftd) i i) locs)
                                       (add-regs 1 i vint regs) fp-regs(fx+ i 1) isp)])]
                                  [else
                                   ;; pass as value on the stack
                                   (loop (cdr types)
                                     (cons (load-content-stack isp ($ftd-size ftd)) locs)
                                     regs fp-regs i (fx+ isp (align ($ftd-size ftd) 8)))])]
                                [else
                                 ;; pass by reference in register or by reference on the stack
                                 (cond
                                  [(< i 4)
                                   ;; pass by reference in a register
                                   (let ([reg (vector-ref vint i)])
                                     (loop (cdr types)
                                       (cons (load-int-reg (car types) reg) locs)
                                       (cons reg regs) fp-regs (fx+ i 1) isp))]
                                  [else
                                   ;; pass by reference on the stack
                                   (loop (cdr types)
                                     (cons (load-int-stack isp) locs)
                                     regs fp-regs i (fx+ isp 8))])])]
                              [else
                               (if (< i 4)
                                   (let ([reg (vector-ref vint i)])
                                     (loop (cdr types)
                                       (cons (load-int-reg (car types) reg) locs)
                                       (cons reg regs) fp-regs
                                       (fx+ i 1) isp))
                                   (loop (cdr types)
                                     (cons (load-int-stack isp) locs)
                                     regs fp-regs i (fx+ isp 8)))])))
                      (let loop ([types types] [locs '()] [regs '()] [fp-regs '()] [iint 0] [ifp 0] [isp 0])
                        (if (null? types)
                            (values isp ifp locs regs fp-regs)
                            (nanopass-case (Ltype Type) (car types)
                              [(fp-double-float)
                               (if (< ifp 8)
                                   (loop (cdr types)
                                     (cons (load-double-reg (vector-ref vfp ifp)) locs)
                                     regs (cons (vector-ref vfp ifp) fp-regs) iint (fx+ ifp 1) isp)
                                   (loop (cdr types)
                                     (cons (load-double-stack isp) locs)
                                     regs fp-regs iint ifp (fx+ isp 8)))]
                              [(fp-single-float)
                               (if (< ifp 8)
                                   (loop (cdr types)
                                     (cons (load-single-reg (vector-ref vfp ifp)) locs)
                                     regs (cons (vector-ref vfp ifp) fp-regs) iint (fx+ ifp 1) isp)
                                   (loop (cdr types)
                                     (cons (load-single-stack isp) locs)
                                     regs fp-regs iint ifp (fx+ isp 8)))]
                              [(fp-ftd& ,ftd)
                               (let* ([classes (classify-eightbytes ftd)]
                                      [ints (count 'integer classes)]
                                      [fps (count 'sse classes)])
                                 (cond
                                  [(pass-here-by-stack? classes iint ints ifp fps)
                                   ;; pass on the stack
                                   (loop (cdr types)
                                         (cons (load-content-stack isp ($ftd-size ftd)) locs)
                                         regs fp-regs iint ifp (fx+ isp (align ($ftd-size ftd) 8)))]
                                  [else
                                   ;; pass in registers
                                   (loop (cdr types)
                                         (cons (load-content-regs classes ($ftd-size ftd) ($ftd-unsigned? ftd) iint ifp) locs)
                                         (add-regs ints iint vint regs) (add-regs fps ifp vfp fp-regs)
                                         (fx+ iint ints) (fx+ ifp fps) isp)]))]
                              [else
                               (if (< iint 6)
                                   (let ([reg (vector-ref vint iint)])
                                     (loop (cdr types)
                                       (cons (load-int-reg (car types) reg) locs)
                                       (cons reg regs) fp-regs
                                       (fx+ iint 1) ifp isp))
                                   (loop (cdr types)
                                     (cons (load-int-stack isp) locs)
                                     regs fp-regs iint ifp (fx+ isp 8)))])))))])
          (define (add-deactivate adjust-active? t0 live* result-live* e)
            (cond
             [adjust-active?
              (let ([save-and-restore
                     (lambda (regs e)
                       (cond
                        [(null? regs) e]
                        [else (%seq ,(push-registers regs) ,e ,(pop-registers regs))]))])
                (%seq
                 (set! ,%deact ,t0)
                 ,(save-and-restore (cons %deact live*) (as-c-call (%inline deactivate-thread)))
                 ,e
                 ,(save-and-restore result-live* (as-c-call `(set! ,%rax ,(%inline activate-thread))))))]
             [else e]))
          (define (add-save-fill-target fill-result-here? frame-size locs)
            (cond
             [fill-result-here?
              ;; The callee isn't expecting a pointer to fill with the result.
              ;; Stash the pointer as an extra argument, and then when the
              ;; function returns, we'll move register content for the result
              ;; into the pointer's target
              (values (fx+ frame-size (constant ptr-bytes))
                      (append locs
                              (list
                               (lambda (x) ; requires var
                                 `(set! ,(%mref ,%sp ,frame-size) ,x)))))]
             [else
              (values frame-size locs)]))
          (define (add-fill-result c-call saved-offset classes size)
            (let loop ([classes classes] [offset 0] [iregs (reg-list %rax %rdx)] [fpregs (reg-list %Cfparg1 %Cfparg2)] [size size])
              (cond
               [(null? classes)
                `(seq
                  ,c-call
                  (set! ,%rcx ,(%mref ,%sp ,saved-offset)))]
               [(eq? 'sse (car classes))
                `(seq
                  ,(loop (cdr classes) (fx+ offset 8) iregs (cdr fpregs) (fx- size 8))
                  ,(case size
                     [(4) (%inline store-single ,(%mref ,%rcx ,%zero ,offset fp) ,(car fpregs))]
                     [else `(set! ,(%mref ,%rcx ,%zero ,offset fp) ,(car fpregs))]))]
               [else
                `(seq
                  ,(loop (cdr classes) (fx+ offset 8) (cdr iregs) fpregs (fx- size 8))
                  ,(let ([ireg (car iregs)])
                     (case size
                       [(1) `(inline ,(make-info-load 'integer-8 #f) ,%store
                                     ,%rcx ,%zero (immediate ,offset) ,ireg)]
                       [(2) `(inline ,(make-info-load 'integer-16 #f) ,%store
                                     ,%rcx ,%zero (immediate ,offset) ,ireg)]
                       [(3) (%seq
                             (inline ,(make-info-load 'integer-16 #f) ,%store
                                     ,%rcx ,%zero (immediate ,offset) ,ireg)
                             (set! ,ireg ,(%inline srl ,ireg (immediate 16)))
                             (inline ,(make-info-load 'integer-8 #f) ,%store
                                     ,%rcx ,%zero (immediate ,(fx+ 2 offset)) ,ireg))]
                       [(4) `(inline ,(make-info-load 'integer-32 #f) ,%store
                                     ,%rcx ,%zero (immediate ,offset) ,ireg)]
                       [(5 6 7) (%seq
                                 (inline ,(make-info-load 'integer-32 #f) ,%store
                                         ,%rcx ,%zero (immediate ,offset) ,ireg)
                                 (set! ,ireg ,(%inline srl ,ireg (immediate 32)))
                                 ,(case size
                                    [(5)
                                     `(inline ,(make-info-load 'integer-8 #f) ,%store
                                              ,%rcx ,%zero (immediate ,(fx+ 4 offset)) ,ireg)]
                                    [(6)
                                     `(inline ,(make-info-load 'integer-16 #f) ,%store
                                              ,%rcx ,%zero (immediate ,(fx+ 4 offset)) ,ireg)]
                                    [(7)
                                     (%seq
                                      (inline ,(make-info-load 'integer-16 #f) ,%store
                                              ,%rcx ,%zero (immediate ,(fx+ 4 offset)) ,ireg)
                                      (set! ,ireg ,(%inline srl ,ireg (immediate 16)))
                                      (inline ,(make-info-load 'integer-8 #f) ,%store
                                              ,%rcx ,%zero (immediate ,(fx+ 6 offset)) ,ireg))]))]
                       [else `(set! ,(%mref ,%rcx ,offset) ,ireg)])))])))
          (define (get-result-regs fill-result-here? result-type result-classes)
            (if fill-result-here?
                (let loop ([classes result-classes] [iregs (reg-list %rax %rdx)] [fpregs (reg-list %Cfparg1 %Cfparg2)])
                  (cond
                   [(null? classes) '()]
                   [(eq? 'sse (car classes))
                    (cons (car fpregs) (loop (cdr classes) iregs (cdr fpregs)))]
                   [else
                    (cons (car iregs) (loop (cdr classes) (cdr iregs) fpregs))]))
                (nanopass-case (Ltype Type) result-type
                  [(fp-double-float) (list %Cfpretval)]
                  [(fp-single-float) (list %Cfpretval)]
                  [(fp-void) '()]
                  [else (list %rax)])))
          (define returnem
            (lambda (frame-size locs ccall r-loc)
             ; need to maintain 16-byte alignment, ignoring the return address
             ; pushed by call instruction, which counts as part of callee's frame
             ; tc is callee-save; no need to save
              (let ([frame-size (logand (+ frame-size 15) -16)])
                (values (lambda ()
                          (if (fx= frame-size 0)
                              `(nop)
                              `(set! ,%sp ,(%inline - ,%sp (immediate ,frame-size)))))
                  (reverse locs)
                  ccall
                  r-loc
                  (lambda ()
                    (if (fx= frame-size 0)
                        `(nop)
                        `(set! ,%sp ,(%inline + ,%sp (immediate ,frame-size)))))))))
          (lambda (info)
            (safe-assert (reg-callee-save? %tc)) ; no need to save-restore
            (let* ([conv* (info-foreign-conv* info)]
                   [arg-type* (info-foreign-arg-type* info)]
                   [result-type (info-foreign-result-type info)]
                   [result-classes (classify-type result-type)]
                   [result-size (classified-size result-type)]
                   [fill-result-here? (result-fits-in-registers? result-classes)]
                   [result-reg* (get-result-regs fill-result-here? result-type result-classes)]
                   [adjust-active? (if-feature pthreads (memq 'adjust-active conv*) #f)])
              (with-values (do-args (if fill-result-here? (cdr arg-type*) arg-type*))
                (lambda (frame-size nfp locs live* fp-live*)
                  (with-values (add-save-fill-target fill-result-here? frame-size locs)
                    (lambda (frame-size locs)
                      (returnem frame-size locs
                        (lambda (t0 not-varargs?)
                          (let* ([t (if adjust-active? %deact t0)] ; need a register if `adjust-active?`
                                 [kill* (add-caller-save-registers result-reg*)]                                 
                                 [c-call
                                  (add-deactivate adjust-active? t0 (append fp-live* live*)
                                   result-reg*
                                   (if-feature windows
                                     (%seq
                                       (set! ,%sp ,(%inline - ,%sp (immediate 32)))
                                       (inline ,(make-info-kill*-live* kill* (append fp-live* live*)) ,%c-call ,t)
                                       (set! ,%sp ,(%inline + ,%sp (immediate 32))))
                                     (%seq
                                      ,(if not-varargs?
                                           `(nop)
                                           ;; System V ABI varargs functions require count of fp regs used in %al register.
                                           ;; since we don't know if the callee is a varargs function, we always set it.
                                           `(set! ,%rax (immediate ,nfp)))
                                      ,(let ([live* (append fp-live* live*)])
                                         `(inline ,(make-info-kill*-live* kill* (if not-varargs? live* (cons %rax live*))) ,%c-call ,t)))))])
                            (cond
                             [fill-result-here?
                              (add-fill-result c-call (fx- frame-size (constant ptr-bytes)) result-classes result-size)]
                             [else c-call])))
                        (nanopass-case (Ltype Type) result-type
                          [(fp-double-float)
                           (lambda (lvalue) ; unboxed
                             `(set! ,lvalue ,%Cfpretval))]
                          [(fp-single-float)
                           (lambda (lvalue) ; unboxed
                             `(set! ,lvalue ,(%inline single->double ,%Cfpretval)))]
                          [(fp-integer ,bits)
                           (case bits
                             [(8) (lambda (lvalue) `(set! ,lvalue ,(%inline sext8 ,%rax)))]
                             [(16) (lambda (lvalue) `(set! ,lvalue ,(%inline sext16 ,%rax)))]
                             [(32) (lambda (lvalue) `(set! ,lvalue ,(%inline sext32 ,%rax)))]
                             [(64) (lambda (lvalue) `(set! ,lvalue ,%rax))]
                             [else ($oops 'assembler-internal
                                     "unexpected asm-foreign-procedures fp-integer size ~s"
                                     bits)])]
                          [(fp-unsigned ,bits)
                           (case bits
                             [(8) (lambda (lvalue) `(set! ,lvalue ,(%inline zext8 ,%rax)))]
                             [(16) (lambda (lvalue) `(set! ,lvalue ,(%inline zext16 ,%rax)))]
                             [(32) (lambda (lvalue) `(set! ,lvalue ,(%inline zext32 ,%rax)))]
                             [(64) (lambda (lvalue) `(set! ,lvalue ,%rax))]
                             [else ($oops 'assembler-internal
                                     "unexpected asm-foreign-procedures fp-unsigned size ~s"
                                     bits)])]
                          [else (lambda (lvalue) `(set! ,lvalue ,%rax))])))))))))))

    (define asm-foreign-callable
      #|
      Windows:
                   Frame Layout
                   +---------------------------+
                   |                           |
                   |    incoming stack args    |
                   |                           |
                   +---------------------------+ <- 16-byte boundary
                   |                           | 
                   |  space for register args  | four quads
       sp+128/144: |                           | 
                   +---------------------------+ <- 16-byte boundary
                   |   incoming return address | one quad
      incoming sp: +---------------------------+
           sp+120: |        active state       | zero or two quads
                   +---------------------------+
                   |                           |
                   |   callee-save registers   | RBX, RBP, RDI, RSI, R12, R13, R14, R15 (8 quads)
                   |                           |                            and XMM6-11 (6 quads)
                   +---------------------------+
                   | pad word / indirect space | one quad
             sp+0: +---------------------------+<- 16-byte boundary
      
      
      Standard:
                   Frame Layout
                   +---------------------------+
                   |                           |
                   |    incoming stack args    |
           sp+192: |                           |
                   +---------------------------+ <- 16-byte boundary
                   |   incoming return address | one quad
                   +---------------------------+
           sp+176: |  pad word / active state  | one quad
                   +---------------------------+
                   |   indirect result space   | two quads
           sp+160: |  (for & results via regs) |
                   +---------------------------+<- 16-byte boundary
                   |                           | 
                   |    saved register args    | space for Carg*, Cfparg* (14 quads)
            sp+48: |                           |
                   +---------------------------+<- 16-byte boundary
                   |                           |
                   |   callee-save registers   | RBX, RBP, R12, R13, R14, R15 (6 quads)
                   |                           | 
             sp+0: +---------------------------+<- 16-byte boundary
      |#
      (with-output-language (L13 Effect)
        (let ()
          (define load-double-stack
            (lambda (offset)
              (lambda (x) ; boxed (always a var)
                `(set! ,(%mref ,x ,%zero ,(constant flonum-data-disp) fp)
                       ,(%mref ,%sp ,%zero ,offset fp)))))
          (define load-single-stack
            (lambda (offset)
              (lambda (x) ; boxed (always a var)
                `(set! ,(%mref ,x ,%zero ,(constant flonum-data-disp) fp)
                       ,(%inline load-single->double ,(%mref ,%sp ,%zero ,offset fp))))))
          (define load-int-stack
            (lambda (type offset)
              (lambda (lvalue)
                (nanopass-case (Ltype Type) type
                  [(fp-integer ,bits)
                   (case bits
                     [(8) `(set! ,lvalue (inline ,(make-info-load 'integer-8 #f) ,%load ,%sp ,%zero (immediate ,offset)))]
                     [(16) `(set! ,lvalue (inline ,(make-info-load 'integer-16 #f) ,%load ,%sp ,%zero (immediate ,offset)))]
                     [(32) `(set! ,lvalue (inline ,(make-info-load 'integer-32 #f) ,%load ,%sp ,%zero (immediate ,offset)))]
                     [(64) `(set! ,lvalue ,(%mref ,%sp ,offset))]
                     [else ($oops 'assembler-internal
                             "unexpected load-int-stack fp-integer size ~s"
                             bits)])]
                  [(fp-unsigned ,bits)
                   (case bits
                     [(8) `(set! ,lvalue (inline ,(make-info-load 'unsigned-8 #f) ,%load ,%sp ,%zero (immediate ,offset)))]
                     [(16) `(set! ,lvalue (inline ,(make-info-load 'unsigned-16 #f) ,%load ,%sp ,%zero (immediate ,offset)))]
                     [(32) `(set! ,lvalue (inline ,(make-info-load 'unsigned-32 #f) ,%load ,%sp ,%zero (immediate ,offset)))]
                     [(64) `(set! ,lvalue ,(%mref ,%sp ,offset))]
                     [else ($oops 'assembler-internal
                             "unexpected load-int-stack fp-unsigned size ~s"
                             bits)])]
                  [else `(set! ,lvalue ,(%mref ,%sp ,offset))]))))
          (define load-stack-address
            (lambda (offset)
              (lambda (lvalue) ; requires lvalue
                `(set! ,lvalue ,(%inline + ,%sp (immediate ,offset))))))
          (define save-arg-regs
            (lambda (types)
              (if-feature windows
                (let f ([types types] [i 0] [isp 8])
                  (if (or (null? types) (fx= i 4))
                      `(nop)
                      (nanopass-case (Ltype Type) (car types)
                        [(fp-double-float)
                         (if (< i 4)
                             (%seq
                               (set! ,(%mref ,%sp ,%zero ,isp fp) ,(vector-ref vfp i))
                               ,(f (cdr types) (fx+ i 1) (fx+ isp 8)))
                             (f (cdr types) i isp))]
                        [(fp-single-float)
                         (if (< i 4)
                             (%seq
                               ,(%inline store-single ,(%mref ,%sp ,%zero ,isp fp) ,(vector-ref vfp i))
                               ,(f (cdr types) (fx+ i 1) (fx+ isp 8)))
                             (f (cdr types) i isp))]
                        [(fp-ftd& ,ftd)
                         (cond
                          [(memv ($ftd-size ftd) '(1 2 4 8))
                           ;; receive as value in register or on the stack
                           (cond
                            [(< i 4)
                             ;; receive in register
                             (cond
                              [(and (not ($ftd-compound? ftd))
                                    (eq? 'float (caar ($ftd->members ftd))))
                               ;; float or double
                               `(seq
                                 (set! ,(%mref ,%sp ,%zero ,isp fp) ,(vector-ref vfp i))
                                 ,(f (cdr types) (fx+ i 1) (fx+ isp 8)))]
                              [else
                               ;; integer
                               `(seq
                                 (set! ,(%mref ,%sp ,isp) ,(vector-ref vint i))
                                 ,(f (cdr types) (fx+ i 1) (fx+ isp 8)))])]
                            [else
                             ;; receive by value on the stack
                             (f (cdr types) i isp)])]
                          [else
                           ;; receive by reference in register or on the stack
                           (cond
                            [(< i 4)
                             ;; receive by reference in register
                             `(seq
                               (set! ,(%mref ,%sp ,isp) ,(vector-ref vint i))
                               ,(f (cdr types) (fx+ i 1) (fx+ isp 8)))]
                            [else
                             ;; receive by reference on the stack
                             (f (cdr types) i isp)])])]
                        [else
                         (if (< i 4)
                             (%seq
                               (set! ,(%mref ,%sp ,isp) ,(vector-ref vint i))
                               ,(f (cdr types) (fx+ i 1) (fx+ isp 8)))
                             (f (cdr types) i isp))])))
                (let f ([types types] [iint 0] [ifp 0] [isp 48])
                  (if (or (null? types) (and (fx>= iint 6) (fx>= ifp 8)))
                      `(nop)
                      (nanopass-case (Ltype Type) (car types)
                        [(fp-double-float)
                         (if (< ifp 8)
                             (%seq
                               (set! ,(%mref ,%sp ,%zero ,isp fp) ,(vector-ref vfp ifp))
                               ,(f (cdr types) iint (fx+ ifp 1) (fx+ isp 8)))
                             (f (cdr types) iint ifp isp))]
                        [(fp-single-float)
                         (if (< ifp 8)
                             (%seq
                               ,(%inline store-single ,(%mref ,%sp ,%zero ,isp fp) ,(vector-ref vfp ifp))
                               ,(f (cdr types) iint (fx+ ifp 1) (fx+ isp 8)))
                             (f (cdr types) iint ifp isp))]
                        [(fp-ftd& ,ftd)
                         (let* ([classes (classify-eightbytes ftd)]
                                [ints (count 'integer classes)]
                                [fps (count 'sse classes)])
                           (cond
                            [(pass-here-by-stack? classes iint ints ifp fps)
                             ;; receive on the stack
                             (f (cdr types) iint ifp isp)]
                            [else
                             ;; receive via registers
                             (let reg-loop ([classes classes] [iint iint] [ifp ifp] [isp isp])
                               (cond
                                [(null? classes)
                                 (f (cdr types) iint ifp isp)]
                                [(eq? (car classes) 'sse)
                                 `(seq
                                   (set! ,(%mref ,%sp ,%zero ,isp fp) ,(vector-ref vfp ifp))
                                   ,(reg-loop (cdr classes) iint (fx+ ifp 1) (+ isp 8)))]
                                [else
                                 `(seq
                                   (set! ,(%mref ,%sp ,isp) ,(vector-ref vint iint))
                                   ,(reg-loop (cdr classes) (fx+ iint 1) ifp (+ isp 8)))]))]))]
                        [else
                         (if (< iint 6)
                             (%seq
                               (set! ,(%mref ,%sp ,isp) ,(vector-ref vint iint))
                               ,(f (cdr types) (fx+ iint 1) ifp (fx+ isp 8)))
                             (f (cdr types) iint ifp isp))]))))))
          (define do-stack
            (lambda (types adjust-active?)
             ; risp is where incoming register args are stored
             ; sisp is where incoming stack args are stored
              (if-feature windows
                (let f ([types types] [locs '()] [isp (if adjust-active? 144 128)])
                  (if (null? types)
                      locs
                      (f (cdr types)
                         (cons
                           (nanopass-case (Ltype Type) (car types)
                             [(fp-double-float) (load-double-stack isp)]
                             [(fp-single-float) (load-single-stack isp)]
			     [(fp-ftd& ,ftd)
			      (cond
			       [(memq ($ftd-size ftd) '(1 2 4 8))
				;; passed by value
				(load-stack-address isp)]
			       [else
				;; passed by reference
				(load-int-stack (car types) isp)])]
                             [else (load-int-stack (car types) isp)])
                           locs)
                         (fx+ isp 8))))
                (let f ([types types]
                        [locs '()]
                        [iint 0]
                        [ifp 0]
                        [risp 48]
                        [sisp 192])
                  (if (null? types)
                      locs
                      (nanopass-case (Ltype Type) (car types)
                        [(fp-double-float)
                         (if (= ifp 8)
                             (f (cdr types)
                               (cons (load-double-stack sisp) locs)
                               iint ifp risp (fx+ sisp 8))
                             (f (cdr types)
                               (cons (load-double-stack risp) locs)
                               iint (fx+ ifp 1) (fx+ risp 8) sisp))]
                        [(fp-single-float)
                         (if (= ifp 8)
                             (f (cdr types)
                               (cons (load-single-stack sisp) locs)
                               iint ifp risp (fx+ sisp 8))
                             (f (cdr types)
                               (cons (load-single-stack risp) locs)
                               iint (fx+ ifp 1) (fx+ risp 8) sisp))]
                        [(fp-ftd& ,ftd)
                         (let* ([classes (classify-eightbytes ftd)]
                                [ints (count 'integer classes)]
                                [fps (count 'sse classes)])
                           (cond
                            [(pass-here-by-stack? classes iint ints ifp fps)
                             ;; receive on the stack
                             (f (cdr types)
                                (cons (load-stack-address sisp) locs)
                                iint ifp risp (fx+ sisp ($ftd-size ftd)))]
                            [else
                             ;; receive via registers; `save-args-regs` has saved
                             ;; the registers in a suitable order so that the data
                             ;; is contiguous on the stack
                             (f (cdr types)
                                (cons (load-stack-address risp) locs)
                                (fx+ iint ints) (fx+ ifp fps) (fx+ risp (fx* 8 (fx+ ints fps))) sisp)]))]
                        [else
                         (if (= iint 6)
                             (f (cdr types)
                               (cons (load-int-stack (car types) sisp) locs)
                               iint ifp risp (fx+ sisp 8))
                             (f (cdr types)
                               (cons (load-int-stack (car types) risp) locs)
                               (fx+ iint 1) ifp (fx+ risp 8) sisp))]))))))
          (define (do-result result-type result-classes adjust-active?)
            (nanopass-case (Ltype Type) result-type
              [(fp-ftd& ,ftd)
               (cond
                [(result-fits-in-registers? result-classes)
                 ;; Copy content of result area on stack into
                 ;; the integer and floating-point registers
                 (let loop ([result-classes result-classes]
                            [offset (if-feature windows 0 160)]
                            [int* (list %rax %rdx)]
                            [fp* (list %Cfpretval %Cfparg2)]
                            [accum '()]
                            [live* '()]
                            [fp-live* '()])
                   (cond
                    [(null? result-classes)
                     (values (lambda ()
                               (if (pair? (cdr accum)) `(seq ,(car accum) ,(cadr accum)) (car accum)))
                             live*
                             fp-live*)]
                    [(eq? (car result-classes) 'integer)
                     (loop (cdr result-classes)
                           (fx+ offset 8)
                           (cdr int*)
                           fp*
                           (cons `(set! ,(car int*) ,(%mref ,%sp ,offset))
                                 accum)
                           (cons (car int*) live*)
                           fp-live*)]
                    [(eq? (car result-classes) 'sse)
                     (loop (cdr result-classes)
                           (fx+ offset 8)
                           int*
                           (cdr fp*)
                           (cons `(set! ,(car fp*) ,(%mref ,%sp ,%zero ,offset fp))
                                 accum)
                           live*
                           (cons (car fp*) fp-live*))]))]
                [else
                 (values (lambda ()
                           ;; Return pointer that was filled; destination was the first argument
                           `(set! ,%Cretval ,(%mref ,%sp ,(if-feature windows (if adjust-active? 144 128) 48))))
                         (list %Cretval)
                         '())])]
              [(fp-double-float)
               (values
                (lambda (x) ; boxed (always a var)
                  `(set! ,%Cfpretval ,(%mref ,x ,%zero ,(constant flonum-data-disp) fp)))
                '()
                (list %Cfpretval))]
              [(fp-single-float)
               (values
                (lambda (x) ; boxed (always a var)
                  `(set! ,%Cfpretval ,(%inline double->single ,(%mref ,x ,%zero ,(constant flonum-data-disp) fp))))
                '()
                (list %Cfpretval))]
              [(fp-void)
               (values (lambda () `(nop))
                       '()
                       '())]
              [else
               (values (lambda (x)
                         `(set! ,%Cretval ,x))
                       (list %Cretval)
                       '())]))
          (define (unactivate result-regs)
            (let ([e `(seq
                       (set! ,%Carg1 ,(%mref ,%sp ,(+ (push-registers-size result-regs) (if-feature windows 120 176))))
                       ,(as-c-call (%inline unactivate-thread ,%Carg1)))])
              (if (null? result-regs)
                  e
                  (%seq
                   ,(push-registers result-regs)
                   ,e
                   ,(pop-registers result-regs)))))
          (lambda (info)
            (let ([conv* (info-foreign-conv* info)]
                  [arg-type* (info-foreign-arg-type* info)]
                  [result-type (info-foreign-result-type info)])
              (let* ([result-classes (classify-type result-type)]
                     [adjust-active? (if-feature pthreads (memq 'adjust-active conv*) #f)]
                     [synthesize-first? (and result-classes
                                             (result-fits-in-registers? result-classes))]
                     [locs (do-stack (if synthesize-first? (cdr arg-type*) arg-type*) adjust-active?)])
                (let-values ([(get-result result-regs result-fp-regs) (do-result result-type result-classes adjust-active?)])
                  (values
                   (lambda ()
                     (%seq
                      ,(if-feature windows
                         (%seq
                           ,(let ([e (save-arg-regs arg-type*)])
                              (if adjust-active?
                                  (%seq
                                    ,e
                                    (set! ,%sp ,(%inline - ,%sp (immediate 16))))
                                  e))
                           ,(%inline push ,%rbx)
                           ,(%inline push ,%rbp)
                           ,(%inline push ,%rdi)
                           ,(%inline push ,%rsi)
                           ,(%inline push ,%r12)
                           ,(%inline push ,%r13)
                           ,(%inline push ,%r14)
                           ,(%inline push ,%r15)
                           (set! ,%sp ,(%inline - ,%sp (immediate 48)))
                           (set! ,(%mref ,%sp ,%zero 0 fp) ,%fp3)
                           (set! ,(%mref ,%sp ,%zero 8 fp) ,%fp4)
                           (set! ,(%mref ,%sp ,%zero 16 fp) ,%fp5)
                           (set! ,(%mref ,%sp ,%zero 24 fp) ,%fp6)
                           (set! ,(%mref ,%sp ,%zero 32 fp) ,%fp7)
                           (set! ,(%mref ,%sp ,%zero 40 fp) ,%fp8)
                           (set! ,%sp ,(%inline - ,%sp (immediate 8))))
                         (%seq
                           (set! ,%sp ,(%inline - ,%sp (immediate 136)))
                           ,(%inline push ,%rbx)
                           ,(%inline push ,%rbp)
                           ,(%inline push ,%r12)
                           ,(%inline push ,%r13)
                           ,(%inline push ,%r14)
                           ,(%inline push ,%r15)
                           ,(save-arg-regs arg-type*)))
                      ,(if-feature pthreads
                         ((lambda (e)
                            (if adjust-active?
                                (%seq
                                 ,(as-c-call `(set! ,%rax ,(%inline activate-thread)))
                                 (set! ,(%mref ,%sp ,(if-feature windows 120 176)) ,%rax)
                                 ,e)
                                e))
                          (%seq 
                           (set! ,%rax ,(%inline get-tc))
                           (set! ,%tc ,%rax)))
                         `(set! ,%tc (literal ,(make-info-literal #f 'entry (lookup-c-entry thread-context) 0))))))
                   (let ([locs (reverse locs)])
                     (if synthesize-first?
                         (cons (load-stack-address (if-feature windows 0 160)) ; space on stack for results to be returned via registers
                               locs)
                         locs))
                   get-result
                   (lambda ()
                     (define callee-save-regs
                       (if-feature windows
                         (list %rbx %rbp %rdi %rsi %r12 %r13 %r14 %r15
                               %fp3 %fp4 %fp5 %fp6 %fp7 %fp8)
                         (list %rbx %rbp %r12 %r13 %r14 %r15)))
                     (in-context Tail
                      ((lambda (e)
                         (if adjust-active?
                             (%seq
                              ,(unactivate (append result-fp-regs result-regs))
                              ,e)
                             e))
                       (%seq
                        ,(if-feature windows
                           ((lambda (e)
                              (if adjust-active?
                                  (%seq ,e (set! ,%sp ,(%inline + ,%sp (immediate 16))))
                                  e))
                            (%seq
                             (set! ,%sp ,(%inline + ,%sp (immediate 8)))
                             (set! ,%fp3 ,(%mref ,%sp ,%zero 0 fp))
                             (set! ,%fp4 ,(%mref ,%sp ,%zero 8 fp))
                             (set! ,%fp5 ,(%mref ,%sp ,%zero 16 fp))
                             (set! ,%fp6 ,(%mref ,%sp ,%zero 24 fp))
                             (set! ,%fp7 ,(%mref ,%sp ,%zero 32 fp))
                             (set! ,%fp8 ,(%mref ,%sp ,%zero 40 fp))
                             (set! ,%sp ,(%inline + ,%sp (immediate 48)))
                             (set! ,%r15 ,(%inline pop))
                             (set! ,%r14 ,(%inline pop))
                             (set! ,%r13 ,(%inline pop))
                             (set! ,%r12 ,(%inline pop))
                             (set! ,%rsi ,(%inline pop))
                             (set! ,%rdi ,(%inline pop))
                             (set! ,%rbp ,(%inline pop))
                             (set! ,%rbx ,(%inline pop))))
                           (%seq
                             (set! ,%r15 ,(%inline pop))
                             (set! ,%r14 ,(%inline pop))
                             (set! ,%r13 ,(%inline pop))
                             (set! ,%r12 ,(%inline pop))
                             (set! ,%rbp ,(%inline pop))
                             (set! ,%rbx ,(%inline pop))
                             (set! ,%sp ,(%inline + ,%sp (immediate 136)))))
                        (asm-c-return ,null-info ,callee-save-regs ... ,result-regs ... ,result-fp-regs ...))))))))))))))
  )