summaryrefslogtreecommitdiff
path: root/silx/gui/plot/items/scatter.py
diff options
context:
space:
mode:
Diffstat (limited to 'silx/gui/plot/items/scatter.py')
-rw-r--r--silx/gui/plot/items/scatter.py429
1 files changed, 411 insertions, 18 deletions
diff --git a/silx/gui/plot/items/scatter.py b/silx/gui/plot/items/scatter.py
index b2f087b..50cc694 100644
--- a/silx/gui/plot/items/scatter.py
+++ b/silx/gui/plot/items/scatter.py
@@ -25,11 +25,15 @@
"""This module provides the :class:`Scatter` item of the :class:`Plot`.
"""
+from __future__ import division
+
+
__authors__ = ["T. Vincent", "P. Knobel"]
__license__ = "MIT"
__date__ = "29/03/2017"
+from collections import namedtuple
import logging
import threading
import numpy
@@ -37,10 +41,13 @@ import numpy
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, CancelledError
+from ....utils.proxy import docstring
+from ....math.combo import min_max
from ....utils.weakref import WeakList
from .._utils.delaunay import delaunay
from .core import PointsBase, ColormapMixIn, ScatterVisualizationMixIn
from .axis import Axis
+from ._pick import PickingResult
_logger = logging.getLogger(__name__)
@@ -79,6 +86,184 @@ class _GreedyThreadPoolExecutor(ThreadPoolExecutor):
return future
+# Functions to guess grid shape from coordinates
+
+def _get_z_line_length(array):
+ """Return length of line if array is a Z-like 2D regular grid.
+
+ :param numpy.ndarray array: The 1D array of coordinates to check
+ :return: 0 if no line length could be found,
+ else the number of element per line.
+ :rtype: int
+ """
+ sign = numpy.sign(numpy.diff(array))
+ if len(sign) == 0 or sign[0] == 0: # We don't handle that
+ return 0
+ # Check this way to account for 0 sign (i.e., diff == 0)
+ beginnings = numpy.where(sign == - sign[0])[0] + 1
+ if len(beginnings) == 0:
+ return 0
+ length = beginnings[0]
+ if numpy.all(numpy.equal(numpy.diff(beginnings), length)):
+ return length
+ return 0
+
+
+def _guess_z_grid_shape(x, y):
+ """Guess the shape of a grid from (x, y) coordinates.
+
+ The grid might contain more elements than x and y,
+ as the last line might be partly filled.
+
+ :param numpy.ndarray x:
+ :paran numpy.ndarray y:
+ :returns: (order, (height, width)) of the regular grid,
+ or None if could not guess one.
+ 'order' is 'row' if X (i.e., column) is the fast dimension, else 'column'.
+ :rtype: Union[List(str,int),None]
+ """
+ width = _get_z_line_length(x)
+ if width != 0:
+ return 'row', (int(numpy.ceil(len(x) / width)), width)
+ else:
+ height = _get_z_line_length(y)
+ if height != 0:
+ return 'column', (height, int(numpy.ceil(len(y) / height)))
+ return None
+
+
+def is_monotonic(array):
+ """Returns whether array is monotonic (increasing or decreasing).
+
+ :param numpy.ndarray array: 1D array-like container.
+ :returns: 1 if array is monotonically increasing,
+ -1 if array is monotonically decreasing,
+ 0 if array is not monotonic
+ :rtype: int
+ """
+ diff = numpy.diff(numpy.ravel(array))
+ if numpy.all(diff >= 0):
+ return 1
+ elif numpy.all(diff <= 0):
+ return -1
+ else:
+ return 0
+
+
+def _guess_grid(x, y):
+ """Guess a regular grid from the points.
+
+ Result convention is (x, y)
+
+ :param numpy.ndarray x: X coordinates of the points
+ :param numpy.ndarray y: Y coordinates of the points
+ :returns: (order, (height, width)
+ order is 'row' or 'column'
+ :rtype: Union[List[str,List[int]],None]
+ """
+ x, y = numpy.ravel(x), numpy.ravel(y)
+
+ guess = _guess_z_grid_shape(x, y)
+ if guess is not None:
+ return guess
+
+ else:
+ # Cannot guess a regular grid
+ # Let's assume it's a single line
+ order = 'row' # or 'column' doesn't matter for a single line
+ y_monotonic = is_monotonic(y)
+ if is_monotonic(x) or y_monotonic: # we can guess a line
+ x_min, x_max = min_max(x)
+ y_min, y_max = min_max(y)
+
+ if not y_monotonic or x_max - x_min >= y_max - y_min:
+ # x only is monotonic or both are and X varies more
+ # line along X
+ shape = 1, len(x)
+ else:
+ # y only is monotonic or both are and Y varies more
+ # line along Y
+ shape = len(y), 1
+
+ else: # Cannot guess a line from the points
+ return None
+
+ return order, shape
+
+
+def _quadrilateral_grid_coords(points):
+ """Compute an irregular grid of quadrilaterals from a set of points
+
+ The input points are expected to lie on a grid.
+
+ :param numpy.ndarray points:
+ 3D data set of 2D input coordinates (height, width, 2)
+ height and width must be at least 2.
+ :return: 3D dataset of 2D coordinates of the grid (height+1, width+1, 2)
+ """
+ assert points.ndim == 3
+ assert points.shape[0] >= 2
+ assert points.shape[1] >= 2
+ assert points.shape[2] == 2
+
+ dim0, dim1 = points.shape[:2]
+ grid_points = numpy.zeros((dim0 + 1, dim1 + 1, 2), dtype=numpy.float64)
+
+ # Compute inner points as mean of 4 neighbours
+ neighbour_view = numpy.lib.stride_tricks.as_strided(
+ points,
+ shape=(dim0 - 1, dim1 - 1, 2, 2, points.shape[2]),
+ strides=points.strides[:2] + points.strides[:2] + points.strides[-1:], writeable=False)
+ inner_points = numpy.mean(neighbour_view, axis=(2, 3))
+ grid_points[1:-1, 1:-1] = inner_points
+
+ # Compute 'vertical' sides
+ # Alternative: grid_points[1:-1, [0, -1]] = points[:-1, [0, -1]] + points[1:, [0, -1]] - inner_points[:, [0, -1]]
+ grid_points[1:-1, [0, -1], 0] = points[:-1, [0, -1], 0] + points[1:, [0, -1], 0] - inner_points[:, [0, -1], 0]
+ grid_points[1:-1, [0, -1], 1] = inner_points[:, [0, -1], 1]
+
+ # Compute 'horizontal' sides
+ grid_points[[0, -1], 1:-1, 0] = inner_points[[0, -1], :, 0]
+ grid_points[[0, -1], 1:-1, 1] = points[[0, -1], :-1, 1] + points[[0, -1], 1:, 1] - inner_points[[0, -1], :, 1]
+
+ # Compute corners
+ d0, d1 = [0, 0, -1, -1], [0, -1, -1, 0]
+ grid_points[d0, d1] = 2 * points[d0, d1] - inner_points[d0, d1]
+ return grid_points
+
+
+def _quadrilateral_grid_as_triangles(points):
+ """Returns the points and indices to make a grid of quadirlaterals
+
+ :param numpy.ndarray points:
+ 3D array of points (height, width, 2)
+ :return: triangle corners (4 * N, 2), triangle indices (2 * N, 3)
+ With N = height * width, the number of input points
+ """
+ nbpoints = numpy.prod(points.shape[:2])
+
+ grid = _quadrilateral_grid_coords(points)
+ coords = numpy.empty((4 * nbpoints, 2), dtype=grid.dtype)
+ coords[::4] = grid[:-1, :-1].reshape(-1, 2)
+ coords[1::4] = grid[1:, :-1].reshape(-1, 2)
+ coords[2::4] = grid[:-1, 1:].reshape(-1, 2)
+ coords[3::4] = grid[1:, 1:].reshape(-1, 2)
+
+ indices = numpy.empty((2 * nbpoints, 3), dtype=numpy.uint32)
+ indices[::2, 0] = numpy.arange(0, 4 * nbpoints, 4)
+ indices[::2, 1] = numpy.arange(1, 4 * nbpoints, 4)
+ indices[::2, 2] = numpy.arange(2, 4 * nbpoints, 4)
+ indices[1::2, 0] = indices[::2, 1]
+ indices[1::2, 1] = indices[::2, 2]
+ indices[1::2, 2] = numpy.arange(3, 4 * nbpoints, 4)
+
+ return coords, indices
+
+
+_RegularGridInfo = namedtuple(
+ '_RegularGridInfo', ['bounds', 'origin', 'scale', 'shape', 'order'])
+
+
class Scatter(PointsBase, ColormapMixIn, ScatterVisualizationMixIn):
"""Description of a scatter"""
@@ -87,7 +272,10 @@ class Scatter(PointsBase, ColormapMixIn, ScatterVisualizationMixIn):
_SUPPORTED_SCATTER_VISUALIZATION = (
ScatterVisualizationMixIn.Visualization.POINTS,
- ScatterVisualizationMixIn.Visualization.SOLID)
+ ScatterVisualizationMixIn.Visualization.SOLID,
+ ScatterVisualizationMixIn.Visualization.REGULAR_GRID,
+ ScatterVisualizationMixIn.Visualization.IRREGULAR_GRID,
+ )
"""Overrides supported Visualizations"""
def __init__(self):
@@ -104,7 +292,86 @@ class Scatter(PointsBase, ColormapMixIn, ScatterVisualizationMixIn):
# Cache triangles: x, y, indices
self.__cacheTriangles = None, None, None
+
+ # Cache regular grid info
+ self.__cacheRegularGridInfo = None
+
+ @docstring(ScatterVisualizationMixIn)
+ def setVisualizationParameter(self, parameter, value):
+ changed = super(Scatter, self).setVisualizationParameter(parameter, value)
+ if changed and parameter in (self.VisualizationParameter.GRID_BOUNDS,
+ self.VisualizationParameter.GRID_MAJOR_ORDER,
+ self.VisualizationParameter.GRID_SHAPE):
+ self.__cacheRegularGridInfo = None
+ return changed
+
+ @docstring(ScatterVisualizationMixIn)
+ def getCurrentVisualizationParameter(self, parameter):
+ value = self.getVisualizationParameter(parameter)
+ if value is not None:
+ return value # Value has been set, return it
+
+ elif parameter is self.VisualizationParameter.GRID_BOUNDS:
+ grid = self.__getRegularGridInfo()
+ return None if grid is None else grid.bounds
+ elif parameter is self.VisualizationParameter.GRID_MAJOR_ORDER:
+ grid = self.__getRegularGridInfo()
+ return None if grid is None else grid.order
+
+ elif parameter is self.VisualizationParameter.GRID_SHAPE:
+ grid = self.__getRegularGridInfo()
+ return None if grid is None else grid.shape
+
+ else:
+ raise NotImplementedError()
+
+ def __getRegularGridInfo(self):
+ """Get grid info"""
+ if self.__cacheRegularGridInfo is None:
+ shape = self.getVisualizationParameter(
+ self.VisualizationParameter.GRID_SHAPE)
+ order = self.getVisualizationParameter(
+ self.VisualizationParameter.GRID_MAJOR_ORDER)
+ if shape is None or order is None:
+ guess = _guess_grid(self.getXData(copy=False),
+ self.getYData(copy=False))
+ if guess is None:
+ _logger.warning(
+ 'Cannot guess a grid: Cannot display as regular grid image')
+ return None
+ if shape is None:
+ shape = guess[1]
+ if order is None:
+ order = guess[0]
+
+ bounds = self.getVisualizationParameter(
+ self.VisualizationParameter.GRID_BOUNDS)
+ if bounds is None:
+ x, y = self.getXData(copy=False), self.getYData(copy=False)
+ min_, max_ = min_max(x)
+ xRange = (min_, max_) if (x[0] - min_) < (max_ - x[0]) else (max_, min_)
+ min_, max_ = min_max(y)
+ yRange = (min_, max_) if (y[0] - min_) < (max_ - y[0]) else (max_, min_)
+ bounds = (xRange[0], yRange[0]), (xRange[1], yRange[1])
+
+ begin, end = bounds
+ scale = ((end[0] - begin[0]) / max(1, shape[1] - 1),
+ (end[1] - begin[1]) / max(1, shape[0] - 1))
+ if scale[0] == 0 and scale[1] == 0:
+ scale = 1., 1.
+ elif scale[0] == 0:
+ scale = scale[1], scale[1]
+ elif scale[1] == 0:
+ scale = scale[0], scale[0]
+
+ origin = begin[0] - 0.5 * scale[0], begin[1] - 0.5 * scale[1]
+
+ self.__cacheRegularGridInfo = _RegularGridInfo(
+ bounds=bounds, origin=origin, scale=scale, shape=shape, order=order)
+
+ return self.__cacheRegularGridInfo
+
def _addBackendRenderer(self, backend):
"""Update backend renderer"""
# Filter-out values <= 0
@@ -129,8 +396,10 @@ class Scatter(PointsBase, ColormapMixIn, ScatterVisualizationMixIn):
# Apply mask to colors
rgbacolors = rgbacolors[mask]
- if self.getVisualization() is self.Visualization.POINTS:
- return backend.addCurve(xFiltered, yFiltered, self.getLegend(),
+ visualization = self.getVisualization()
+
+ if visualization is self.Visualization.POINTS:
+ return backend.addCurve(xFiltered, yFiltered,
color=rgbacolors,
symbol=self.getSymbol(),
linewidth=0,
@@ -139,32 +408,153 @@ class Scatter(PointsBase, ColormapMixIn, ScatterVisualizationMixIn):
xerror=xerror,
yerror=yerror,
z=self.getZValue(),
- selectable=self.isSelectable(),
fill=False,
alpha=self.getAlpha(),
- symbolsize=self.getSymbolSize())
+ symbolsize=self.getSymbolSize(),
+ baseline=None)
- else: # 'solid'
+ else:
plot = self.getPlot()
if (plot is None or
plot.getXAxis().getScale() != Axis.LINEAR or
plot.getYAxis().getScale() != Axis.LINEAR):
- # Solid visualization is not available with log scaled axes
+ # Those visualizations are not available with log scaled axes
return None
- triangulation = self._getDelaunay().result()
- if triangulation is None:
- return None
- else:
- triangles = triangulation.simplices.astype(numpy.int32)
- return backend.addTriangles(xFiltered,
- yFiltered,
- triangles,
- legend=self.getLegend(),
- color=rgbacolors,
+ if visualization is self.Visualization.SOLID:
+ triangulation = self._getDelaunay().result()
+ if triangulation is None:
+ _logger.warning(
+ 'Cannot get a triangulation: Cannot display as solid surface')
+ return None
+ else:
+ triangles = triangulation.simplices.astype(numpy.int32)
+ return backend.addTriangles(xFiltered,
+ yFiltered,
+ triangles,
+ color=rgbacolors,
+ z=self.getZValue(),
+ alpha=self.getAlpha())
+
+ elif visualization is self.Visualization.REGULAR_GRID:
+ gridInfo = self.__getRegularGridInfo()
+ if gridInfo is None:
+ return None
+
+ dim0, dim1 = gridInfo.shape
+ if gridInfo.order == 'column': # transposition needed
+ dim0, dim1 = dim1, dim0
+
+ if len(rgbacolors) == dim0 * dim1:
+ image = rgbacolors.reshape(dim0, dim1, -1)
+ else:
+ # The points do not fill the whole image
+ image = numpy.empty((dim0 * dim1, 4), dtype=rgbacolors.dtype)
+ image[:len(rgbacolors)] = rgbacolors
+ image[len(rgbacolors):] = 0, 0, 0, 0 # Transparent pixels
+ image.shape = dim0, dim1, -1
+
+ if gridInfo.order == 'column':
+ image = numpy.transpose(image, axes=(1, 0, 2))
+
+ return backend.addImage(
+ data=image,
+ origin=gridInfo.origin,
+ scale=gridInfo.scale,
+ z=self.getZValue(),
+ colormap=None,
+ alpha=self.getAlpha())
+
+ elif visualization is self.Visualization.IRREGULAR_GRID:
+ gridInfo = self.__getRegularGridInfo()
+ if gridInfo is None:
+ return None
+
+ shape = gridInfo.shape
+ if shape is None: # No shape, no display
+ return None
+
+ # clip shape to fully filled lines
+ if len(xFiltered) != numpy.prod(shape):
+ if gridInfo.order == 'row':
+ shape = len(xFiltered) // shape[1], shape[1]
+ else: # column-major order
+ shape = shape[0], len(xFiltered) // shape[0]
+ if shape[0] < 2 or shape[1] < 2: # Not enough points
+ return None
+
+ nbpoints = numpy.prod(shape)
+ if gridInfo.order == 'row':
+ points = numpy.transpose((xFiltered[:nbpoints], yFiltered[:nbpoints]))
+ points = points.reshape(shape[0], shape[1], 2)
+
+ else: # column-major order
+ points = numpy.transpose((yFiltered[:nbpoints], xFiltered[:nbpoints]))
+ points = points.reshape(shape[1], shape[0], 2)
+
+ coords, indices = _quadrilateral_grid_as_triangles(points)
+
+ if gridInfo.order == 'row':
+ x, y = coords[:, 0], coords[:, 1]
+ else: # column-major order
+ y, x = coords[:, 0], coords[:, 1]
+
+ gridcolors = numpy.empty(
+ (4 * nbpoints, rgbacolors.shape[-1]), dtype=rgbacolors.dtype)
+ for first in range(4):
+ gridcolors[first::4] = rgbacolors[:nbpoints]
+
+ return backend.addTriangles(x,
+ y,
+ indices,
+ color=gridcolors,
z=self.getZValue(),
- selectable=self.isSelectable(),
alpha=self.getAlpha())
+ else:
+ _logger.error("Unhandled visualization %s", visualization)
+ return None
+
+ @docstring(PointsBase)
+ def pick(self, x, y):
+ result = super(Scatter, self).pick(x, y)
+
+ if result is not None:
+ visualization = self.getVisualization()
+
+ if visualization is self.Visualization.IRREGULAR_GRID:
+ # Specific handling of picking for the irregular grid mode
+ index = result.getIndices(copy=False)[0] // 4
+ result = PickingResult(self, (index,))
+
+ elif visualization is self.Visualization.REGULAR_GRID:
+ # Specific handling of picking for the regular grid mode
+ plot = self.getPlot()
+ if plot is None:
+ return None
+
+ dataPos = plot.pixelToData(x, y)
+ if dataPos is None:
+ return None
+
+ gridInfo = self.__getRegularGridInfo()
+ if gridInfo is None:
+ return None
+
+ origin = gridInfo.origin
+ scale = gridInfo.scale
+ column = int((dataPos[0] - origin[0]) / scale[0])
+ row = int((dataPos[1] - origin[1]) / scale[1])
+
+ if gridInfo.order == 'row':
+ index = row * gridInfo.shape[1] + column
+ else:
+ index = row + column * gridInfo.shape[0]
+ if index >= len(self.getXData(copy=False)): # OK as long as not log scale
+ return None # Image can be larger than scatter
+
+ result = PickingResult(self, (index,))
+
+ return result
def __getExecutor(self):
"""Returns async greedy executor
@@ -358,6 +748,9 @@ class Scatter(PointsBase, ColormapMixIn, ScatterVisualizationMixIn):
self.__interpolatorFuture.cancel()
self.__interpolatorFuture = None
+ # Data changed, this needs update
+ self.__cacheRegularGridInfo = None
+
self._value = value
if alpha is not None: