summaryrefslogtreecommitdiff
path: root/src/silx/math/medianfilter/include/median_filter.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/silx/math/medianfilter/include/median_filter.hpp')
-rw-r--r--src/silx/math/medianfilter/include/median_filter.hpp284
1 files changed, 284 insertions, 0 deletions
diff --git a/src/silx/math/medianfilter/include/median_filter.hpp b/src/silx/math/medianfilter/include/median_filter.hpp
new file mode 100644
index 0000000..7e42980
--- /dev/null
+++ b/src/silx/math/medianfilter/include/median_filter.hpp
@@ -0,0 +1,284 @@
+/*##########################################################################
+#
+# Copyright (c) 2017-2019 European Synchrotron Radiation Facility
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in
+# all copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+# THE SOFTWARE.
+#
+# ###########################################################################*/
+// __authors__ = ["H. Payno"]
+// __license__ = "MIT"
+// __date__ = "10/02/2017"
+
+#ifndef MEDIAN_FILTER
+#define MEDIAN_FILTER
+
+#include <vector>
+#include <assert.h>
+#include <algorithm>
+#include <signal.h>
+#include <iostream>
+#include <cmath>
+#include <cfloat>
+
+/* Needed for pytohn2.7 on Windows... */
+#ifndef INFINITY
+#define INFINITY (DBL_MAX+DBL_MAX)
+#endif
+
+#ifndef NAN
+#define NAN (INFINITY-INFINITY)
+#endif
+
+// Modes for the median filter
+enum MODE{
+ NEAREST=0,
+ REFLECT=1,
+ MIRROR=2,
+ SHRINK=3,
+ CONSTANT=4,
+};
+
+// Simple function browsing a deque and registering the min and max values
+// and if those values are unique or not
+template<typename T>
+void getMinMax(std::vector<T>& v, T& min, T&max,
+ typename std::vector<T>::const_iterator end){
+ // init min and max values
+ typename std::vector<T>::const_iterator it = v.begin();
+ if (v.size() == 0){
+ raise(SIGINT);
+ }else{
+ min = max = *it;
+ }
+ it++;
+
+ // Browse all the deque
+ while(it!=end){
+ // check if repeated (should always be before min/max setting)
+ T value = *it;
+ if(value > max) max = value;
+ if(value < min) min = value;
+
+ it++;
+ }
+}
+
+
+// apply the median filter only on limited part of the vector
+// In case of even number of elements (either due to NaNs in the window
+// or for image borders in shrink mode):
+// the highest of the 2 central values is returned
+template<typename T>
+inline T median(std::vector<T>& v, int window_size) {
+ int pivot = window_size / 2;
+ std::nth_element(v.begin(), v.begin() + pivot, v.begin()+window_size);
+ return v[pivot];
+}
+
+
+// return the index into 0, (length_max - 1) in reflect mode
+inline int reflect(int index, int length_max){
+ int res = index;
+ // if the index is negative get the positive symmetrical value
+ if(res < 0){
+ res += 1;
+ res = -res;
+ }
+ // then apply the reflect algorithm. Frequency is 2 max length
+ res = res % (2*length_max);
+ if(res >= length_max){
+ res = 2*length_max - res -1;
+ res = res % length_max;
+ }
+ return res;
+}
+
+// return the index into 0, (length_max - 1) in mirror mode
+inline int mirror(int index, int length_max){
+ int res = index;
+ // if the index is negative get the positive symmetrical value
+ if(res < 0){
+ res = -res;
+ }
+ int rightLimit = length_max -1;
+ // apply the redundancy each two right limit
+ res = res % (2*rightLimit);
+ if(res >= length_max){
+ int distToRedundancy = (2*rightLimit) - res;
+ res = distToRedundancy;
+ }
+ return res;
+}
+
+/* Provide a way to access NaN that also works for integers*/
+
+template<typename T>
+inline T NotANumber(void) {
+ assert(false); //This should never be called
+ return 0;
+}
+
+template<>
+inline float NotANumber<float>(void) { return NAN; }
+
+template<>
+inline double NotANumber<double>(void) { return NAN; }
+
+
+// Browse the column of pixel_x
+template<typename T>
+void median_filter(
+ const T* input,
+ T* output,
+ int* kernel_dim, // two values : 0:width, 1:height
+ int* image_dim, // two values : 0:width, 1:height
+ int y_pixel, // the x pixel to process
+ int x_pixel_range_min,
+ int x_pixel_range_max,
+ bool conditional,
+ int pMode,
+ T cval) {
+
+ assert(kernel_dim[0] > 0);
+ assert(kernel_dim[1] > 0);
+ assert(y_pixel >= 0);
+ assert(image_dim[0] > 0);
+ assert(image_dim[1] > 0);
+ assert(y_pixel >= 0);
+ assert(y_pixel < image_dim[0]);
+ assert(x_pixel_range_max < image_dim[1]);
+ assert(x_pixel_range_min <= x_pixel_range_max);
+ // kernel odd assertion
+ assert((kernel_dim[0] - 1)%2 == 0);
+ assert((kernel_dim[1] - 1)%2 == 0);
+
+ // # this should be move up to avoid calculation each time
+ int halfKernel_x = (kernel_dim[1] - 1) / 2;
+ int halfKernel_y = (kernel_dim[0] - 1) / 2;
+
+ MODE mode = static_cast<MODE>(pMode);
+
+ // init buffer
+ std::vector<T> window_values(kernel_dim[0]*kernel_dim[1]);
+
+ bool not_horizontal_border = (y_pixel >= halfKernel_y && y_pixel < image_dim[0] - halfKernel_y);
+
+ for(int x_pixel=x_pixel_range_min; x_pixel <= x_pixel_range_max; x_pixel ++ ){
+ typename std::vector<T>::iterator it = window_values.begin();
+ // fill the vector
+
+ if (not_horizontal_border &&
+ x_pixel >= halfKernel_x && x_pixel < image_dim[1] - halfKernel_x) {
+ //This is not a border, just fill it
+ for(int win_y=y_pixel-halfKernel_y; win_y<= y_pixel+halfKernel_y; win_y++) {
+ for(int win_x = x_pixel-halfKernel_x; win_x <= x_pixel+halfKernel_x; win_x++){
+ T value = input[win_y*image_dim[1] + win_x];
+ if (value == value) { // Ignore NaNs
+ *it = value;
+ ++it;
+ }
+ }
+ }
+
+ } else { // This is a border, handle the special case
+ for(int win_y=y_pixel-halfKernel_y; win_y<= y_pixel+halfKernel_y; win_y++)
+ {
+ for(int win_x = x_pixel-halfKernel_x; win_x <= x_pixel+halfKernel_x; win_x++)
+ {
+ T value = 0;
+ int index_x = win_x;
+ int index_y = win_y;
+
+ switch(mode){
+ case NEAREST:
+ index_x = std::min(std::max(win_x, 0), image_dim[1] - 1);
+ index_y = std::min(std::max(win_y, 0), image_dim[0] - 1);
+ value = input[index_y*image_dim[1] + index_x];
+ break;
+
+ case REFLECT:
+ index_x = reflect(win_x, image_dim[1]);
+ index_y = reflect(win_y, image_dim[0]);
+ value = input[index_y*image_dim[1] + index_x];
+ break;
+
+ case MIRROR:
+ index_x = mirror(win_x, image_dim[1]);
+ // deal with 1d case
+ if(win_y == 0 && image_dim[0] == 1){
+ index_y = 0;
+ }else{
+ index_y = mirror(win_y, image_dim[0]);
+ }
+ value = input[index_y*image_dim[1] + index_x];
+ break;
+
+ case SHRINK:
+ if ((index_x < 0) || (index_x > image_dim[1] -1) ||
+ (index_y < 0) || (index_y > image_dim[0] -1)) {
+ continue;
+ }
+ value = input[index_y*image_dim[1] + index_x];
+ break;
+ case CONSTANT:
+ if ((index_x < 0) || (index_x > image_dim[1] -1) ||
+ (index_y < 0) || (index_y > image_dim[0] -1)) {
+ value = cval;
+ } else {
+ value = input[index_y*image_dim[1] + index_x];
+ }
+ break;
+ }
+
+ if (value == value) { // Ignore NaNs
+ *it = value;
+ ++it;
+ }
+ }
+ }
+ }
+
+ //window_size can be smaller than kernel size in shrink mode or if there is NaNs
+ int window_size = std::distance(window_values.begin(), it);
+
+ if (window_size == 0) {
+ // Window is empty, this is the case when all values are NaNs
+ output[image_dim[1]*y_pixel + x_pixel] = NotANumber<T>();
+ } else {
+ // apply the median value if needed for this pixel
+ const T currentPixelValue = input[image_dim[1]*y_pixel + x_pixel];
+ if (conditional == true){
+ typename std::vector<T>::iterator window_end = window_values.begin() + window_size;
+ T min = 0;
+ T max = 0;
+ getMinMax(window_values, min, max, window_end);
+ // NaNs are propagated through unchanged
+ if ((currentPixelValue == max) || (currentPixelValue == min)){
+ output[image_dim[1]*y_pixel + x_pixel] = median<T>(window_values, window_size);
+ }else{
+ output[image_dim[1]*y_pixel + x_pixel] = currentPixelValue;
+ }
+ }else{
+ output[image_dim[1]*y_pixel + x_pixel] = median<T>(window_values, window_size);
+ }
+ }
+ }
+}
+
+#endif // MEDIAN_FILTER