summaryrefslogtreecommitdiff
path: root/src/silx/math/medianfilter/test/test_medianfilter.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/silx/math/medianfilter/test/test_medianfilter.py')
-rw-r--r--src/silx/math/medianfilter/test/test_medianfilter.py722
1 files changed, 722 insertions, 0 deletions
diff --git a/src/silx/math/medianfilter/test/test_medianfilter.py b/src/silx/math/medianfilter/test/test_medianfilter.py
new file mode 100644
index 0000000..a4e3021
--- /dev/null
+++ b/src/silx/math/medianfilter/test/test_medianfilter.py
@@ -0,0 +1,722 @@
+# coding: utf-8
+# ##########################################################################
+# Copyright (C) 2017-2018 European Synchrotron Radiation Facility
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in
+# all copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+# THE SOFTWARE.
+#
+# ############################################################################
+"""Tests of the median filter"""
+
+__authors__ = ["H. Payno"]
+__license__ = "MIT"
+__date__ = "17/01/2018"
+
+import unittest
+import numpy
+from silx.math.medianfilter import medfilt2d, medfilt1d
+from silx.math.medianfilter.medianfilter import reflect, mirror
+from silx.math.medianfilter.medianfilter import MODES as silx_mf_modes
+from silx.utils.testutils import ParametricTestCase
+try:
+ import scipy
+ import scipy.misc
+except:
+ scipy = None
+else:
+ import scipy.ndimage
+
+import logging
+_logger = logging.getLogger(__name__)
+
+RANDOM_FLOAT_MAT = numpy.array([
+ [0.05564293, 0.62717157, 0.75002406, 0.40555336, 0.70278975],
+ [0.76532598, 0.02839148, 0.05272484, 0.65166994, 0.42161216],
+ [0.23067427, 0.74219128, 0.56049024, 0.44406320, 0.28773158],
+ [0.81025249, 0.20303021, 0.68382382, 0.46372299, 0.81281709],
+ [0.94691602, 0.07813661, 0.81651256, 0.84220106, 0.33623165]])
+
+RANDOM_INT_MAT = numpy.array([
+ [0, 5, 2, 6, 1],
+ [2, 3, 1, 7, 1],
+ [9, 8, 6, 7, 8],
+ [5, 6, 8, 2, 4]])
+
+
+class TestMedianFilterNearest(ParametricTestCase):
+ """Unit tests for the median filter in nearest mode"""
+
+ def testFilter3_100(self):
+ """Test median filter on a 10x10 matrix with a 3x3 kernel."""
+ dataIn = numpy.arange(100, dtype=numpy.int32)
+ dataIn = dataIn.reshape((10, 10))
+
+ dataOut = medfilt2d(image=dataIn,
+ kernel_size=(3, 3),
+ conditional=False,
+ mode='nearest')
+ self.assertTrue(dataOut[0, 0] == 1)
+ self.assertTrue(dataOut[9, 0] == 90)
+ self.assertTrue(dataOut[9, 9] == 98)
+
+ self.assertTrue(dataOut[0, 9] == 9)
+ self.assertTrue(dataOut[0, 4] == 5)
+ self.assertTrue(dataOut[9, 4] == 93)
+ self.assertTrue(dataOut[4, 4] == 44)
+
+ def testFilter3_9(self):
+ "Test median filter on a 3x3 matrix with a 3x3 kernel."
+ dataIn = numpy.array([0, -1, 1,
+ 12, 6, -2,
+ 100, 4, 12],
+ dtype=numpy.int16)
+ dataIn = dataIn.reshape((3, 3))
+ dataOut = medfilt2d(image=dataIn,
+ kernel_size=(3, 3),
+ conditional=False,
+ mode='nearest')
+ self.assertTrue(dataOut.shape == dataIn.shape)
+ self.assertTrue(dataOut[1, 1] == 4)
+ self.assertTrue(dataOut[0, 0] == 0)
+ self.assertTrue(dataOut[0, 1] == 0)
+ self.assertTrue(dataOut[1, 0] == 6)
+
+ def testFilterWidthOne(self):
+ """Make sure a filter of one by one give the same result as the input
+ """
+ dataIn = numpy.arange(100, dtype=numpy.int32)
+ dataIn = dataIn.reshape((10, 10))
+
+ dataOut = medfilt2d(image=dataIn,
+ kernel_size=(1, 1),
+ conditional=False,
+ mode='nearest')
+
+ self.assertTrue(numpy.array_equal(dataIn, dataOut))
+
+ def testFilter3_1d(self):
+ """Test binding and result of the 1d filter"""
+ self.assertTrue(numpy.array_equal(
+ medfilt1d(RANDOM_INT_MAT[0], kernel_size=3, conditional=False,
+ mode='nearest'),
+ [0, 2, 5, 2, 1])
+ )
+
+ def testFilter3Conditionnal(self):
+ """Test that the conditional filter apply correctly in a 10x10 matrix
+ with a 3x3 kernel
+ """
+ dataIn = numpy.arange(100, dtype=numpy.int32)
+ dataIn = dataIn.reshape((10, 10))
+
+ dataOut = medfilt2d(image=dataIn,
+ kernel_size=(3, 3),
+ conditional=True,
+ mode='nearest')
+ self.assertTrue(dataOut[0, 0] == 1)
+ self.assertTrue(dataOut[0, 1] == 1)
+ self.assertTrue(numpy.array_equal(dataOut[1:8, 1:8], dataIn[1:8, 1:8]))
+ self.assertTrue(dataOut[9, 9] == 98)
+
+ def testFilter3_1D(self):
+ """Simple test of a 3x3 median filter on a 1D array"""
+ dataIn = numpy.arange(100, dtype=numpy.int32)
+
+ dataOut = medfilt2d(image=dataIn,
+ kernel_size=(5),
+ conditional=False,
+ mode='nearest')
+
+ self.assertTrue(dataOut[0] == 0)
+ self.assertTrue(dataOut[9] == 9)
+ self.assertTrue(dataOut[99] == 99)
+
+ def testNaNs(self):
+ """Test median filter on image with NaNs in nearest mode"""
+ # Data with a NaN in first corner
+ nan_corner = numpy.arange(100.).reshape(10, 10)
+ nan_corner[0, 0] = numpy.nan
+ output = medfilt2d(
+ nan_corner, kernel_size=3, conditional=False, mode='nearest')
+ self.assertEqual(output[0, 0], 10)
+ self.assertEqual(output[0, 1], 2)
+ self.assertEqual(output[1, 0], 11)
+ self.assertEqual(output[1, 1], 12)
+
+ # Data with some NaNs
+ some_nans = numpy.arange(100.).reshape(10, 10)
+ some_nans[0, 1] = numpy.nan
+ some_nans[1, 1] = numpy.nan
+ some_nans[1, 0] = numpy.nan
+ output = medfilt2d(
+ some_nans, kernel_size=3, conditional=False, mode='nearest')
+ self.assertEqual(output[0, 0], 0)
+ self.assertEqual(output[0, 1], 2)
+ self.assertEqual(output[1, 0], 20)
+ self.assertEqual(output[1, 1], 20)
+
+
+class TestMedianFilterReflect(ParametricTestCase):
+ """Unit test for the median filter in reflect mode"""
+
+ def testArange9(self):
+ """Test from a 3x3 window to RANDOM_FLOAT_MAT"""
+ img = numpy.arange(9, dtype=numpy.int32)
+ img = img.reshape(3, 3)
+ kernel = (3, 3)
+ res = medfilt2d(image=img,
+ kernel_size=kernel,
+ conditional=False,
+ mode='reflect')
+ self.assertTrue(
+ numpy.array_equal(res.ravel(), [1, 2, 2, 3, 4, 5, 6, 6, 7]))
+
+ def testRandom10(self):
+ """Test a (5, 3) window to a RANDOM_FLOAT_MAT"""
+ kernel = (5, 3)
+
+ thRes = numpy.array([
+ [0.23067427, 0.56049024, 0.56049024, 0.4440632, 0.42161216],
+ [0.23067427, 0.62717157, 0.56049024, 0.56049024, 0.46372299],
+ [0.62717157, 0.62717157, 0.56049024, 0.56049024, 0.4440632],
+ [0.76532598, 0.68382382, 0.56049024, 0.56049024, 0.42161216],
+ [0.81025249, 0.68382382, 0.56049024, 0.68382382, 0.46372299]])
+
+ res = medfilt2d(image=RANDOM_FLOAT_MAT,
+ kernel_size=kernel,
+ conditional=False,
+ mode='reflect')
+
+ self.assertTrue(numpy.array_equal(thRes, res))
+
+ def testApplyReflect1D(self):
+ """Test the reflect function used for the median filter in reflect mode
+ """
+ # test for inside values
+ self.assertTrue(reflect(2, 3) == 2)
+ # test for boundaries values
+ self.assertTrue(reflect(3, 3) == 2)
+ self.assertTrue(reflect(4, 3) == 1)
+ self.assertTrue(reflect(5, 3) == 0)
+ self.assertTrue(reflect(6, 3) == 0)
+ self.assertTrue(reflect(7, 3) == 1)
+ self.assertTrue(reflect(-1, 3) == 0)
+ self.assertTrue(reflect(-2, 3) == 1)
+ self.assertTrue(reflect(-3, 3) == 2)
+ self.assertTrue(reflect(-4, 3) == 2)
+ self.assertTrue(reflect(-5, 3) == 1)
+ self.assertTrue(reflect(-6, 3) == 0)
+ self.assertTrue(reflect(-7, 3) == 0)
+
+ def testRandom10Conditionnal(self):
+ """Test the median filter in reflect mode and with the conditionnal
+ option"""
+ kernel = (3, 1)
+
+ thRes = numpy.array([
+ [0.05564293, 0.62717157, 0.75002406, 0.40555336, 0.70278975],
+ [0.23067427, 0.62717157, 0.56049024, 0.44406320, 0.42161216],
+ [0.76532598, 0.20303021, 0.56049024, 0.46372299, 0.42161216],
+ [0.81025249, 0.20303021, 0.68382382, 0.46372299, 0.33623165],
+ [0.94691602, 0.07813661, 0.81651256, 0.84220106, 0.33623165]])
+
+ res = medfilt2d(image=RANDOM_FLOAT_MAT,
+ kernel_size=kernel,
+ conditional=True,
+ mode='reflect')
+ self.assertTrue(numpy.array_equal(thRes, res))
+
+ def testNaNs(self):
+ """Test median filter on image with NaNs in reflect mode"""
+ # Data with a NaN in first corner
+ nan_corner = numpy.arange(100.).reshape(10, 10)
+ nan_corner[0, 0] = numpy.nan
+ output = medfilt2d(
+ nan_corner, kernel_size=3, conditional=False, mode='reflect')
+ self.assertEqual(output[0, 0], 10)
+ self.assertEqual(output[0, 1], 2)
+ self.assertEqual(output[1, 0], 11)
+ self.assertEqual(output[1, 1], 12)
+
+ # Data with some NaNs
+ some_nans = numpy.arange(100.).reshape(10, 10)
+ some_nans[0, 1] = numpy.nan
+ some_nans[1, 1] = numpy.nan
+ some_nans[1, 0] = numpy.nan
+ output = medfilt2d(
+ some_nans, kernel_size=3, conditional=False, mode='reflect')
+ self.assertEqual(output[0, 0], 0)
+ self.assertEqual(output[0, 1], 2)
+ self.assertEqual(output[1, 0], 20)
+ self.assertEqual(output[1, 1], 20)
+
+ def testFilter3_1d(self):
+ """Test binding and result of the 1d filter"""
+ self.assertTrue(numpy.array_equal(
+ medfilt1d(RANDOM_INT_MAT[0], kernel_size=5, conditional=False,
+ mode='reflect'),
+ [2, 2, 2, 2, 2])
+ )
+
+
+class TestMedianFilterMirror(ParametricTestCase):
+ """Unit test for the median filter in mirror mode
+ """
+
+ def testApplyMirror1D(self):
+ """Test the reflect function used for the median filter in mirror mode
+ """
+ # test for inside values
+ self.assertTrue(mirror(2, 3) == 2)
+ # test for boundaries values
+ self.assertTrue(mirror(4, 4) == 2)
+ self.assertTrue(mirror(5, 4) == 1)
+ self.assertTrue(mirror(6, 4) == 0)
+ self.assertTrue(mirror(7, 4) == 1)
+ self.assertTrue(mirror(8, 4) == 2)
+ self.assertTrue(mirror(-1, 4) == 1)
+ self.assertTrue(mirror(-2, 4) == 2)
+ self.assertTrue(mirror(-3, 4) == 3)
+ self.assertTrue(mirror(-4, 4) == 2)
+ self.assertTrue(mirror(-5, 4) == 1)
+ self.assertTrue(mirror(-6, 4) == 0)
+
+ def testRandom10(self):
+ """Test a (5, 3) window to a random array"""
+ kernel = (3, 5)
+
+ thRes = numpy.array([
+ [0.05272484, 0.40555336, 0.42161216, 0.42161216, 0.42161216],
+ [0.56049024, 0.56049024, 0.4440632, 0.4440632, 0.4440632],
+ [0.56049024, 0.46372299, 0.46372299, 0.46372299, 0.46372299],
+ [0.68382382, 0.56049024, 0.56049024, 0.46372299, 0.56049024],
+ [0.68382382, 0.46372299, 0.68382382, 0.46372299, 0.68382382]])
+
+ res = medfilt2d(image=RANDOM_FLOAT_MAT,
+ kernel_size=kernel,
+ conditional=False,
+ mode='mirror')
+
+ self.assertTrue(numpy.array_equal(thRes, res))
+
+ def testRandom10Conditionnal(self):
+ """Test the median filter in reflect mode and with the conditionnal
+ option"""
+ kernel = (1, 3)
+
+ thRes = numpy.array([
+ [0.62717157, 0.62717157, 0.62717157, 0.70278975, 0.40555336],
+ [0.02839148, 0.05272484, 0.05272484, 0.42161216, 0.65166994],
+ [0.74219128, 0.56049024, 0.56049024, 0.44406320, 0.44406320],
+ [0.20303021, 0.68382382, 0.46372299, 0.68382382, 0.46372299],
+ [0.07813661, 0.81651256, 0.81651256, 0.81651256, 0.84220106]])
+
+ res = medfilt2d(image=RANDOM_FLOAT_MAT,
+ kernel_size=kernel,
+ conditional=True,
+ mode='mirror')
+
+ self.assertTrue(numpy.array_equal(thRes, res))
+
+ def testNaNs(self):
+ """Test median filter on image with NaNs in mirror mode"""
+ # Data with a NaN in first corner
+ nan_corner = numpy.arange(100.).reshape(10, 10)
+ nan_corner[0, 0] = numpy.nan
+ output = medfilt2d(
+ nan_corner, kernel_size=3, conditional=False, mode='mirror')
+ self.assertEqual(output[0, 0], 11)
+ self.assertEqual(output[0, 1], 11)
+ self.assertEqual(output[1, 0], 11)
+ self.assertEqual(output[1, 1], 12)
+
+ # Data with some NaNs
+ some_nans = numpy.arange(100.).reshape(10, 10)
+ some_nans[0, 1] = numpy.nan
+ some_nans[1, 1] = numpy.nan
+ some_nans[1, 0] = numpy.nan
+ output = medfilt2d(
+ some_nans, kernel_size=3, conditional=False, mode='mirror')
+ self.assertEqual(output[0, 0], 0)
+ self.assertEqual(output[0, 1], 12)
+ self.assertEqual(output[1, 0], 21)
+ self.assertEqual(output[1, 1], 20)
+
+ def testFilter3_1d(self):
+ """Test binding and result of the 1d filter"""
+ self.assertTrue(numpy.array_equal(
+ medfilt1d(RANDOM_INT_MAT[0], kernel_size=5, conditional=False,
+ mode='mirror'),
+ [2, 5, 2, 5, 2])
+ )
+
+class TestMedianFilterShrink(ParametricTestCase):
+ """Unit test for the median filter in mirror mode
+ """
+
+ def testRandom_3x3(self):
+ """Test the median filter in shrink mode and with the conditionnal
+ option"""
+ kernel = (3, 3)
+
+ thRes = numpy.array([
+ [0.62717157, 0.62717157, 0.62717157, 0.65166994, 0.65166994],
+ [0.62717157, 0.56049024, 0.56049024, 0.44406320, 0.44406320],
+ [0.74219128, 0.56049024, 0.46372299, 0.46372299, 0.46372299],
+ [0.74219128, 0.68382382, 0.56049024, 0.56049024, 0.46372299],
+ [0.81025249, 0.81025249, 0.68382382, 0.81281709, 0.81281709]])
+
+ res = medfilt2d(image=RANDOM_FLOAT_MAT,
+ kernel_size=kernel,
+ conditional=False,
+ mode='shrink')
+
+ self.assertTrue(numpy.array_equal(thRes, res))
+
+ def testBounds(self):
+ """Test the median filter in shrink mode with 3 different kernels
+ which should return the same result due to the large values of kernels
+ used.
+ """
+ kernel1 = (1, 9)
+ kernel2 = (1, 11)
+ kernel3 = (1, 21)
+
+ thRes = numpy.array([[2, 2, 2, 2, 2],
+ [2, 2, 2, 2, 2],
+ [8, 8, 8, 8, 8],
+ [5, 5, 5, 5, 5]])
+
+ resK1 = medfilt2d(image=RANDOM_INT_MAT,
+ kernel_size=kernel1,
+ conditional=False,
+ mode='shrink')
+
+ resK2 = medfilt2d(image=RANDOM_INT_MAT,
+ kernel_size=kernel2,
+ conditional=False,
+ mode='shrink')
+
+ resK3 = medfilt2d(image=RANDOM_INT_MAT,
+ kernel_size=kernel3,
+ conditional=False,
+ mode='shrink')
+
+ self.assertTrue(numpy.array_equal(resK1, thRes))
+ self.assertTrue(numpy.array_equal(resK2, resK1))
+ self.assertTrue(numpy.array_equal(resK3, resK1))
+
+ def testRandom_3x3Conditionnal(self):
+ """Test the median filter in reflect mode and with the conditionnal
+ option"""
+ kernel = (3, 3)
+
+ thRes = numpy.array([
+ [0.05564293, 0.62717157, 0.62717157, 0.40555336, 0.65166994],
+ [0.62717157, 0.56049024, 0.05272484, 0.65166994, 0.42161216],
+ [0.23067427, 0.74219128, 0.56049024, 0.44406320, 0.46372299],
+ [0.81025249, 0.20303021, 0.68382382, 0.46372299, 0.81281709],
+ [0.81025249, 0.81025249, 0.81651256, 0.81281709, 0.81281709]])
+
+ res = medfilt2d(image=RANDOM_FLOAT_MAT,
+ kernel_size=kernel,
+ conditional=True,
+ mode='shrink')
+
+ self.assertTrue(numpy.array_equal(res, thRes))
+
+ def testRandomInt(self):
+ """Test 3x3 kernel on RANDOM_INT_MAT
+ """
+ kernel = (3, 3)
+
+ thRes = numpy.array([[3, 2, 5, 2, 6],
+ [5, 3, 6, 6, 7],
+ [6, 6, 6, 6, 7],
+ [8, 8, 7, 7, 7]])
+
+ resK1 = medfilt2d(image=RANDOM_INT_MAT,
+ kernel_size=kernel,
+ conditional=False,
+ mode='shrink')
+
+ self.assertTrue(numpy.array_equal(resK1, thRes))
+
+ def testNaNs(self):
+ """Test median filter on image with NaNs in shrink mode"""
+ # Data with a NaN in first corner
+ nan_corner = numpy.arange(100.).reshape(10, 10)
+ nan_corner[0, 0] = numpy.nan
+ output = medfilt2d(
+ nan_corner, kernel_size=3, conditional=False, mode='shrink')
+ self.assertEqual(output[0, 0], 10)
+ self.assertEqual(output[0, 1], 10)
+ self.assertEqual(output[1, 0], 11)
+ self.assertEqual(output[1, 1], 12)
+
+ # Data with some NaNs
+ some_nans = numpy.arange(100.).reshape(10, 10)
+ some_nans[0, 1] = numpy.nan
+ some_nans[1, 1] = numpy.nan
+ some_nans[1, 0] = numpy.nan
+ output = medfilt2d(
+ some_nans, kernel_size=3, conditional=False, mode='shrink')
+ self.assertEqual(output[0, 0], 0)
+ self.assertEqual(output[0, 1], 2)
+ self.assertEqual(output[1, 0], 20)
+ self.assertEqual(output[1, 1], 20)
+
+ def testFilter3_1d(self):
+ """Test binding and result of the 1d filter"""
+ self.assertTrue(numpy.array_equal(
+ medfilt1d(RANDOM_INT_MAT[0], kernel_size=3, conditional=False,
+ mode='shrink'),
+ [5, 2, 5, 2, 6])
+ )
+
+class TestMedianFilterConstant(ParametricTestCase):
+ """Unit test for the median filter in constant mode
+ """
+
+ def testRandom10(self):
+ """Test a (5, 3) window to a random array"""
+ kernel = (3, 5)
+
+ thRes = numpy.array([
+ [0., 0.02839148, 0.05564293, 0.02839148, 0.],
+ [0.05272484, 0.40555336, 0.4440632, 0.42161216, 0.28773158],
+ [0.05272484, 0.44406320, 0.46372299, 0.42161216, 0.28773158],
+ [0.20303021, 0.46372299, 0.56049024, 0.44406320, 0.33623165],
+ [0., 0.07813661, 0.33623165, 0.07813661, 0.]])
+
+ res = medfilt2d(image=RANDOM_FLOAT_MAT,
+ kernel_size=kernel,
+ conditional=False,
+ mode='constant')
+
+ self.assertTrue(numpy.array_equal(thRes, res))
+
+ RANDOM_FLOAT_MAT = numpy.array([
+ [0.05564293, 0.62717157, 0.75002406, 0.40555336, 0.70278975],
+ [0.76532598, 0.02839148, 0.05272484, 0.65166994, 0.42161216],
+ [0.23067427, 0.74219128, 0.56049024, 0.44406320, 0.28773158],
+ [0.81025249, 0.20303021, 0.68382382, 0.46372299, 0.81281709],
+ [0.94691602, 0.07813661, 0.81651256, 0.84220106, 0.33623165]])
+
+ def testRandom10Conditionnal(self):
+ """Test the median filter in reflect mode and with the conditionnal
+ option"""
+ kernel = (1, 3)
+
+ print(RANDOM_FLOAT_MAT)
+
+ thRes = numpy.array([
+ [0.05564293, 0.62717157, 0.62717157, 0.70278975, 0.40555336],
+ [0.02839148, 0.05272484, 0.05272484, 0.42161216, 0.42161216],
+ [0.23067427, 0.56049024, 0.56049024, 0.44406320, 0.28773158],
+ [0.20303021, 0.68382382, 0.46372299, 0.68382382, 0.46372299],
+ [0.07813661, 0.81651256, 0.81651256, 0.81651256, 0.33623165]])
+
+ res = medfilt2d(image=RANDOM_FLOAT_MAT,
+ kernel_size=kernel,
+ conditional=True,
+ mode='constant')
+
+ self.assertTrue(numpy.array_equal(thRes, res))
+
+ def testNaNs(self):
+ """Test median filter on image with NaNs in constant mode"""
+ # Data with a NaN in first corner
+ nan_corner = numpy.arange(100.).reshape(10, 10)
+ nan_corner[0, 0] = numpy.nan
+ output = medfilt2d(nan_corner,
+ kernel_size=3,
+ conditional=False,
+ mode='constant',
+ cval=0)
+ self.assertEqual(output[0, 0], 0)
+ self.assertEqual(output[0, 1], 2)
+ self.assertEqual(output[1, 0], 10)
+ self.assertEqual(output[1, 1], 12)
+
+ # Data with some NaNs
+ some_nans = numpy.arange(100.).reshape(10, 10)
+ some_nans[0, 1] = numpy.nan
+ some_nans[1, 1] = numpy.nan
+ some_nans[1, 0] = numpy.nan
+ output = medfilt2d(some_nans,
+ kernel_size=3,
+ conditional=False,
+ mode='constant',
+ cval=0)
+ self.assertEqual(output[0, 0], 0)
+ self.assertEqual(output[0, 1], 0)
+ self.assertEqual(output[1, 0], 0)
+ self.assertEqual(output[1, 1], 20)
+
+ def testFilter3_1d(self):
+ """Test binding and result of the 1d filter"""
+ self.assertTrue(numpy.array_equal(
+ medfilt1d(RANDOM_INT_MAT[0], kernel_size=5, conditional=False,
+ mode='constant'),
+ [0, 2, 2, 2, 1])
+ )
+
+class TestGeneralExecution(ParametricTestCase):
+ """Some general test on median filter application"""
+
+ def testTypes(self):
+ """Test that all needed types have their implementation of the median
+ filter
+ """
+ for mode in silx_mf_modes:
+ for testType in [numpy.float32, numpy.float64, numpy.int16,
+ numpy.uint16, numpy.int32, numpy.int64,
+ numpy.uint64]:
+ with self.subTest(mode=mode, type=testType):
+ data = (numpy.random.rand(10, 10) * 65000).astype(testType)
+ out = medfilt2d(image=data,
+ kernel_size=(3, 3),
+ conditional=False,
+ mode=mode)
+ self.assertTrue(out.dtype.type is testType)
+
+ def testInputDataIsNotModify(self):
+ """Make sure input data is not modify by the median filter"""
+ dataIn = numpy.arange(100, dtype=numpy.int32)
+ dataIn = dataIn.reshape((10, 10))
+ dataInCopy = dataIn.copy()
+
+ for mode in silx_mf_modes:
+ with self.subTest(mode=mode):
+ medfilt2d(image=dataIn,
+ kernel_size=(3, 3),
+ conditional=False,
+ mode=mode)
+ self.assertTrue(numpy.array_equal(dataIn, dataInCopy))
+
+ def testAllNaNs(self):
+ """Test median filter on image all NaNs"""
+ all_nans = numpy.empty((10, 10), dtype=numpy.float32)
+ all_nans[:] = numpy.nan
+
+ for mode in silx_mf_modes:
+ for conditional in (True, False):
+ with self.subTest(mode=mode, conditional=conditional):
+ output = medfilt2d(
+ all_nans,
+ kernel_size=3,
+ conditional=conditional,
+ mode=mode,
+ cval=numpy.nan)
+ self.assertTrue(numpy.all(numpy.isnan(output)))
+
+ def testConditionalWithNaNs(self):
+ """Test that NaNs are propagated through conditional median filter"""
+ for mode in silx_mf_modes:
+ with self.subTest(mode=mode):
+ image = numpy.ones((10, 10), dtype=numpy.float32)
+ nan_mask = numpy.zeros_like(image, dtype=bool)
+ nan_mask[0, 0] = True
+ nan_mask[4, :] = True
+ nan_mask[6, 4] = True
+ image[nan_mask] = numpy.nan
+ output = medfilt2d(
+ image,
+ kernel_size=3,
+ conditional=True,
+ mode=mode)
+ out_isnan = numpy.isnan(output)
+ self.assertTrue(numpy.all(out_isnan[nan_mask]))
+ self.assertFalse(
+ numpy.any(out_isnan[numpy.logical_not(nan_mask)]))
+
+
+def _getScipyAndSilxCommonModes():
+ """return the mode which are comparable between silx and scipy"""
+ modes = silx_mf_modes.copy()
+ del modes['shrink']
+ return modes
+
+
+@unittest.skipUnless(scipy is not None, "scipy not available")
+class TestVsScipy(ParametricTestCase):
+ """Compare scipy.ndimage.median_filter vs silx.math.medianfilter
+ on comparable
+ """
+ def testWithArange(self):
+ """Test vs scipy with different kernels on arange matrix"""
+ data = numpy.arange(10000, dtype=numpy.int32)
+ data = data.reshape(100, 100)
+
+ kernels = [(3, 7), (7, 5), (1, 1), (3, 3)]
+ modesToTest = _getScipyAndSilxCommonModes()
+ for kernel in kernels:
+ for mode in modesToTest:
+ with self.subTest(kernel=kernel, mode=mode):
+ resScipy = scipy.ndimage.median_filter(input=data,
+ size=kernel,
+ mode=mode)
+ resSilx = medfilt2d(image=data,
+ kernel_size=kernel,
+ conditional=False,
+ mode=mode)
+
+ self.assertTrue(numpy.array_equal(resScipy, resSilx))
+
+ def testRandomMatrice(self):
+ """Test vs scipy with different kernels on RANDOM_FLOAT_MAT"""
+ kernels = [(3, 7), (7, 5), (1, 1), (3, 3)]
+ modesToTest = _getScipyAndSilxCommonModes()
+ for kernel in kernels:
+ for mode in modesToTest:
+ with self.subTest(kernel=kernel, mode=mode):
+ resScipy = scipy.ndimage.median_filter(input=RANDOM_FLOAT_MAT,
+ size=kernel,
+ mode=mode)
+
+ resSilx = medfilt2d(image=RANDOM_FLOAT_MAT,
+ kernel_size=kernel,
+ conditional=False,
+ mode=mode)
+
+ self.assertTrue(numpy.array_equal(resScipy, resSilx))
+
+ def testAscentOrLena(self):
+ """Test vs scipy with """
+ if hasattr(scipy.misc, 'ascent'):
+ img = scipy.misc.ascent()
+ else:
+ img = scipy.misc.lena()
+
+ kernels = [(3, 1), (3, 5), (5, 9), (9, 3)]
+ modesToTest = _getScipyAndSilxCommonModes()
+
+ for kernel in kernels:
+ for mode in modesToTest:
+ with self.subTest(kernel=kernel, mode=mode):
+ resScipy = scipy.ndimage.median_filter(input=img,
+ size=kernel,
+ mode=mode)
+
+ resSilx = medfilt2d(image=img,
+ kernel_size=kernel,
+ conditional=False,
+ mode=mode)
+
+ self.assertTrue(numpy.array_equal(resScipy, resSilx))