/*########################################################################## # # Copyright (c) 2017 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ // __authors__ = ["H. Payno"] // __license__ = "MIT" // __date__ = "10/02/2017" #ifndef MEDIAN_FILTER #define MEDIAN_FILTER #include #include #include #include #include // Modes for the median filter enum MODE{ NEAREST=0, REFLECT=1, MIRROR=2, SHRINK=3 }; // Simple function browsing a deque and registring the min and max values // and if those values are unique or not template void getMinMax(std::vector& v, T& min, T&max, typename std::vector::const_iterator end){ // init min and max values typename std::vector::const_iterator it = v.begin(); if (v.size() == 0){ raise(SIGINT); }else{ min = max = *(*it); } it++; // Browse all the deque while(it!=end){ // check if repeated (should always be before min/max setting) if(*(*it) > max) max = *(*it); if(*(*it) < min) min = *(*it); it++; } } template bool cmp(const T* a, const T* b){ return *a < *b; } // apply the median filter only on limited part of the vector template const T* median(std::vector& v, int window_size) { std::nth_element(v.begin(), v.begin() + window_size/2, v.begin()+window_size, cmp); return v[window_size/2]; } template void print_window(std::vector& v, typename std::vector::const_iterator end){ typename std::vector::const_iterator it; for(it = v.begin(); it != end; ++it){ std::cout << *(*it) << " "; } std::cout << std::endl; } // return the index into 0, (length_max - 1) in reflect mode int reflect(int index, int length_max){ int res = index; // if the index is negative get the positive symetrical value if(res < 0){ res += 1; res = -res; } // then apply the reflect algorithm. Frequence is 2 max length res = res % (2*length_max); if(res >= length_max){ res = 2*length_max - res -1; res = res % length_max; } return res; } // return the index into 0, (length_max - 1) in mirror mode int mirror(int index, int length_max){ int res = index; // if the index is negative get the positive symetrical value if(res < 0){ res = -res; } int rightLimit = length_max -1; // apply the redundancy each two right limit res = res % (2*rightLimit); if(res >= length_max){ int distToRedundancy = (2*rightLimit) - res; res = distToRedundancy; } return res; } // Browse the column of pixel_x template void median_filter( const T* input, T* output, int* kernel_dim, // two values : 0:width, 1:height int* image_dim, // two values : 0:width, 1:height int y_pixel, // the x pixel to process int x_pixel_range_min, int x_pixel_range_max, bool conditional, int pMode){ assert(kernel_dim[0] > 0); assert(kernel_dim[1] > 0); assert(y_pixel >= 0); assert(image_dim[0] > 0); assert(image_dim[1] > 0); assert(y_pixel >= 0); assert(y_pixel < image_dim[0]); assert(x_pixel_range_max < image_dim[1]); assert(x_pixel_range_min <= x_pixel_range_max); // kernel odd assertion assert((kernel_dim[0] - 1)%2 == 0); assert((kernel_dim[1] - 1)%2 == 0); // # this should be move up to avoid calculation each time int halfKernel_x = (kernel_dim[1] - 1) / 2; int halfKernel_y = (kernel_dim[0] - 1) / 2; MODE mode = static_cast(pMode); // init buffer std::vector window_values(kernel_dim[0]*kernel_dim[1]); for(int x_pixel=x_pixel_range_min; x_pixel <= x_pixel_range_max; x_pixel ++ ){ typename std::vector::iterator it = window_values.begin(); // fill the vector for(int win_y=y_pixel-halfKernel_y; win_y<= y_pixel+halfKernel_y; win_y++) { for(int win_x = x_pixel-halfKernel_x; win_x <= x_pixel+halfKernel_x; win_x++) { int index_x = win_x; int index_y = win_y; switch(mode){ case NEAREST: index_x = std::min(std::max(win_x, 0), image_dim[1] - 1); index_y = std::min(std::max(win_y, 0), image_dim[0] - 1); break; case REFLECT: index_x = reflect(win_x, image_dim[1]); index_y = reflect(win_y, image_dim[0]); break; case MIRROR: index_x = mirror(win_x, image_dim[1]); index_y = mirror(win_y, image_dim[0]); break; case SHRINK: if((index_x < 0) || (index_x > image_dim[1] -1)){ continue; } if((index_y < 0) || (index_y > image_dim[0] -1)){ continue; } break; } *it = (&input[index_y*image_dim[1] + index_x]); ++it; } } // get end of the windows. This is needed since in shrink mode we are // not sure to fill the entire window. typename std::vector::iterator window_end; int window_size = kernel_dim[0]*kernel_dim[1]; if(mode == SHRINK){ int x_shrink_ker_dim = std::min(x_pixel+halfKernel_x, image_dim[1]-1) - std::max(0, x_pixel-halfKernel_x)+1; int y_shrink_ker_dim = std::min(y_pixel+halfKernel_y, image_dim[0]-1) - std::max(0, y_pixel-halfKernel_y)+1; window_size = x_shrink_ker_dim*y_shrink_ker_dim; window_end = window_values.begin() + window_size; }else{ window_end = window_values.end(); } // apply the median value if needed for this pixel const T* currentPixelValue = &input[image_dim[1]*y_pixel + x_pixel]; if (conditional == true){ T min = 0; T max = 0; getMinMax(window_values, min, max, window_end); if ((*currentPixelValue == max) || (*currentPixelValue == min)){ output[image_dim[1]*y_pixel + x_pixel] = *(median(window_values, window_size)); }else{ output[image_dim[1]*y_pixel + x_pixel] = *currentPixelValue; } }else{ output[image_dim[1]*y_pixel + x_pixel] = *(median(window_values, window_size)); } } } #endif // MEDIAN_FILTER