summaryrefslogtreecommitdiff
path: root/silx/gui/plot/_utils/panzoom.py
blob: 3946a04f57ef2c64ab5599f3a48a7a85cdf2f257 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# coding: utf-8
# /*##########################################################################
#
# Copyright (c) 2004-2017 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
"""Functions to apply pan and zoom on a Plot"""

__authors__ = ["T. Vincent", "V. Valls"]
__license__ = "MIT"
__date__ = "08/08/2017"


import math
import numpy


# Float 32 info ###############################################################
# Using min/max value below limits of float32
# so operation with such value (e.g., max - min) do not overflow

FLOAT32_SAFE_MIN = -1e37
FLOAT32_MINPOS = numpy.finfo(numpy.float32).tiny
FLOAT32_SAFE_MAX = 1e37
# TODO double support


def scale1DRange(min_, max_, center, scale, isLog):
    """Scale a 1D range given a scale factor and an center point.

    Keeps the values in a smaller range than float32.

    :param float min_: The current min value of the range.
    :param float max_: The current max value of the range.
    :param float center: The center of the zoom (i.e., invariant point).
    :param float scale: The scale to use for zoom
    :param bool isLog: Whether using log scale or not.
    :return: The zoomed range.
    :rtype: tuple of 2 floats: (min, max)
    """
    if isLog:
        # Min and center can be < 0 when
        # autoscale is off and switch to log scale
        # max_ < 0 should not happen
        min_ = numpy.log10(min_) if min_ > 0. else FLOAT32_MINPOS
        center = numpy.log10(center) if center > 0. else FLOAT32_MINPOS
        max_ = numpy.log10(max_) if max_ > 0. else FLOAT32_MINPOS

    if min_ == max_:
        return min_, max_

    offset = (center - min_) / (max_ - min_)
    range_ = (max_ - min_) / scale
    newMin = center - offset * range_
    newMax = center + (1. - offset) * range_

    if isLog:
        # No overflow as exponent is log10 of a float32
        newMin = pow(10., newMin)
        newMax = pow(10., newMax)
        newMin = numpy.clip(newMin, FLOAT32_MINPOS, FLOAT32_SAFE_MAX)
        newMax = numpy.clip(newMax, FLOAT32_MINPOS, FLOAT32_SAFE_MAX)
    else:
        newMin = numpy.clip(newMin, FLOAT32_SAFE_MIN, FLOAT32_SAFE_MAX)
        newMax = numpy.clip(newMax, FLOAT32_SAFE_MIN, FLOAT32_SAFE_MAX)
    return newMin, newMax


def applyZoomToPlot(plot, scaleF, center=None):
    """Zoom in/out plot given a scale and a center point.

    :param plot: The plot on which to apply zoom.
    :param float scaleF: Scale factor of zoom.
    :param center: (x, y) coords in pixel coordinates of the zoom center.
    :type center: 2-tuple of float
    """
    xMin, xMax = plot.getXAxis().getLimits()
    yMin, yMax = plot.getYAxis().getLimits()

    if center is None:
        left, top, width, height = plot.getPlotBoundsInPixels()
        cx, cy = left + width // 2, top + height // 2
    else:
        cx, cy = center

    dataCenterPos = plot.pixelToData(cx, cy)
    assert dataCenterPos is not None

    xMin, xMax = scale1DRange(xMin, xMax, dataCenterPos[0], scaleF,
                              plot.getXAxis()._isLogarithmic())

    yMin, yMax = scale1DRange(yMin, yMax, dataCenterPos[1], scaleF,
                              plot.getYAxis()._isLogarithmic())

    dataPos = plot.pixelToData(cx, cy, axis="right")
    assert dataPos is not None
    y2Center = dataPos[1]
    y2Min, y2Max = plot.getYAxis(axis="right").getLimits()
    y2Min, y2Max = scale1DRange(y2Min, y2Max, y2Center, scaleF,
                                plot.getYAxis()._isLogarithmic())

    plot.setLimits(xMin, xMax, yMin, yMax, y2Min, y2Max)


def applyPan(min_, max_, panFactor, isLog10):
    """Returns a new range with applied panning.

    Moves the range according to panFactor.
    If isLog10 is True, converts to log10 before moving.

    :param float min_: Min value of the data range to pan.
    :param float max_: Max value of the data range to pan.
                       Must be >= min.
    :param float panFactor: Signed proportion of the range to use for pan.
    :param bool isLog10: True if log10 scale, False if linear scale.
    :return: New min and max value with pan applied.
    :rtype: 2-tuple of float.
    """
    if isLog10 and min_ > 0.:
        # Negative range and log scale can happen with matplotlib
        logMin, logMax = math.log10(min_), math.log10(max_)
        logOffset = panFactor * (logMax - logMin)
        newMin = pow(10., logMin + logOffset)
        newMax = pow(10., logMax + logOffset)

        # Takes care of out-of-range values
        if newMin > 0. and newMax < float('inf'):
            min_, max_ = newMin, newMax

    else:
        offset = panFactor * (max_ - min_)
        newMin, newMax = min_ + offset, max_ + offset

        # Takes care of out-of-range values
        if newMin > - float('inf') and newMax < float('inf'):
            min_, max_ = newMin, newMax
    return min_, max_


class _Unset(object):
    """To be able to have distinction between None and unset"""
    pass


class ViewConstraints(object):
    """
    Store constraints applied on the view box and compute the resulting view box.
    """

    def __init__(self):
        self._min = [None, None]
        self._max = [None, None]
        self._minRange = [None, None]
        self._maxRange = [None, None]

    def update(self, xMin=_Unset, xMax=_Unset,
               yMin=_Unset, yMax=_Unset,
               minXRange=_Unset, maxXRange=_Unset,
               minYRange=_Unset, maxYRange=_Unset):
        """
        Update the constraints managed by the object

        The constraints are the same as the ones provided by PyQtGraph.

        :param float xMin: Minimum allowed x-axis value.
            (default do not change the stat, None remove the constraint)
        :param float xMax: Maximum allowed x-axis value.
            (default do not change the stat, None remove the constraint)
        :param float yMin: Minimum allowed y-axis value.
            (default do not change the stat, None remove the constraint)
        :param float yMax: Maximum allowed y-axis value.
            (default do not change the stat, None remove the constraint)
        :param float minXRange: Minimum allowed left-to-right span across the
            view (default do not change the stat, None remove the constraint)
        :param float maxXRange: Maximum allowed left-to-right span across the
            view (default do not change the stat, None remove the constraint)
        :param float minYRange: Minimum allowed top-to-bottom span across the
            view (default do not change the stat, None remove the constraint)
        :param float maxYRange: Maximum allowed top-to-bottom span across the
            view (default do not change the stat, None remove the constraint)
        :return: True if the constraints was changed
        """
        updated = False

        minRange = [minXRange, minYRange]
        maxRange = [maxXRange, maxYRange]
        minPos = [xMin, yMin]
        maxPos = [xMax, yMax]

        for axis in range(2):

            value = minPos[axis]
            if value is not _Unset and value != self._min[axis]:
                self._min[axis] = value
                updated = True

            value = maxPos[axis]
            if value is not _Unset and value != self._max[axis]:
                self._max[axis] = value
                updated = True

            value = minRange[axis]
            if value is not _Unset and value != self._minRange[axis]:
                self._minRange[axis] = value
                updated = True

            value = maxRange[axis]
            if value is not _Unset and value != self._maxRange[axis]:
                self._maxRange[axis] = value
                updated = True

        # Sanity checks

        for axis in range(2):
            if self._maxRange[axis] is not None and self._min[axis] is not None and self._max[axis] is not None:
                # max range cannot be larger than bounds
                diff = self._max[axis] - self._min[axis]
                self._maxRange[axis] = min(self._maxRange[axis], diff)
                updated = True

        return updated

    def normalize(self, xMin, xMax, yMin, yMax, allow_scaling=True):
        """Normalize a view range defined by x and y corners using predefined
        containts.

        :param float xMin: Min position of the x-axis
        :param float xMax: Max position of the x-axis
        :param float yMin: Min position of the y-axis
        :param float yMax: Max position of the y-axis
        :param bool allow_scaling: Allow or not to apply scaling for the
            normalization. Used according to the interaction mode.
        :return: A normalized tuple of (xMin, xMax, yMin, yMax)
        """
        viewRange = [[xMin, xMax], [yMin, yMax]]

        for axis in range(2):
            # clamp xRange and yRange
            if allow_scaling:
                diff = viewRange[axis][1] - viewRange[axis][0]
                delta = None
                if self._maxRange[axis] is not None and diff > self._maxRange[axis]:
                    delta = self._maxRange[axis] - diff
                elif self._minRange[axis] is not None and diff < self._minRange[axis]:
                    delta = self._minRange[axis] - diff
                if delta is not None:
                    viewRange[axis][0] -= delta * 0.5
                    viewRange[axis][1] += delta * 0.5

            # clamp min and max positions
            outMin = self._min[axis] is not None and viewRange[axis][0] < self._min[axis]
            outMax = self._max[axis] is not None and viewRange[axis][1] > self._max[axis]

            if outMin and outMax:
                if allow_scaling:
                    # we can clamp both sides
                    viewRange[axis][0] = self._min[axis]
                    viewRange[axis][1] = self._max[axis]
                else:
                    # center the result
                    delta = viewRange[axis][1] - viewRange[axis][0]
                    mid = self._min[axis] + self._max[axis] - self._min[axis]
                    viewRange[axis][0] = mid - delta
                    viewRange[axis][1] = mid + delta
            elif outMin:
                delta = self._min[axis] - viewRange[axis][0]
                viewRange[axis][0] += delta
                viewRange[axis][1] += delta
            elif outMax:
                delta = self._max[axis] - viewRange[axis][1]
                viewRange[axis][0] += delta
                viewRange[axis][1] += delta

        return viewRange[0][0], viewRange[0][1], viewRange[1][0], viewRange[1][1]