summaryrefslogtreecommitdiff
path: root/silx/gui/plot/backends/glutils/GLPlotCurve.py
blob: 3a0ebac2fe19e365fb656aeb54807a7106eb9c13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
# coding: utf-8
# /*##########################################################################
#
# Copyright (c) 2014-2019 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ############################################################################*/
"""
This module provides classes to render 2D lines and scatter plots
"""

from __future__ import division

__authors__ = ["T. Vincent"]
__license__ = "MIT"
__date__ = "03/04/2017"


import math
import logging
import warnings

import numpy

from silx.math.combo import min_max

from ...._glutils import gl
from ...._glutils import Program, vertexBuffer, VertexBufferAttrib
from .GLSupport import buildFillMaskIndices, mat4Identity, mat4Translate


_logger = logging.getLogger(__name__)


_MPL_NONES = None, 'None', '', ' '
"""Possible values for None"""


def _notNaNSlices(array, length=1):
    """Returns slices of none NaN values in the array.

    :param numpy.ndarray array: 1D array from which to get slices
    :param int length: Slices shorter than length gets discarded
    :return: Array of (start, end) slice indices
    :rtype: numpy.ndarray
    """
    isnan = numpy.isnan(numpy.array(array, copy=False).reshape(-1))
    notnan = numpy.logical_not(isnan)
    start = numpy.where(numpy.logical_and(isnan[:-1], notnan[1:]))[0] + 1
    if notnan[0]:
        start = numpy.append(0, start)
    end = numpy.where(numpy.logical_and(notnan[:-1], isnan[1:]))[0] + 1
    if notnan[-1]:
        end = numpy.append(end, len(array))
    slices = numpy.transpose((start, end))
    if length > 1:
        # discard slices with less than length values
        slices = slices[numpy.diff(slices, axis=1).ravel() >= length]
    return slices


# fill ########################################################################

class _Fill2D(object):
    """Object rendering curve filling as polygons

    :param numpy.ndarray xData: X coordinates of points
    :param numpy.ndarray yData: Y coordinates of points
    :param float baseline: Y value of the 'bottom' of the fill.
        0 for linear Y scale, -38 for log Y scale
    :param List[float] color: RGBA color as 4 float in [0, 1]
    :param List[float] offset: Translation of coordinates (ox, oy)
    """

    _PROGRAM = Program(
        vertexShader="""
        #version 120

        uniform mat4 matrix;
        attribute float xPos;
        attribute float yPos;

        void main(void) {
            gl_Position = matrix * vec4(xPos, yPos, 0.0, 1.0);
        }
        """,
        fragmentShader="""
        #version 120

        uniform vec4 color;

        void main(void) {
            gl_FragColor = color;
        }
        """,
        attrib0='xPos')

    def __init__(self, xData=None, yData=None,
                 baseline=0,
                 color=(0., 0., 0., 1.),
                 offset=(0., 0.)):
        self.xData = xData
        self.yData = yData
        self._xFillVboData = None
        self._yFillVboData = None
        self.color = color
        self.offset = offset

        # Offset baseline
        self.baseline = baseline - self.offset[1]

    def prepare(self):
        """Rendering preparation: build indices and bounding box vertices"""
        if (self._xFillVboData is None and
                self.xData is not None and self.yData is not None):

            # Get slices of not NaN values longer than 1 element
            isnan = numpy.logical_or(numpy.isnan(self.xData), numpy.isnan(self.yData))
            notnan = numpy.logical_not(isnan)
            start = numpy.where(numpy.logical_and(isnan[:-1], notnan[1:]))[0] + 1
            if notnan[0]:
                start = numpy.append(0, start)
            end = numpy.where(numpy.logical_and(notnan[:-1], isnan[1:]))[0] + 1
            if notnan[-1]:
                end = numpy.append(end, len(isnan))
            slices = numpy.transpose((start, end))
            # discard slices with less than length values
            slices = slices[numpy.diff(slices, axis=1).reshape(-1) >= 2]

            # Number of points: slice + 2 * leading and trailing points
            # Twice leading and trailing points to produce degenerated triangles
            nbPoints = numpy.sum(numpy.diff(slices, axis=1)) * 2 + 4 * len(slices)
            points = numpy.empty((nbPoints, 2), dtype=numpy.float32)

            offset = 0
            # invert baseline for filling
            new_y_data = numpy.append(self.yData, self.baseline)
            for start, end in slices:
                # Duplicate first point for connecting degenerated triangle
                points[offset:offset+2] = self.xData[start], new_y_data[start]

                # 2nd point of the polygon is last point
                points[offset+2] = self.xData[start], self.baseline[start]

                indices = numpy.append(numpy.arange(start, end),
                                       numpy.arange(len(self.xData) + end-1, len(self.xData) + start-1, -1))
                indices = indices[buildFillMaskIndices(len(indices))]

                points[offset+3:offset+3+len(indices), 0] = self.xData[indices % len(self.xData)]
                points[offset+3:offset+3+len(indices), 1] = new_y_data[indices]

                # Duplicate last point for connecting degenerated triangle
                points[offset+3+len(indices)] = points[offset+3+len(indices)-1]

                offset += len(indices) + 4

            self._xFillVboData, self._yFillVboData = vertexBuffer(points.T)

    def render(self, matrix):
        """Perform rendering

        :param numpy.ndarray matrix: 4x4 transform matrix to use
        """
        self.prepare()

        if self._xFillVboData is None:
            return  # Nothing to display

        self._PROGRAM.use()

        gl.glUniformMatrix4fv(
            self._PROGRAM.uniforms['matrix'], 1, gl.GL_TRUE,
            numpy.dot(matrix,
                      mat4Translate(*self.offset)).astype(numpy.float32))

        gl.glUniform4f(self._PROGRAM.uniforms['color'], *self.color)

        xPosAttrib = self._PROGRAM.attributes['xPos']
        yPosAttrib = self._PROGRAM.attributes['yPos']

        gl.glEnableVertexAttribArray(xPosAttrib)
        self._xFillVboData.setVertexAttrib(xPosAttrib)

        gl.glEnableVertexAttribArray(yPosAttrib)
        self._yFillVboData.setVertexAttrib(yPosAttrib)

        # Prepare fill mask
        gl.glEnable(gl.GL_STENCIL_TEST)
        gl.glStencilMask(1)
        gl.glStencilFunc(gl.GL_ALWAYS, 1, 1)
        gl.glStencilOp(gl.GL_INVERT, gl.GL_INVERT, gl.GL_INVERT)
        gl.glColorMask(gl.GL_FALSE, gl.GL_FALSE, gl.GL_FALSE, gl.GL_FALSE)
        gl.glDepthMask(gl.GL_FALSE)

        gl.glDrawArrays(gl.GL_TRIANGLE_STRIP, 0, self._xFillVboData.size)

        gl.glStencilFunc(gl.GL_EQUAL, 1, 1)
        # Reset stencil while drawing
        gl.glStencilOp(gl.GL_ZERO, gl.GL_ZERO, gl.GL_ZERO)
        gl.glColorMask(gl.GL_TRUE, gl.GL_TRUE, gl.GL_TRUE, gl.GL_TRUE)
        gl.glDepthMask(gl.GL_TRUE)

        # Draw directly in NDC
        gl.glUniformMatrix4fv(self._PROGRAM.uniforms['matrix'], 1, gl.GL_TRUE,
                              mat4Identity().astype(numpy.float32))

        # NDC vertices
        gl.glVertexAttribPointer(
            xPosAttrib, 1, gl.GL_FLOAT, gl.GL_FALSE, 0,
            numpy.array((-1., -1., 1., 1.), dtype=numpy.float32))
        gl.glVertexAttribPointer(
            yPosAttrib, 1, gl.GL_FLOAT, gl.GL_FALSE, 0,
            numpy.array((-1., 1., -1., 1.), dtype=numpy.float32))

        gl.glDrawArrays(gl.GL_TRIANGLE_STRIP, 0, 4)

        gl.glDisable(gl.GL_STENCIL_TEST)

    def discard(self):
        """Release VBOs"""
        if self._xFillVboData is not None:
            self._xFillVboData.vbo.discard()

        self._xFillVboData = None
        self._yFillVboData = None


# line ########################################################################

SOLID, DASHED, DASHDOT, DOTTED = '-', '--', '-.', ':'


class GLLines2D(object):
    """Object rendering curve as a polyline

    :param xVboData: X coordinates VBO
    :param yVboData: Y coordinates VBO
    :param colorVboData: VBO of colors
    :param distVboData: VBO of distance along the polyline
    :param str style: Line style in: '-', '--', '-.', ':'
    :param List[float] color: RGBA color as 4 float in [0, 1]
    :param float width: Line width
    :param float dashPeriod: Period of dashes
    :param drawMode: OpenGL drawing mode
    :param List[float] offset: Translation of coordinates (ox, oy)
    """

    STYLES = SOLID, DASHED, DASHDOT, DOTTED
    """Supported line styles"""

    _SOLID_PROGRAM = Program(
        vertexShader="""
        #version 120

        uniform mat4 matrix;
        attribute float xPos;
        attribute float yPos;
        attribute vec4 color;

        varying vec4 vColor;

        void main(void) {
            gl_Position = matrix * vec4(xPos, yPos, 0., 1.) ;
            vColor = color;
        }
        """,
        fragmentShader="""
        #version 120

        varying vec4 vColor;

        void main(void) {
            gl_FragColor = vColor;
        }
        """,
        attrib0='xPos')

    # Limitation: Dash using an estimate of distance in screen coord
    # to avoid computing distance when viewport is resized
    # results in inequal dashes when viewport aspect ratio is far from 1
    _DASH_PROGRAM = Program(
        vertexShader="""
        #version 120

        uniform mat4 matrix;
        uniform vec2 halfViewportSize;
        attribute float xPos;
        attribute float yPos;
        attribute vec4 color;
        attribute float distance;

        varying float vDist;
        varying vec4 vColor;

        void main(void) {
            gl_Position = matrix * vec4(xPos, yPos, 0., 1.);
            //Estimate distance in pixels
            vec2 probe = vec2(matrix * vec4(1., 1., 0., 0.)) *
                         halfViewportSize;
            float pixelPerDataEstimate = length(probe)/sqrt(2.);
            vDist = distance * pixelPerDataEstimate;
            vColor = color;
        }
        """,
        fragmentShader="""
        #version 120

        /* Dashes: [0, x], [y, z]
           Dash period: w */
        uniform vec4 dash;
        uniform vec4 dash2ndColor;

        varying float vDist;
        varying vec4 vColor;

        void main(void) {
            float dist = mod(vDist, dash.w);
            if ((dist > dash.x && dist < dash.y) || dist > dash.z) {
                if (dash2ndColor.a == 0.) {
                    discard;  // Discard full transparent bg color
                } else {
                    gl_FragColor = dash2ndColor;
                }
            } else {
                gl_FragColor = vColor;
            }
        }
        """,
        attrib0='xPos')

    def __init__(self, xVboData=None, yVboData=None,
                 colorVboData=None, distVboData=None,
                 style=SOLID, color=(0., 0., 0., 1.), dash2ndColor=None,
                 width=1, dashPeriod=10., drawMode=None,
                 offset=(0., 0.)):
        if (xVboData is not None and
                not isinstance(xVboData, VertexBufferAttrib)):
            xVboData = numpy.array(xVboData, copy=False, dtype=numpy.float32)
        self.xVboData = xVboData

        if (yVboData is not None and
                not isinstance(yVboData, VertexBufferAttrib)):
            yVboData = numpy.array(yVboData, copy=False, dtype=numpy.float32)
        self.yVboData = yVboData

        # Compute distances if not given while providing numpy array coordinates
        if (isinstance(self.xVboData, numpy.ndarray) and
                isinstance(self.yVboData, numpy.ndarray) and
                distVboData is None):
            distVboData = distancesFromArrays(self.xVboData, self.yVboData)

        if (distVboData is not None and
                not isinstance(distVboData, VertexBufferAttrib)):
            distVboData = numpy.array(
                distVboData, copy=False, dtype=numpy.float32)
        self.distVboData = distVboData

        if colorVboData is not None:
            assert isinstance(colorVboData, VertexBufferAttrib)
        self.colorVboData = colorVboData
        self.useColorVboData = colorVboData is not None

        self.color = color
        self.dash2ndColor = dash2ndColor
        self.width = width
        self._style = None
        self.style = style
        self.dashPeriod = dashPeriod
        self.offset = offset

        self._drawMode = drawMode if drawMode is not None else gl.GL_LINE_STRIP

    @property
    def style(self):
        """Line style (Union[str,None])"""
        return self._style

    @style.setter
    def style(self, style):
        if style in _MPL_NONES:
            self._style = None
        else:
            assert style in self.STYLES
            self._style = style

    @classmethod
    def init(cls):
        """OpenGL context initialization"""
        gl.glHint(gl.GL_LINE_SMOOTH_HINT, gl.GL_NICEST)

    def render(self, matrix):
        """Perform rendering

        :param numpy.ndarray matrix: 4x4 transform matrix to use
        """
        style = self.style
        if style is None:
            return

        elif style == SOLID:
            program = self._SOLID_PROGRAM
            program.use()

        else:  # DASHED, DASHDOT, DOTTED
            program = self._DASH_PROGRAM
            program.use()

            x, y, viewWidth, viewHeight = gl.glGetFloatv(gl.GL_VIEWPORT)
            gl.glUniform2f(program.uniforms['halfViewportSize'],
                           0.5 * viewWidth, 0.5 * viewHeight)

            dashPeriod = self.dashPeriod * self.width
            if self.style == DOTTED:
                dash = (0.2 * dashPeriod,
                        0.5 * dashPeriod,
                        0.7 * dashPeriod,
                        dashPeriod)
            elif self.style == DASHDOT:
                dash = (0.3 * dashPeriod,
                        0.5 * dashPeriod,
                        0.6 * dashPeriod,
                        dashPeriod)
            else:
                dash = (0.5 * dashPeriod,
                        dashPeriod,
                        dashPeriod,
                        dashPeriod)

            gl.glUniform4f(program.uniforms['dash'], *dash)

            if self.dash2ndColor is None:
                # Use fully transparent color which gets discarded in shader
                dash2ndColor = (0., 0., 0., 0.)
            else:
                dash2ndColor = self.dash2ndColor
            gl.glUniform4f(program.uniforms['dash2ndColor'], *dash2ndColor)

            distAttrib = program.attributes['distance']
            gl.glEnableVertexAttribArray(distAttrib)
            if isinstance(self.distVboData, VertexBufferAttrib):
                self.distVboData.setVertexAttrib(distAttrib)
            else:
                gl.glVertexAttribPointer(distAttrib,
                                         1,
                                         gl.GL_FLOAT,
                                         False,
                                         0,
                                         self.distVboData)

        if self.width != 1:
            gl.glEnable(gl.GL_LINE_SMOOTH)

        matrix = numpy.dot(matrix,
                           mat4Translate(*self.offset)).astype(numpy.float32)
        gl.glUniformMatrix4fv(program.uniforms['matrix'],
                              1, gl.GL_TRUE, matrix)

        colorAttrib = program.attributes['color']
        if self.useColorVboData and self.colorVboData is not None:
            gl.glEnableVertexAttribArray(colorAttrib)
            self.colorVboData.setVertexAttrib(colorAttrib)
        else:
            gl.glDisableVertexAttribArray(colorAttrib)
            gl.glVertexAttrib4f(colorAttrib, *self.color)

        xPosAttrib = program.attributes['xPos']
        gl.glEnableVertexAttribArray(xPosAttrib)
        if isinstance(self.xVboData, VertexBufferAttrib):
            self.xVboData.setVertexAttrib(xPosAttrib)
        else:
            gl.glVertexAttribPointer(xPosAttrib,
                                     1,
                                     gl.GL_FLOAT,
                                     False,
                                     0,
                                     self.xVboData)

        yPosAttrib = program.attributes['yPos']
        gl.glEnableVertexAttribArray(yPosAttrib)
        if isinstance(self.yVboData, VertexBufferAttrib):
            self.yVboData.setVertexAttrib(yPosAttrib)
        else:
            gl.glVertexAttribPointer(yPosAttrib,
                                     1,
                                     gl.GL_FLOAT,
                                     False,
                                     0,
                                     self.yVboData)

        gl.glLineWidth(self.width)
        gl.glDrawArrays(self._drawMode, 0, self.xVboData.size)

        gl.glDisable(gl.GL_LINE_SMOOTH)


def distancesFromArrays(xData, yData):
    """Returns distances between each points

    :param numpy.ndarray xData: X coordinate of points
    :param numpy.ndarray yData: Y coordinate of points
    :rtype: numpy.ndarray
    """
    deltas = numpy.dstack((
        numpy.ediff1d(xData, to_begin=numpy.float32(0.)),
        numpy.ediff1d(yData, to_begin=numpy.float32(0.))))[0]
    return numpy.cumsum(numpy.sqrt(numpy.sum(deltas ** 2, axis=1)))


# points ######################################################################

DIAMOND, CIRCLE, SQUARE, PLUS, X_MARKER, POINT, PIXEL, ASTERISK = \
    'd', 'o', 's', '+', 'x', '.', ',', '*'

H_LINE, V_LINE, HEART = '_', '|', u'\u2665'

TICK_LEFT = "tickleft"
TICK_RIGHT = "tickright"
TICK_UP = "tickup"
TICK_DOWN = "tickdown"
CARET_LEFT = "caretleft"
CARET_RIGHT = "caretright"
CARET_UP = "caretup"
CARET_DOWN = "caretdown"


class _Points2D(object):
    """Object rendering curve markers

    :param xVboData: X coordinates VBO
    :param yVboData: Y coordinates VBO
    :param colorVboData: VBO of colors
    :param str marker: Kind of symbol to use, see :attr:`MARKERS`.
    :param List[float] color: RGBA color as 4 float in [0, 1]
    :param float size: Marker size
    :param List[float] offset: Translation of coordinates (ox, oy)
    """

    MARKERS = (DIAMOND, CIRCLE, SQUARE, PLUS, X_MARKER, POINT, PIXEL, ASTERISK,
               H_LINE, V_LINE, HEART, TICK_LEFT, TICK_RIGHT, TICK_UP, TICK_DOWN,
               CARET_LEFT, CARET_RIGHT, CARET_UP, CARET_DOWN)
    """List of supported markers"""

    _VERTEX_SHADER = """
    #version 120

    uniform mat4 matrix;
    uniform int transform;
    uniform float size;
    attribute float xPos;
    attribute float yPos;
    attribute vec4 color;

    varying vec4 vColor;

    void main(void) {
        gl_Position = matrix * vec4(xPos, yPos, 0., 1.);
        vColor = color;
        gl_PointSize = size;
    }
    """

    _FRAGMENT_SHADER_SYMBOLS = {
            DIAMOND: """
        float alphaSymbol(vec2 coord, float size) {
            vec2 centerCoord = abs(coord - vec2(0.5, 0.5));
            float f = centerCoord.x + centerCoord.y;
            return clamp(size * (0.5 - f), 0.0, 1.0);
        }
        """,
            CIRCLE: """
        float alphaSymbol(vec2 coord, float size) {
            float radius = 0.5;
            float r = distance(coord, vec2(0.5, 0.5));
            return clamp(size * (radius - r), 0.0, 1.0);
        }
        """,
            SQUARE: """
        float alphaSymbol(vec2 coord, float size) {
            return 1.0;
        }
        """,
            PLUS: """
        float alphaSymbol(vec2 coord, float size) {
            vec2 d = abs(size * (coord - vec2(0.5, 0.5)));
            if (min(d.x, d.y) < 0.5) {
                return 1.0;
            } else {
                return 0.0;
            }
        }
        """,
            X_MARKER: """
        float alphaSymbol(vec2 coord, float size) {
            vec2 pos = floor(size * coord) + 0.5;
            vec2 d_x = abs(pos.x + vec2(- pos.y, pos.y - size));
            if (min(d_x.x, d_x.y) <= 0.5) {
                return 1.0;
            } else {
                return 0.0;
            }
        }
        """,
            ASTERISK: """
        float alphaSymbol(vec2 coord, float size) {
            /* Combining +, x and circle */
            vec2 d_plus = abs(size * (coord - vec2(0.5, 0.5)));
            vec2 pos = floor(size * coord) + 0.5;
            vec2 d_x = abs(pos.x + vec2(- pos.y, pos.y - size));
            if (min(d_plus.x, d_plus.y) < 0.5) {
                return 1.0;
            } else if (min(d_x.x, d_x.y) <= 0.5) {
                float r = distance(coord, vec2(0.5, 0.5));
                return clamp(size * (0.5 - r), 0.0, 1.0);
            } else {
                return 0.0;
            }
        }
        """,
            H_LINE: """
        float alphaSymbol(vec2 coord, float size) {
            float dy = abs(size * (coord.y - 0.5));
            if (dy < 0.5) {
                return 1.0;
            } else {
                return 0.0;
            }
        }
        """,
            V_LINE: """
        float alphaSymbol(vec2 coord, float size) {
            float dx = abs(size * (coord.x - 0.5));
            if (dx < 0.5) {
                return 1.0;
            } else {
                return 0.0;
            }
        }
        """,
            HEART: """
        float alphaSymbol(vec2 coord, float size) {
            coord = (coord - 0.5) * 2.;
            coord *= 0.75;
            coord.y += 0.25;
            float a = atan(coord.x,-coord.y)/3.141593;
            float r = length(coord);
            float h = abs(a);
            float d = (13.0*h - 22.0*h*h + 10.0*h*h*h)/(6.0-5.0*h);
            float res = clamp(r-d, 0., 1.);
            // antialiasing
            res = smoothstep(0.1, 0.001, res);
            return res;
        }
        """,
            TICK_LEFT: """
        float alphaSymbol(vec2 coord, float size) {
            coord  = size * (coord - 0.5);
            float dy = abs(coord.y);
            if (dy < 0.5 && coord.x < 0.5) {
                return 1.0;
            } else {
                return 0.0;
            }
        }
        """,
            TICK_RIGHT: """
        float alphaSymbol(vec2 coord, float size) {
            coord  = size * (coord - 0.5);
            float dy = abs(coord.y);
            if (dy < 0.5 && coord.x > -0.5) {
                return 1.0;
            } else {
                return 0.0;
            }
        }
        """,
            TICK_UP: """
        float alphaSymbol(vec2 coord, float size) {
            coord  = size * (coord - 0.5);
            float dx = abs(coord.x);
            if (dx < 0.5 && coord.y < 0.5) {
                return 1.0;
            } else {
                return 0.0;
            }
        }
        """,
            TICK_DOWN: """
        float alphaSymbol(vec2 coord, float size) {
            coord  = size * (coord - 0.5);
            float dx = abs(coord.x);
            if (dx < 0.5 && coord.y > -0.5) {
                return 1.0;
            } else {
                return 0.0;
            }
        }
        """,
            CARET_LEFT: """
        float alphaSymbol(vec2 coord, float size) {
            coord  = size * (coord - 0.5);
            float d = abs(coord.x) - abs(coord.y);
            if (d >= -0.1 && coord.x > 0.5) {
                return smoothstep(-0.1, 0.1, d);
            } else {
                return 0.0;
            }
        }
        """,
            CARET_RIGHT: """
        float alphaSymbol(vec2 coord, float size) {
            coord  = size * (coord - 0.5);
            float d = abs(coord.x) - abs(coord.y);
            if (d >= -0.1 && coord.x < 0.5) {
                return smoothstep(-0.1, 0.1, d);
            } else {
                return 0.0;
            }
        }
        """,
            CARET_UP: """
        float alphaSymbol(vec2 coord, float size) {
            coord  = size * (coord - 0.5);
            float d = abs(coord.y) - abs(coord.x);
            if (d >= -0.1 && coord.y > 0.5) {
                return smoothstep(-0.1, 0.1, d);
            } else {
                return 0.0;
            }
        }
        """,
            CARET_DOWN: """
        float alphaSymbol(vec2 coord, float size) {
            coord  = size * (coord - 0.5);
            float d = abs(coord.y) - abs(coord.x);
            if (d >= -0.1 && coord.y < 0.5) {
                return smoothstep(-0.1, 0.1, d);
            } else {
                return 0.0;
            }
        }
        """,
    }

    _FRAGMENT_SHADER_TEMPLATE = """
    #version 120

    uniform float size;

    varying vec4 vColor;

    %s

    void main(void) {
        float alpha = alphaSymbol(gl_PointCoord, size);
        if (alpha <= 0.0) {
            discard;
        } else {
            gl_FragColor = vec4(vColor.rgb, alpha * clamp(vColor.a, 0.0, 1.0));
        }
    }
    """

    _PROGRAMS = {}

    def __init__(self, xVboData=None, yVboData=None, colorVboData=None,
                 marker=SQUARE, color=(0., 0., 0., 1.), size=7,
                 offset=(0., 0.)):
        self.color = color
        self._marker = None
        self.marker = marker
        self.size = size
        self.offset = offset

        self.xVboData = xVboData
        self.yVboData = yVboData
        self.colorVboData = colorVboData
        self.useColorVboData = colorVboData is not None

    @property
    def marker(self):
        """Symbol used to display markers (str)"""
        return self._marker

    @marker.setter
    def marker(self, marker):
        if marker in _MPL_NONES:
            self._marker = None
        else:
            assert marker in self.MARKERS
            self._marker = marker

    @classmethod
    def _getProgram(cls, marker):
        """On-demand shader program creation."""
        if marker == PIXEL:
            marker = SQUARE
        elif marker == POINT:
            marker = CIRCLE

        if marker not in cls._PROGRAMS:
            cls._PROGRAMS[marker] = Program(
                vertexShader=cls._VERTEX_SHADER,
                fragmentShader=(cls._FRAGMENT_SHADER_TEMPLATE %
                                cls._FRAGMENT_SHADER_SYMBOLS[marker]),
                attrib0='xPos')

        return cls._PROGRAMS[marker]

    @classmethod
    def init(cls):
        """OpenGL context initialization"""
        version = gl.glGetString(gl.GL_VERSION)
        majorVersion = int(version[0])
        assert majorVersion >= 2
        gl.glEnable(gl.GL_VERTEX_PROGRAM_POINT_SIZE)  # OpenGL 2
        gl.glEnable(gl.GL_POINT_SPRITE)  # OpenGL 2
        if majorVersion >= 3:  # OpenGL 3
            gl.glEnable(gl.GL_PROGRAM_POINT_SIZE)

    def render(self, matrix):
        """Perform rendering

        :param numpy.ndarray matrix: 4x4 transform matrix to use
        """
        if self.marker is None:
            return

        program = self._getProgram(self.marker)
        program.use()

        matrix = numpy.dot(matrix,
                           mat4Translate(*self.offset)).astype(numpy.float32)
        gl.glUniformMatrix4fv(program.uniforms['matrix'], 1, gl.GL_TRUE, matrix)

        if self.marker == PIXEL:
            size = 1
        elif self.marker == POINT:
            size = math.ceil(0.5 * self.size) + 1  # Mimic Matplotlib point
        else:
            size = self.size
        gl.glUniform1f(program.uniforms['size'], size)
        # gl.glPointSize(self.size)

        cAttrib = program.attributes['color']
        if self.useColorVboData and self.colorVboData is not None:
            gl.glEnableVertexAttribArray(cAttrib)
            self.colorVboData.setVertexAttrib(cAttrib)
        else:
            gl.glDisableVertexAttribArray(cAttrib)
            gl.glVertexAttrib4f(cAttrib, *self.color)

        xAttrib = program.attributes['xPos']
        gl.glEnableVertexAttribArray(xAttrib)
        self.xVboData.setVertexAttrib(xAttrib)

        yAttrib = program.attributes['yPos']
        gl.glEnableVertexAttribArray(yAttrib)
        self.yVboData.setVertexAttrib(yAttrib)

        gl.glDrawArrays(gl.GL_POINTS, 0, self.xVboData.size)

        gl.glUseProgram(0)


# error bars ##################################################################

class _ErrorBars(object):
    """Display errors bars.

    This is using its own VBO as opposed to fill/points/lines.
    There is no picking on error bars.

    It uses 2 vertices per error bars and uses :class:`GLLines2D` to
    render error bars and :class:`_Points2D` to render the ends.

    :param numpy.ndarray xData: X coordinates of the data.
    :param numpy.ndarray yData: Y coordinates of the data.
    :param xError: The absolute error on the X axis.
    :type xError: A float, or a numpy.ndarray of float32.
                  If it is an array, it can either be a 1D array of
                  same length as the data or a 2D array with 2 rows
                  of same length as the data: row 0 for negative errors,
                  row 1 for positive errors.
    :param yError: The absolute error on the Y axis.
    :type yError: A float, or a numpy.ndarray of float32. See xError.
    :param float xMin: The min X value already computed by GLPlotCurve2D.
    :param float yMin: The min Y value already computed by GLPlotCurve2D.
    :param List[float] color: RGBA color as 4 float in [0, 1]
    :param List[float] offset: Translation of coordinates (ox, oy)
    """

    def __init__(self, xData, yData, xError, yError,
                 xMin, yMin,
                 color=(0., 0., 0., 1.),
                 offset=(0., 0.)):
        self._attribs = None
        self._xMin, self._yMin = xMin, yMin
        self.offset = offset

        if xError is not None or yError is not None:
            self._xData = numpy.array(
                xData, order='C', dtype=numpy.float32, copy=False)
            self._yData = numpy.array(
                yData, order='C', dtype=numpy.float32, copy=False)

            # This also works if xError, yError is a float/int
            self._xError = numpy.array(
                xError, order='C', dtype=numpy.float32, copy=False)
            self._yError = numpy.array(
                yError, order='C', dtype=numpy.float32, copy=False)
        else:
            self._xData, self._yData = None, None
            self._xError, self._yError = None, None

        self._lines = GLLines2D(
            None, None, color=color, drawMode=gl.GL_LINES, offset=offset)
        self._xErrPoints = _Points2D(
            None, None, color=color, marker=V_LINE, offset=offset)
        self._yErrPoints = _Points2D(
            None, None, color=color, marker=H_LINE, offset=offset)

    def _buildVertices(self):
        """Generates error bars vertices"""
        nbLinesPerDataPts = (0 if self._xError is None else 2) + \
                            (0 if self._yError is None else 2)

        nbDataPts = len(self._xData)

        # interleave coord+error, coord-error.
        # xError vertices first if any, then yError vertices if any.
        xCoords = numpy.empty(nbDataPts * nbLinesPerDataPts * 2,
                              dtype=numpy.float32)
        yCoords = numpy.empty(nbDataPts * nbLinesPerDataPts * 2,
                              dtype=numpy.float32)

        if self._xError is not None:  # errors on the X axis
            if len(self._xError.shape) == 2:
                xErrorMinus, xErrorPlus = self._xError[0], self._xError[1]
            else:
                # numpy arrays of len 1 or len(xData)
                xErrorMinus, xErrorPlus = self._xError, self._xError

            # Interleave vertices for xError
            endXError = 4 * nbDataPts
            xCoords[0:endXError-3:4] = self._xData + xErrorPlus
            xCoords[1:endXError-2:4] = self._xData
            xCoords[2:endXError-1:4] = self._xData
            xCoords[3:endXError:4] = self._xData - xErrorMinus

            yCoords[0:endXError-3:4] = self._yData
            yCoords[1:endXError-2:4] = self._yData
            yCoords[2:endXError-1:4] = self._yData
            yCoords[3:endXError:4] = self._yData

        else:
            endXError = 0

        if self._yError is not None:  # errors on the Y axis
            if len(self._yError.shape) == 2:
                yErrorMinus, yErrorPlus = self._yError[0], self._yError[1]
            else:
                # numpy arrays of len 1 or len(yData)
                yErrorMinus, yErrorPlus = self._yError, self._yError

            # Interleave vertices for yError
            xCoords[endXError::4] = self._xData
            xCoords[endXError+1::4] = self._xData
            xCoords[endXError+2::4] = self._xData
            xCoords[endXError+3::4] = self._xData

            yCoords[endXError::4] = self._yData + yErrorPlus
            yCoords[endXError+1::4] = self._yData
            yCoords[endXError+2::4] = self._yData
            yCoords[endXError+3::4] = self._yData - yErrorMinus

        return xCoords, yCoords

    def prepare(self):
        """Rendering preparation: build indices and bounding box vertices"""
        if self._xData is None:
            return

        if self._attribs is None:
            xCoords, yCoords = self._buildVertices()

            xAttrib, yAttrib = vertexBuffer((xCoords, yCoords))
            self._attribs = xAttrib, yAttrib

            self._lines.xVboData = xAttrib
            self._lines.yVboData = yAttrib

            # Set xError points using the same VBO as lines
            self._xErrPoints.xVboData = xAttrib.copy()
            self._xErrPoints.xVboData.size //= 2
            self._xErrPoints.yVboData = yAttrib.copy()
            self._xErrPoints.yVboData.size //= 2

            # Set yError points using the same VBO as lines
            self._yErrPoints.xVboData = xAttrib.copy()
            self._yErrPoints.xVboData.size //= 2
            self._yErrPoints.xVboData.offset += (xAttrib.itemsize *
                                                 xAttrib.size // 2)
            self._yErrPoints.yVboData = yAttrib.copy()
            self._yErrPoints.yVboData.size //= 2
            self._yErrPoints.yVboData.offset += (yAttrib.itemsize *
                                                 yAttrib.size // 2)

    def render(self, matrix):
        """Perform rendering

        :param numpy.ndarray matrix: 4x4 transform matrix to use
        """
        self.prepare()

        if self._attribs is not None:
            self._lines.render(matrix)
            self._xErrPoints.render(matrix)
            self._yErrPoints.render(matrix)

    def discard(self):
        """Release VBOs"""
        if self._attribs is not None:
            self._lines.xVboData, self._lines.yVboData = None, None
            self._xErrPoints.xVboData, self._xErrPoints.yVboData = None, None
            self._yErrPoints.xVboData, self._yErrPoints.yVboData = None, None
            self._attribs[0].vbo.discard()
            self._attribs = None


# curves ######################################################################

def _proxyProperty(*componentsAttributes):
    """Create a property to access an attribute of attribute(s).
    Useful for composition.
    Supports multiple components this way:
    getter returns the first found, setter sets all
    """
    def getter(self):
        for compName, attrName in componentsAttributes:
            try:
                component = getattr(self, compName)
            except AttributeError:
                pass
            else:
                return getattr(component, attrName)

    def setter(self, value):
        for compName, attrName in componentsAttributes:
            component = getattr(self, compName)
            setattr(component, attrName, value)
    return property(getter, setter)


class GLPlotCurve2D(object):
    def __init__(self, xData, yData, colorData=None,
                 xError=None, yError=None,
                 lineStyle=SOLID,
                 lineColor=(0., 0., 0., 1.),
                 lineWidth=1,
                 lineDashPeriod=20,
                 marker=SQUARE,
                 markerColor=(0., 0., 0., 1.),
                 markerSize=7,
                 fillColor=None,
                 baseline=None,
                 isYLog=False):

        self.colorData = colorData

        # Compute x bounds
        if xError is None:
            self.xMin, self.xMax = min_max(xData, min_positive=False)
        else:
            # Takes the error into account
            if hasattr(xError, 'shape') and len(xError.shape) == 2:
                xErrorMinus, xErrorPlus = xError[0], xError[1]
            else:
                xErrorMinus, xErrorPlus = xError, xError
            self.xMin = numpy.nanmin(xData - xErrorMinus)
            self.xMax = numpy.nanmax(xData + xErrorPlus)

        # Compute y bounds
        if yError is None:
            self.yMin, self.yMax = min_max(yData, min_positive=False)
        else:
            # Takes the error into account
            if hasattr(yError, 'shape') and len(yError.shape) == 2:
                yErrorMinus, yErrorPlus = yError[0], yError[1]
            else:
                yErrorMinus, yErrorPlus = yError, yError
            self.yMin = numpy.nanmin(yData - yErrorMinus)
            self.yMax = numpy.nanmax(yData + yErrorPlus)

        # Handle data offset
        if xData.itemsize > 4 or yData.itemsize > 4:  # Use normalization
            # offset data, do not offset error as it is relative
            self.offset = self.xMin, self.yMin
            self.xData = (xData - self.offset[0]).astype(numpy.float32)
            self.yData = (yData - self.offset[1]).astype(numpy.float32)

        else:  # float32
            self.offset = 0., 0.
            self.xData = xData
            self.yData = yData
        if fillColor is not None:
            def deduce_baseline(baseline):
                if baseline is None:
                    _baseline = 0
                else:
                    _baseline = baseline
                if not isinstance(_baseline, numpy.ndarray):
                    _baseline = numpy.repeat(_baseline,
                                             len(self.xData))
                if isYLog is True:
                    with warnings.catch_warnings():  # Ignore NaN comparison warnings
                        warnings.simplefilter('ignore',
                                              category=RuntimeWarning)
                        log_val = numpy.log10(_baseline)
                    _baseline = numpy.where(_baseline>0.0, log_val, -38)
                return _baseline

            _baseline = deduce_baseline(baseline)

            # Use different baseline depending of Y log scale
            self.fill = _Fill2D(self.xData, self.yData,
                                baseline=_baseline,
                                color=fillColor,
                                offset=self.offset)
        else:
            self.fill = None

        self._errorBars = _ErrorBars(self.xData, self.yData,
                                     xError, yError,
                                     self.xMin, self.yMin,
                                     offset=self.offset)

        self.lines = GLLines2D()
        self.lines.style = lineStyle
        self.lines.color = lineColor
        self.lines.width = lineWidth
        self.lines.dashPeriod = lineDashPeriod
        self.lines.offset = self.offset

        self.points = _Points2D()
        self.points.marker = marker
        self.points.color = markerColor
        self.points.size = markerSize
        self.points.offset = self.offset

    xVboData = _proxyProperty(('lines', 'xVboData'), ('points', 'xVboData'))

    yVboData = _proxyProperty(('lines', 'yVboData'), ('points', 'yVboData'))

    colorVboData = _proxyProperty(('lines', 'colorVboData'),
                                  ('points', 'colorVboData'))

    useColorVboData = _proxyProperty(('lines', 'useColorVboData'),
                                     ('points', 'useColorVboData'))

    distVboData = _proxyProperty(('lines', 'distVboData'))

    lineStyle = _proxyProperty(('lines', 'style'))

    lineColor = _proxyProperty(('lines', 'color'))

    lineWidth = _proxyProperty(('lines', 'width'))

    lineDashPeriod = _proxyProperty(('lines', 'dashPeriod'))

    marker = _proxyProperty(('points', 'marker'))

    markerColor = _proxyProperty(('points', 'color'))

    markerSize = _proxyProperty(('points', 'size'))

    @classmethod
    def init(cls):
        """OpenGL context initialization"""
        GLLines2D.init()
        _Points2D.init()

    def prepare(self):
        """Rendering preparation: build indices and bounding box vertices"""
        if self.xVboData is None:
            xAttrib, yAttrib, cAttrib, dAttrib = None, None, None, None
            if self.lineStyle in (DASHED, DASHDOT, DOTTED):
                dists = distancesFromArrays(self.xData, self.yData)
                if self.colorData is None:
                    xAttrib, yAttrib, dAttrib = vertexBuffer(
                        (self.xData, self.yData, dists))
                else:
                    xAttrib, yAttrib, cAttrib, dAttrib = vertexBuffer(
                        (self.xData, self.yData, self.colorData, dists))
            elif self.colorData is None:
                xAttrib, yAttrib = vertexBuffer((self.xData, self.yData))
            else:
                xAttrib, yAttrib, cAttrib = vertexBuffer(
                    (self.xData, self.yData, self.colorData))

            self.xVboData = xAttrib
            self.yVboData = yAttrib
            self.distVboData = dAttrib

            if cAttrib is not None and self.colorData.dtype.kind == 'u':
                cAttrib.normalization = True  # Normalize uint to [0, 1]
            self.colorVboData = cAttrib
            self.useColorVboData = cAttrib is not None

    def render(self, matrix, isXLog, isYLog):
        """Perform rendering

        :param numpy.ndarray matrix: 4x4 transform matrix to use
        :param bool isXLog:
        :param bool isYLog:
        """
        self.prepare()
        if self.fill is not None:
            self.fill.render(matrix)
        self._errorBars.render(matrix)
        self.lines.render(matrix)
        self.points.render(matrix)

    def discard(self):
        """Release VBOs"""
        if self.xVboData is not None:
            self.xVboData.vbo.discard()

        self.xVboData = None
        self.yVboData = None
        self.colorVboData = None
        self.distVboData = None

        self._errorBars.discard()
        if self.fill is not None:
            self.fill.discard()

    def pick(self, xPickMin, yPickMin, xPickMax, yPickMax):
        """Perform picking on the curve according to its rendering.

        The picking area is [xPickMin, xPickMax], [yPickMin, yPickMax].

        In case a segment between 2 points with indices i, i+1 is picked,
        only its lower index end point (i.e., i) is added to the result.
        In case an end point with index i is picked it is added to the result,
        and the segment [i-1, i] is not tested for picking.

        :return: The indices of the picked data
        :rtype: Union[List[int],None]
        """
        if (self.marker is None and self.lineStyle is None) or \
                self.xMin > xPickMax or xPickMin > self.xMax or \
                self.yMin > yPickMax or yPickMin > self.yMax:
            return None

        # offset picking bounds
        xPickMin = xPickMin - self.offset[0]
        xPickMax = xPickMax - self.offset[0]
        yPickMin = yPickMin - self.offset[1]
        yPickMax = yPickMax - self.offset[1]

        if self.lineStyle is not None:
            # Using Cohen-Sutherland algorithm for line clipping
            with warnings.catch_warnings():  # Ignore NaN comparison warnings
                warnings.simplefilter('ignore', category=RuntimeWarning)
                codes = ((self.yData > yPickMax) << 3) | \
                    ((self.yData < yPickMin) << 2) | \
                    ((self.xData > xPickMax) << 1) | \
                    (self.xData < xPickMin)

            notNaN = numpy.logical_not(numpy.logical_or(
                numpy.isnan(self.xData), numpy.isnan(self.yData)))

            # Add all points that are inside the picking area
            indices = numpy.nonzero(
                numpy.logical_and(codes == 0, notNaN))[0].tolist()

            # Segment that might cross the area with no end point inside it
            segToTestIdx = numpy.nonzero((codes[:-1] != 0) &
                                         (codes[1:] != 0) &
                                         ((codes[:-1] & codes[1:]) == 0))[0]

            TOP, BOTTOM, RIGHT, LEFT = (1 << 3), (1 << 2), (1 << 1), (1 << 0)

            for index in segToTestIdx:
                if index not in indices:
                    x0, y0 = self.xData[index], self.yData[index]
                    x1, y1 = self.xData[index + 1], self.yData[index + 1]
                    code1 = codes[index + 1]

                    # check for crossing with horizontal bounds
                    # y0 == y1 is a never event:
                    # => pt0 and pt1 in same vertical area are not in segToTest
                    if code1 & TOP:
                        x = x0 + (x1 - x0) * (yPickMax - y0) / (y1 - y0)
                    elif code1 & BOTTOM:
                        x = x0 + (x1 - x0) * (yPickMin - y0) / (y1 - y0)
                    else:
                        x = None  # No horizontal bounds intersection test

                    if x is not None and xPickMin <= x <= xPickMax:
                        # Intersection
                        indices.append(index)

                    else:
                        # check for crossing with vertical bounds
                        # x0 == x1 is a never event (see remark for y)
                        if code1 & RIGHT:
                            y = y0 + (y1 - y0) * (xPickMax - x0) / (x1 - x0)
                        elif code1 & LEFT:
                            y = y0 + (y1 - y0) * (xPickMin - x0) / (x1 - x0)
                        else:
                            y = None  # No vertical bounds intersection test

                        if y is not None and yPickMin <= y <= yPickMax:
                            # Intersection
                            indices.append(index)

            indices.sort()

        else:
            with warnings.catch_warnings():  # Ignore NaN comparison warnings
                warnings.simplefilter('ignore', category=RuntimeWarning)
                indices = numpy.nonzero((self.xData >= xPickMin) &
                                        (self.xData <= xPickMax) &
                                        (self.yData >= yPickMin) &
                                        (self.yData <= yPickMax))[0].tolist()

        return tuple(indices) if len(indices) > 0 else None