summaryrefslogtreecommitdiff
path: root/silx/gui/plot/items/scatter.py
blob: b2f087b321f2566d23706ade35804347c462bcd4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# coding: utf-8
# /*##########################################################################
#
# Copyright (c) 2017-2019 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
"""This module provides the :class:`Scatter` item of the :class:`Plot`.
"""

__authors__ = ["T. Vincent", "P. Knobel"]
__license__ = "MIT"
__date__ = "29/03/2017"


import logging
import threading
import numpy

from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, CancelledError

from ....utils.weakref import WeakList
from .._utils.delaunay import delaunay
from .core import PointsBase, ColormapMixIn, ScatterVisualizationMixIn
from .axis import Axis


_logger = logging.getLogger(__name__)


class _GreedyThreadPoolExecutor(ThreadPoolExecutor):
    """:class:`ThreadPoolExecutor` with an extra :meth:`submit_greedy` method.
    """

    def __init__(self, *args, **kwargs):
        super(_GreedyThreadPoolExecutor, self).__init__(*args, **kwargs)
        self.__futures = defaultdict(WeakList)
        self.__lock = threading.RLock()

    def submit_greedy(self, queue, fn, *args, **kwargs):
        """Same as :meth:`submit` but cancel previous tasks in given queue.

        This means that when a new task is submitted for a given queue,
        all other pending tasks of that queue are cancelled.

        :param queue: Identifier of the queue. This must be hashable.
        :param callable fn: The callable to call with provided extra arguments
        :return: Future corresponding to this task
        :rtype: concurrent.futures.Future
        """
        with self.__lock:
            # Cancel previous tasks in given queue
            for future in self.__futures.pop(queue, []):
                if not future.done():
                    future.cancel()

            future = super(_GreedyThreadPoolExecutor, self).submit(
                fn, *args, **kwargs)
            self.__futures[queue].append(future)

        return future


class Scatter(PointsBase, ColormapMixIn, ScatterVisualizationMixIn):
    """Description of a scatter"""

    _DEFAULT_SELECTABLE = True
    """Default selectable state for scatter plots"""

    _SUPPORTED_SCATTER_VISUALIZATION = (
        ScatterVisualizationMixIn.Visualization.POINTS,
        ScatterVisualizationMixIn.Visualization.SOLID)
    """Overrides supported Visualizations"""

    def __init__(self):
        PointsBase.__init__(self)
        ColormapMixIn.__init__(self)
        ScatterVisualizationMixIn.__init__(self)
        self._value = ()
        self.__alpha = None
        # Cache Delaunay triangulation future object
        self.__delaunayFuture = None
        # Cache interpolator future object
        self.__interpolatorFuture = None
        self.__executor = None

        # Cache triangles: x, y, indices
        self.__cacheTriangles = None, None, None
        
    def _addBackendRenderer(self, backend):
        """Update backend renderer"""
        # Filter-out values <= 0
        xFiltered, yFiltered, valueFiltered, xerror, yerror = self.getData(
            copy=False, displayed=True)

        # Remove not finite numbers (this includes filtered out x, y <= 0)
        mask = numpy.logical_and(numpy.isfinite(xFiltered), numpy.isfinite(yFiltered))
        xFiltered = xFiltered[mask]
        yFiltered = yFiltered[mask]

        if len(xFiltered) == 0:
            return None  # No data to display, do not add renderer to backend

        # Compute colors
        cmap = self.getColormap()
        rgbacolors = cmap.applyToData(self._value)

        if self.__alpha is not None:
            rgbacolors[:, -1] = (rgbacolors[:, -1] * self.__alpha).astype(numpy.uint8)

        # Apply mask to colors
        rgbacolors = rgbacolors[mask]

        if self.getVisualization() is self.Visualization.POINTS:
            return backend.addCurve(xFiltered, yFiltered, self.getLegend(),
                                    color=rgbacolors,
                                    symbol=self.getSymbol(),
                                    linewidth=0,
                                    linestyle="",
                                    yaxis='left',
                                    xerror=xerror,
                                    yerror=yerror,
                                    z=self.getZValue(),
                                    selectable=self.isSelectable(),
                                    fill=False,
                                    alpha=self.getAlpha(),
                                    symbolsize=self.getSymbolSize())

        else:  # 'solid'
            plot = self.getPlot()
            if (plot is None or
                    plot.getXAxis().getScale() != Axis.LINEAR or
                    plot.getYAxis().getScale() != Axis.LINEAR):
                # Solid visualization is not available with log scaled axes
                return None

            triangulation = self._getDelaunay().result()
            if triangulation is None:
                return None
            else:
                triangles = triangulation.simplices.astype(numpy.int32)
                return backend.addTriangles(xFiltered,
                                            yFiltered,
                                            triangles,
                                            legend=self.getLegend(),
                                            color=rgbacolors,
                                            z=self.getZValue(),
                                            selectable=self.isSelectable(),
                                            alpha=self.getAlpha())

    def __getExecutor(self):
        """Returns async greedy executor

        :rtype: _GreedyThreadPoolExecutor
        """
        if self.__executor is None:
            self.__executor = _GreedyThreadPoolExecutor(max_workers=2)
        return self.__executor

    def _getDelaunay(self):
        """Returns a :class:`Future` which result is the Delaunay object.

        :rtype: concurrent.futures.Future
        """
        if self.__delaunayFuture is None or self.__delaunayFuture.cancelled():
            # Need to init a new delaunay
            x, y = self.getData(copy=False)[:2]
            # Remove not finite points
            mask = numpy.logical_and(numpy.isfinite(x), numpy.isfinite(y))

            self.__delaunayFuture = self.__getExecutor().submit_greedy(
                'delaunay', delaunay, x[mask], y[mask])

        return self.__delaunayFuture

    @staticmethod
    def __initInterpolator(delaunayFuture, values):
        """Returns an interpolator for the given data points

        :param concurrent.futures.Future delaunayFuture:
            Future object which result is a Delaunay object
        :param numpy.ndarray values: The data value of valid points.
        :rtype: Union[callable,None]
        """
        # Wait for Delaunay to complete
        try:
            triangulation = delaunayFuture.result()
        except CancelledError:
            triangulation = None

        if triangulation is None:
            interpolator = None  # Error case
        else:
            # Lazy-loading of interpolator
            try:
                from scipy.interpolate import LinearNDInterpolator
            except ImportError:
                LinearNDInterpolator = None

            if LinearNDInterpolator is not None:
                interpolator = LinearNDInterpolator(triangulation, values)

                # First call takes a while, do it here
                interpolator([(0., 0.)])

            else:
                # Fallback using matplotlib interpolator
                import matplotlib.tri

                x, y = triangulation.points.T
                tri = matplotlib.tri.Triangulation(
                    x, y, triangles=triangulation.simplices)
                mplInterpolator = matplotlib.tri.LinearTriInterpolator(
                    tri, values)

                # Wrap interpolator to have same API as scipy's one
                def interpolator(points):
                    return mplInterpolator(*points.T)

        return interpolator

    def _getInterpolator(self):
        """Returns a :class:`Future` which result is the interpolator.

        The interpolator is a callable taking an array Nx2 of points
        as a single argument.
        The :class:`Future` result is None in case the interpolator cannot
        be initialized.

        :rtype: concurrent.futures.Future
        """
        if (self.__interpolatorFuture is None or
                self.__interpolatorFuture.cancelled()):
            # Need to init a new interpolator
            x, y, values = self.getData(copy=False)[:3]
            # Remove not finite points
            mask = numpy.logical_and(numpy.isfinite(x), numpy.isfinite(y))
            x, y, values = x[mask], y[mask], values[mask]

            self.__interpolatorFuture = self.__getExecutor().submit_greedy(
                'interpolator',
                self.__initInterpolator, self._getDelaunay(), values)
        return self.__interpolatorFuture

    def _logFilterData(self, xPositive, yPositive):
        """Filter out values with x or y <= 0 on log axes

        :param bool xPositive: True to filter arrays according to X coords.
        :param bool yPositive: True to filter arrays according to Y coords.
        :return: The filtered arrays or unchanged object if not filtering needed
        :rtype: (x, y, value, xerror, yerror)
        """
        # overloaded from PointsBase to filter also value.
        value = self.getValueData(copy=False)

        if xPositive or yPositive:
            clipped = self._getClippingBoolArray(xPositive, yPositive)

            if numpy.any(clipped):
                # copy to keep original array and convert to float
                value = numpy.array(value, copy=True, dtype=numpy.float)
                value[clipped] = numpy.nan

        x, y, xerror, yerror = PointsBase._logFilterData(self, xPositive, yPositive)

        return x, y, value, xerror, yerror

    def getValueData(self, copy=True):
        """Returns the value assigned to the scatter data points.

        :param copy: True (Default) to get a copy,
                     False to use internal representation (do not modify!)
        :rtype: numpy.ndarray
        """
        return numpy.array(self._value, copy=copy)

    def getAlphaData(self, copy=True):
        """Returns the alpha (transparency) assigned to the scatter data points.

        :param copy: True (Default) to get a copy,
                     False to use internal representation (do not modify!)
        :rtype: numpy.ndarray
        """
        return numpy.array(self.__alpha, copy=copy)

    def getData(self, copy=True, displayed=False):
        """Returns the x, y coordinates and the value of the data points

        :param copy: True (Default) to get a copy,
                     False to use internal representation (do not modify!)
        :param bool displayed: True to only get curve points that are displayed
                               in the plot. Default: False.
                               Note: If plot has log scale, negative points
                               are not displayed.
        :returns: (x, y, value, xerror, yerror)
        :rtype: 5-tuple of numpy.ndarray
        """
        if displayed:
            data = self._getCachedData()
            if data is not None:
                assert len(data) == 5
                return data

        return (self.getXData(copy),
                self.getYData(copy),
                self.getValueData(copy),
                self.getXErrorData(copy),
                self.getYErrorData(copy))

    # reimplemented from PointsBase to handle `value`
    def setData(self, x, y, value, xerror=None, yerror=None, alpha=None, copy=True):
        """Set the data of the scatter.

        :param numpy.ndarray x: The data corresponding to the x coordinates.
        :param numpy.ndarray y: The data corresponding to the y coordinates.
        :param numpy.ndarray value: The data corresponding to the value of
                                    the data points.
        :param xerror: Values with the uncertainties on the x values
        :type xerror: A float, or a numpy.ndarray of float32.
                      If it is an array, it can either be a 1D array of
                      same length as the data or a 2D array with 2 rows
                      of same length as the data: row 0 for positive errors,
                      row 1 for negative errors.
        :param yerror: Values with the uncertainties on the y values
        :type yerror: A float, or a numpy.ndarray of float32. See xerror.
        :param alpha: Values with the transparency (between 0 and 1)
        :type alpha: A float, or a numpy.ndarray of float32 
        :param bool copy: True make a copy of the data (default),
                          False to use provided arrays.
        """
        value = numpy.array(value, copy=copy)
        assert value.ndim == 1
        assert len(x) == len(value)

        # Reset triangulation and interpolator
        if self.__delaunayFuture is not None:
            self.__delaunayFuture.cancel()
            self.__delaunayFuture = None
        if self.__interpolatorFuture is not None:
            self.__interpolatorFuture.cancel()
            self.__interpolatorFuture = None

        self._value = value

        if alpha is not None:
            # Make sure alpha is an array of float in [0, 1]
            alpha = numpy.array(alpha, copy=copy)
            assert alpha.ndim == 1
            assert len(x) == len(alpha)
            if alpha.dtype.kind != 'f':
                alpha = alpha.astype(numpy.float32)
            if numpy.any(numpy.logical_or(alpha < 0., alpha > 1.)):
                alpha = numpy.clip(alpha, 0., 1.)
        self.__alpha = alpha

        # set x, y, xerror, yerror

        # call self._updated + plot._invalidateDataRange()
        PointsBase.setData(self, x, y, xerror, yerror, copy)