summaryrefslogtreecommitdiff
path: root/silx/image/bilinear.pyx
blob: 14547f852eb3f04731e37748fae94c1ed15a25a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# -*- coding: utf-8 -*-
#cython: embedsignature=True, language_level=3
## This is for optimisation
#cython: boundscheck=False, wraparound=False, cdivision=True, initializedcheck=False,
## This is for developping:
##cython: profile=True, warn.undeclared=True, warn.unused=True, warn.unused_result=False, warn.unused_arg=True
#
#
#
#    Project: silx (originally pyFAI)
#             https://github.com/silx-kit/silx
#
#    Copyright (C) 2012-2020  European Synchrotron Radiation Facility, Grenoble, France
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.

"""Bilinear interpolator, peak finder, line-profile for images"""
__authors__ = ["J. Kieffer"]
__license__ = "MIT"
__date__ = "26/11/2020"

# C-level imports
from libc.stdint cimport uint8_t
from libc.math cimport floor, ceil, sqrt, NAN, isfinite
from libc.float cimport FLT_MAX

import cython
import numpy
import logging
logger = logging.getLogger(__name__)


#Definition of some constants
# How data are stored 
ctypedef float data_t
data_d = numpy.float32

#How the mask is stored
ctypedef uint8_t mask_t
mask_d = numpy.uint8


cdef class BilinearImage:
    """Bilinear interpolator for images ... or any data on a regular grid
    """
    cdef:
        readonly data_t[:, ::1] data
        readonly mask_t[:, ::1] mask
        readonly data_t maxi, mini
        readonly Py_ssize_t width, height
        readonly bint has_mask 
    
    # C-level declarations
    cpdef Py_ssize_t coarse_local_maxi(self, Py_ssize_t)
    cdef Py_ssize_t c_local_maxi(self, Py_ssize_t) nogil
    cdef data_t c_funct(self, data_t, data_t) nogil
    cdef void _init_min_max(self) nogil
    
    def __cinit__(self, data not None, mask=None):
        """Constructor

        :param data: image as a 2D array
        """
        assert data.ndim == 2
        self.height = data.shape[0]
        self.width = data.shape[1]
        self.data = numpy.ascontiguousarray(data, dtype=data_d)
        if mask is not None:
            self.mask = numpy.ascontiguousarray(mask, dtype=mask_d)
            self.has_mask=True
        else:
            self.mask = None
            self.has_mask = False
        self._init_min_max()

    def __dealloc__(self):
        self.data = None
        self.mask = None

    def __call__(self, coord):
        """Function f((y, x)) where f is a continuous function
        made from the image and (y,x)=(row, column) is the pixel coordinates
        in natural C-order

        :param x: 2-tuple of float (row, column)
        :return: Interpolated signal from the image
        """
        return self.c_funct(coord[1], coord[0])
    
    cdef void _init_min_max(self) nogil:
        "Calculate the min & max"
        cdef:
            Py_ssize_t i, j
            data_t maxi, mini, value
        mini = FLT_MAX
        maxi = -FLT_MAX
        for i in range(self.height):
            for j in range(self.width):
                if not (self.has_mask and self.mask[i,j]):
                    value = self.data[i, j] 
                    maxi = max(value, maxi)
                    mini = min(value, mini)
        self.maxi = maxi
        self.mini = mini 

    cdef data_t c_funct(self, data_t x, data_t y) nogil:
        """Function f(x, y) where f is a continuous function
        made from the image.

        :param x (float): column coordinate
        :param y (float): row coordinate
        :return: Interpolated signal from the image (nearest for outside)

        Cython only function due to NOGIL
        """
        cdef:
            data_t d0 = min(max(y, 0.0), (self.height - 1.0))
            data_t d1 = min(max(x, 0.0), (self.width - 1.0))
            mask_t m0, m1, m2, m3
            Py_ssize_t i0, i1, j0, j1
            data_t x0, x1, y0, y1, res, scale

        x0 = floor(d0)
        x1 = ceil(d0)
        y0 = floor(d1)
        y1 = ceil(d1)
        i0 = < int > x0
        i1 = < int > x1
        j0 = < int > y0
        j1 = < int > y1
        if (i0 == i1) and (j0 == j1):
            if not (self.has_mask and self.mask[i0,j0]):
                res = self.data[i0, j0]
            else:
                res = NAN
        elif i0 == i1:
            if self.has_mask:
                m0 = self.mask[i0, j0]
                m1 = self.mask[i0, j1]
                if m0 and m1:
                    res = NAN
                elif m0:
                    res = self.data[i0, j1]
                elif m1:
                    res = self.data[i0, j0]
                else:
                    res = (self.data[i0, j0] * (y1 - d1)) + (self.data[i0, j1] * (d1 - y0))                
            else:
                res = (self.data[i0, j0] * (y1 - d1)) + (self.data[i0, j1] * (d1 - y0))
        elif j0 == j1:
            if self.has_mask:
                m0 = self.mask[i0, j0]
                m1 = self.mask[i1, j0]
                if m0 and m1:
                    res = NAN
                elif m0:
                    res = self.data[i1, j0]
                elif m1:
                    res = self.data[i0, j0]
                else:
                    res = (self.data[i0, j0] * (x1 - d0)) + (self.data[i1, j0] * (d0 - x0))                
            else:
                res = (self.data[i0, j0] * (x1 - d0)) + (self.data[i1, j0] * (d0 - x0))
        else:
            if self.has_mask:
                m0 = self.mask[i0, j0]
                m1 = self.mask[i1, j0]
                m2 = self.mask[i0, j1]
                m3 = self.mask[i1, j1]
                if m0 and m1 and m2 and m3:
                    res = NAN
                else:
                    m0 = not m0
                    m1 = not m1
                    m2 = not m2
                    m3 = not m3
                    if m0 and m1 and m2 and m3:
                        res = (self.data[i0, j0] * (x1 - d0) * (y1 - d1))  \
                            + (self.data[i1, j0] * (d0 - x0) * (y1 - d1))  \
                            + (self.data[i0, j1] * (x1 - d0) * (d1 - y0))  \
                            + (self.data[i1, j1] * (d0 - x0) * (d1 - y0))                    
                    else:
                        res = (m0 * self.data[i0, j0] * (x1 - d0) * (y1 - d1))  \
                            + (m1 * self.data[i1, j0] * (d0 - x0) * (y1 - d1))  \
                            + (m2 * self.data[i0, j1] * (x1 - d0) * (d1 - y0))  \
                            + (m3 * self.data[i1, j1] * (d0 - x0) * (d1 - y0))
                        scale = ((m0 * (x1 - d0) * (y1 - d1)) 
                               + (m1 * (d0 - x0) * (y1 - d1))
                               + (m2 * (x1 - d0) * (d1 - y0))
                               + (m3 * (d0 - x0) * (d1 - y0)))
                        res /= scale
            else:
                res = (self.data[i0, j0] * (x1 - d0) * (y1 - d1))  \
                    + (self.data[i1, j0] * (d0 - x0) * (y1 - d1))  \
                    + (self.data[i0, j1] * (x1 - d0) * (d1 - y0))  \
                    + (self.data[i1, j1] * (d0 - x0) * (d1 - y0))                    
                
        return res

    def opp_f(self, coord):
        """Function -f((y,x)) for peak finding via minimizer.

        Gives large number outside the boundaries to return into the image

        :param x: 2-tuple of float in natural C order, i.e (row, column)
        :return: Negative interpolated signal from the image
        """
        cdef:
            data_t d0, d1, res
        d0, d1 = coord
        if d0 < 0:
            res = self.mini + d0
        elif d1 < 0:
            res = self.mini + d1
        elif d0 > (self.height - 1):
            res = self.mini - d0 + self.height - 1
        elif d1 > self.width - 1:
            res = self.mini - d1 + self.width - 1
        else:
            res = self.c_funct(d1, d0)
        return - res

    def local_maxi(self, coord):
        """Return the nearest local maximum ... with sub-pixel refinement

        Nearest maximum search:
            steepest ascent

        Sub-pixel refinement:
            Second order Taylor expansion of the function;
            At the maximum, the first derivative is null
            delta = x-i = -Inverse[Hessian].gradient
            if Hessian is singular or \|delta\|>1: use a center of mass.

        :param coord: 2-tuple of scalar (row, column)
        :return: 2-tuple of float with the nearest local maximum
        """
        cdef:
            int res, current0, current1
            int i0, i1
            data_t tmp, sum0 = 0, sum1 = 0, sum = 0
            data_t a00, a01, a02, a10, a11, a12, a20, a21, a22
            data_t d00, d11, d01, denom, delta0, delta1
        res = self.c_local_maxi(round(coord[0]) * self.width + round(coord[1]))

        current0 = res // self.width
        current1 = res % self.width
        if (current0 > 0) and (current0 < self.height - 1) and (current1 > 0) and (current1 < self.width - 1):
            # Use second order polynomial Taylor expansion
            a00 = self.data[current0 - 1, current1 - 1]
            a01 = self.data[current0 - 1, current1    ]
            a02 = self.data[current0 - 1, current1 + 1]
            a10 = self.data[current0    , current1 - 1]
            a11 = self.data[current0    , current1    ]
            a12 = self.data[current0    , current1 + 1]
            a20 = self.data[current0 + 1, current1 - 1]
            a21 = self.data[current0 + 1, current1    ]
            a22 = self.data[current0 + 1, current1 - 1]
            d00 = a12 - 2.0 * a11 + a10
            d11 = a21 - 2.0 * a11 + a01
            d01 = (a00 - a02 - a20 + a22) / 4.0
            denom = 2.0 * (d00 * d11 - d01 * d01)
            if abs(denom) < 1e-10:
                logger.debug("Singular determinant, Hessian undefined")
            else:
                delta0 = ((a12 - a10) * d01 + (a01 - a21) * d11) / denom
                delta1 = ((a10 - a12) * d00 + (a21 - a01) * d01) / denom
                if abs(delta0) <= 1.0 and abs(delta1) <= 1.0:
                    # Result is OK if lower than 0.5.
                    return (delta0 + float(current0), delta1 + float(current1))
                else:
                    logger.debug("Failed to find root using second order expansion")
            # refinement of the position by a simple center of mass of the last valid region used
            for i0 in range(current0 - 1, current0 + 2):
                for i1 in range(current1 - 1, current1 + 2):
                    tmp = self.data[i0, i1]
                    sum0 += tmp * i0
                    sum1 += tmp * i1
                    sum += tmp
            if sum > 0:
                return (sum0 / sum, sum1 / sum)

        return (float(current0), float(current1))

    cpdef Py_ssize_t coarse_local_maxi(self, Py_ssize_t x):
        """Return the nearest local maximum ... without sub-pixel refinement

        :param idx: start index (=row*width+column)
        :return: local maximum index
        """
        return self.c_local_maxi(x)

    cdef Py_ssize_t c_local_maxi(self, Py_ssize_t idx) nogil:
        """Return the nearest local maximum without sub-pixel refinement

        :param idx: start index (=row*width+column)
        :return: local maximum index

        This method is Cython only due to the NOGIL
        """
        cdef:
            Py_ssize_t current0 = idx // self.width
            Py_ssize_t current1 = idx % self.width
            Py_ssize_t i0, i1, start0, stop0, start1, stop1, new0, new1, rng, cnt
            mask_t m
            data_t tmp, value, old_value

        if self.has_mask and self.mask[current0, current1]:
            #Start searching for a non masked pixel.
            rng = 0
            cnt = 0
            value = self.mini
            new0, new1 = current0, current1
            while cnt == 0:
                rng += 1
                cnt = 0
                start0 = max(0, current0 - rng)
                stop0 = min(self.height, current0 + rng + 1)
                start1 = max(0, current1 - rng)
                stop1 = min(self.width, current1 + rng + 1)
                for i0 in range(start0, stop0):
                    for i1 in range(start1, stop1):
                        m = not self.mask[i0, i1] 
                        cnt += m
                        if m:
                            tmp = self.data[i0, i1]
                            if tmp > value:
                                new0, new1 = i0, i1
                                value = tmp
            current0, current1 = new0, new1
        else:
            value = self.data[current0, current1]
        
        old_value = value -1
        new0, new1 = current0, current1

        while value > old_value:
            old_value = value
            start0 = max(0, current0 - 1)
            stop0 = min(self.height, current0 + 2)
            start1 = max(0, current1 - 1)
            stop1 = min(self.width, current1 + 2)
            for i0 in range(start0, stop0):
                for i1 in range(start1, stop1):
                    if self.has_mask and self.mask[current0, current1]:
                        continue
                    tmp = self.data[i0, i1]
                    if tmp > value:
                        new0, new1 = i0, i1
                        value = tmp
            current0, current1 = new0, new1
        return self.width * current0 + current1

    def map_coordinates(self, coordinates):
        """Map coordinates of the array on the image

        :param coordinates: 2-tuple of array of the same size (row_array, column_array)
        :return: array of values at given coordinates
        """
        cdef:
            data_t[:] d0, d1, res
            Py_ssize_t size, i
        shape = coordinates[0].shape
        size = coordinates[0].size
        d0 = numpy.ascontiguousarray(coordinates[0].ravel(), dtype=data_d)
        d1 = numpy.ascontiguousarray(coordinates[1].ravel(), dtype=data_d)
        assert size == d1.size
        res = numpy.empty(size, dtype=data_d)
        with nogil:
            for i in range(size):
                res[i] = self.c_funct(d1[i], d0[i])
        return numpy.asarray(res).reshape(shape)

    def profile_line(self, src, dst, int linewidth=1, method='mean'):
        """Return the mean or sum of intensity profile of an image measured
        along a scan line.

        :param src: The start point of the scan line.
        :type src: 2-tuple of numeric scalar
        :param dst: The end point of the scan line.
            The destination point is included in the profile,
            in contrast to standard numpy indexing.
        :type dst: 2-tuple of numeric scalar
        :param int linewidth: Width of the scanline (unit image pixel).
        :param str method: 'mean' or 'sum' depending if we want to compute the
            mean intensity along the line or the sum.
        :return: The intensity profile along the scan line.
            The length of the profile is the ceil of the computed length
            of the scan line.
        :rtype: 1d array

        Inspired from skimage
        """
        cdef:
            data_t src_row, src_col, dst_row, dst_col, d_row, d_col
            data_t length, col_width, row_width, sum, row, col, new_row, new_col, val
            Py_ssize_t lengt, i, j, cnt
            bint compute_mean
            data_t[::1] result
        src_row, src_col = src
        dst_row, dst_col = dst
        if (src_row == dst_row) and (src_col == dst_col):
            logger.warning("Source and destination points are the same")
            return numpy.array([self.c_funct(src_col, src_row)])
        d_row = dst_row - src_row
        d_col = dst_col - src_col

        # Offsets to deal with linewidth
        length = sqrt(d_row * d_row + d_col * d_col)
        row_width = d_col / length
        col_width = - d_row / length

        lengt = <int> ceil(length + 1)
        d_row /= <data_t> (lengt -1)
        d_col /= <data_t> (lengt -1)

        result = numpy.zeros(lengt, dtype=data_d)

        # Offset position to the center of the bottom pixels of the profile
        src_row -= row_width * (linewidth - 1) / 2.
        src_col -= col_width * (linewidth - 1) / 2.

        compute_mean = (method == 'mean')
        with nogil:
            for i in range(lengt):
                sum = 0
                cnt = 0

                row = src_row + i * d_row
                col = src_col + i * d_col

                for j in range(linewidth):
                    new_row = row + j * row_width
                    new_col = col + j * col_width
                    if ((new_col >= 0) and (new_col < self.width) and
                            (new_row >= 0) and (new_row < self.height)):
                        val = self.c_funct(new_col, new_row)
                        if isfinite(val):
                            cnt += 1
                            sum += val  
                if cnt:
                        if compute_mean:
                            result[i] += sum / cnt
                        else:
                            result[i] += sum
                elif compute_mean:
                    result[i] += NAN
        # Ensures the result is exported as numpy array and not memory view.
        return numpy.asarray(result)