summaryrefslogtreecommitdiff
path: root/silx/math/medianfilter/include/median_filter.hpp
blob: b4d953a774d4dfb6e9d0e0c57e588d4f4532fc23 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*##########################################################################
#
# Copyright (c) 2017-2018 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
// __authors__ = ["H. Payno"]
// __license__ = "MIT"
// __date__ = "10/02/2017"

#ifndef MEDIAN_FILTER
#define MEDIAN_FILTER

#include <vector>
#include <assert.h>
#include <algorithm>
#include <signal.h>
#include <iostream>
#include <cmath>
#include <cfloat>

/* Needed for pytohn2.7 on Windows... */
#ifndef INFINITY
#define INFINITY (DBL_MAX+DBL_MAX)
#endif

#ifndef NAN
#define NAN (INFINITY-INFINITY)
#endif

// Modes for the median filter
enum MODE{
    NEAREST=0,  
    REFLECT=1,
    MIRROR=2,
    SHRINK=3,
    CONSTANT=4,
};

// Simple function browsing a deque and registering the min and max values
// and if those values are unique or not
template<typename T>
void getMinMax(std::vector<T>& v, T& min, T&max,
    typename std::vector<T>::const_iterator end){
    // init min and max values
    typename std::vector<T>::const_iterator it = v.begin();
    if (v.size() == 0){
        raise(SIGINT);
    }else{
        min = max = *it;
    }
    it++;

    // Browse all the deque
    while(it!=end){
        // check if repeated (should always be before min/max setting)
        T value = *it;
        if(value > max) max = value;
        if(value < min) min = value;

        it++;
    }
}


// apply the median filter only on limited part of the vector
// In case of even number of elements (either due to NaNs in the window
// or for image borders in shrink mode):
// the highest of the 2 central values is returned
template<typename T>
inline T median(std::vector<T>& v, int window_size) {
    int pivot = window_size / 2;
    std::nth_element(v.begin(), v.begin() + pivot, v.begin()+window_size);
    return v[pivot];
}


// return the index into 0, (length_max - 1) in reflect mode
inline int reflect(int index, int length_max){
    int res = index;
    // if the index is negative get the positive symmetrical value
    if(res < 0){
        res += 1;
        res = -res;
    }
    // then apply the reflect algorithm. Frequency is 2 max length
    res = res % (2*length_max);
    if(res >= length_max){
        res = 2*length_max - res -1;
        res = res % length_max;
    }
    return res;
}

// return the index into 0, (length_max - 1) in mirror mode
inline int mirror(int index, int length_max){
    int res = index;
    // if the index is negative get the positive symmetrical value
    if(res < 0){
        res = -res;
    }
    int rightLimit = length_max -1;
    // apply the redundancy each two right limit
    res = res % (2*rightLimit);
    if(res >= length_max){
        int distToRedundancy = (2*rightLimit) - res;
        res = distToRedundancy;
    }
    return res;
}

// Browse the column of pixel_x
template<typename T>
void median_filter(
    const T* input,
    T* output,
    int* kernel_dim,        // two values : 0:width, 1:height
    int* image_dim,         // two values : 0:width, 1:height
    int y_pixel,            // the x pixel to process
    int x_pixel_range_min,
    int x_pixel_range_max,
    bool conditional,
    int pMode,
    T cval) {
    
    assert(kernel_dim[0] > 0);
    assert(kernel_dim[1] > 0);
    assert(y_pixel >= 0);
    assert(image_dim[0] > 0);
    assert(image_dim[1] > 0);
    assert(y_pixel >= 0);
    assert(y_pixel < image_dim[0]);
    assert(x_pixel_range_max < image_dim[1]);
    assert(x_pixel_range_min <= x_pixel_range_max);
    // kernel odd assertion
    assert((kernel_dim[0] - 1)%2 == 0);
    assert((kernel_dim[1] - 1)%2 == 0);

    // # this should be move up to avoid calculation each time
    int halfKernel_x = (kernel_dim[1] - 1) / 2;
    int halfKernel_y = (kernel_dim[0] - 1) / 2;

    MODE mode = static_cast<MODE>(pMode);

    // init buffer
    std::vector<T> window_values(kernel_dim[0]*kernel_dim[1]);

    bool not_horizontal_border = (y_pixel >= halfKernel_y && y_pixel < image_dim[0] - halfKernel_y);

    for(int x_pixel=x_pixel_range_min; x_pixel <= x_pixel_range_max; x_pixel ++ ){
        typename std::vector<T>::iterator it = window_values.begin();
        // fill the vector

        if (not_horizontal_border &&
            x_pixel >= halfKernel_x && x_pixel < image_dim[1] - halfKernel_x) {
            //This is not a border, just fill it
            for(int win_y=y_pixel-halfKernel_y; win_y<= y_pixel+halfKernel_y; win_y++) {
                for(int win_x = x_pixel-halfKernel_x; win_x <= x_pixel+halfKernel_x; win_x++){
                    T value = input[win_y*image_dim[1] + win_x];
                    if (value == value) {  // Ignore NaNs
                        *it = value;
                        ++it;
                    }
                }
            }

        } else { // This is a border, handle the special case
            for(int win_y=y_pixel-halfKernel_y; win_y<= y_pixel+halfKernel_y; win_y++)
            {
                for(int win_x = x_pixel-halfKernel_x; win_x <= x_pixel+halfKernel_x; win_x++)
                {
                    T value = 0;
                    int index_x = win_x;
                    int index_y = win_y;

                    switch(mode){
                        case NEAREST:
                            index_x = std::min(std::max(win_x, 0), image_dim[1] - 1);
                            index_y = std::min(std::max(win_y, 0), image_dim[0] - 1);
                            value = input[index_y*image_dim[1] + index_x];
                            break;

                        case REFLECT:
                            index_x = reflect(win_x, image_dim[1]);
                            index_y = reflect(win_y, image_dim[0]);
                            value = input[index_y*image_dim[1] + index_x];
                            break;

                        case MIRROR:
                            index_x = mirror(win_x, image_dim[1]);
                            // deal with 1d case
                            if(win_y == 0 && image_dim[0] == 1){
                                index_y = 0;
                            }else{
                                index_y = mirror(win_y, image_dim[0]);
                            }
                            value = input[index_y*image_dim[1] + index_x];
                            break;

                        case SHRINK:
                            if ((index_x < 0) || (index_x > image_dim[1] -1) ||
                                (index_y < 0) || (index_y > image_dim[0] -1)) {
                                continue;
                            }
                            value = input[index_y*image_dim[1] + index_x];
                            break;
                        case CONSTANT:
                            if ((index_x < 0) || (index_x > image_dim[1] -1) ||
                                (index_y < 0) || (index_y > image_dim[0] -1)) {
                                value = cval;
                            } else {
                                value = input[index_y*image_dim[1] + index_x];
                            }
                            break;
                    }

                    if (value == value) {  // Ignore NaNs
                        *it = value;
                        ++it;
                    }
                }
            }
        }

        //window_size can be smaller than kernel size in shrink mode or if there is NaNs
        int window_size = std::distance(window_values.begin(), it);

        if (window_size == 0) {
            // Window is empty, this is the case when all values are NaNs
            output[image_dim[1]*y_pixel + x_pixel] = NAN;

        } else {
            // apply the median value if needed for this pixel
            const T currentPixelValue = input[image_dim[1]*y_pixel + x_pixel];
            if (conditional == true){
                typename std::vector<T>::iterator window_end = window_values.begin() + window_size;
                T min = 0;
                T max = 0;
                getMinMax(window_values, min, max, window_end);
                // NaNs are propagated through unchanged
                if ((currentPixelValue == max) || (currentPixelValue == min)){
                    output[image_dim[1]*y_pixel + x_pixel] = median<T>(window_values, window_size);
                }else{
                    output[image_dim[1]*y_pixel + x_pixel] = currentPixelValue;
                }
            }else{
                output[image_dim[1]*y_pixel + x_pixel] = median<T>(window_values, window_size);
            }
        }
    }
}

#endif // MEDIAN_FILTER