summaryrefslogtreecommitdiff
path: root/silx/opencl/backprojection.py
blob: 15a03b936a4b4427df7fbc048bd651f934164a0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#!/usr/bin/env python
# coding: utf-8
# /*##########################################################################
#
# Copyright (c) 2016 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
"""Module for (filtered) backprojection on the GPU"""

from __future__ import absolute_import, print_function, with_statement, division

__authors__ = ["A. Mirone, P. Paleo"]
__license__ = "MIT"
__date__ = "05/10/2017"

import logging
import numpy

from .common import pyopencl
from .processing import EventDescription, OpenclProcessing, BufferDescription
from .utils import nextpower as nextpow2

if pyopencl:
    mf = pyopencl.mem_flags
    import pyopencl.array as parray
else:
    raise ImportError("pyopencl is not installed")
logger = logging.getLogger(__name__)

# put in .common ?
try:
    from pyfft.cl import Plan as pyfft_Plan
    _has_pyfft = True
except ImportError:
    _has_pyfft = False
# For silx v0.6 we disable the use FFT on GPU.
_has_pyfft = False


def _sizeof(Type):
    """
    return the size (in bytes) of a scalar type, like the C behavior
    """
    return numpy.dtype(Type).itemsize


def _idivup(a, b):
    """
    return the integer division, plus one if `a` is not a multiple of `b`
    """
    return (a + (b - 1)) // b


def fourier_filter(sino, filter_=None, fft_size=None):
    """Simple numpy based implementation of fourier space filter
    
    :param sino: of shape shape = (num_projs, num_bins)
    :param filter: filter function to apply in fourier space
    :fft_size: size on which perform the fft. May be larger than the sino array 
    :return: filtered sinogram
    """
    assert sino.ndim == 2
    num_projs, num_bins = sino.shape
    if fft_size is None:
        fft_size = nextpow2(num_bins * 2 - 1)
    else:
        assert fft_size >= num_bins
    if fft_size == num_bins:
        sino_zeropadded = sino.astype(numpy.float32)
    else:
        sino_zeropadded = numpy.zeros((num_projs, fft_size),
                                      dtype=numpy.complex64)
        sino_zeropadded[:, :num_bins] = sino.astype(numpy.float32)

    if filter_ is None:
        h = numpy.zeros(fft_size, dtype=numpy.float32)
        L2 = fft_size // 2 + 1
        h[0] = 1 / 4.
        j = numpy.linspace(1, L2, L2 // 2, False)
        h[1:L2:2] = -1. / (numpy.pi ** 2 * j ** 2)
        h[L2:] = numpy.copy(h[1:L2 - 1][::-1])
        filter_ = numpy.fft.fft(h).astype(numpy.complex64)

    # Linear convolution
    sino_f = numpy.fft.fft(sino, fft_size)
    sino_f = sino_f * filter_
    sino_filtered = numpy.fft.ifft(sino_f)[:, :num_bins].real
    # Send the filtered sinogram to device
    return numpy.ascontiguousarray(sino_filtered.real, dtype=numpy.float32)


class Backprojection(OpenclProcessing):
    """A class for performing the backprojection using OpenCL"""
    kernel_files = ["backproj.cl", "array_utils.cl"]
    if _has_pyfft:
        kernel_files.append("backproj_helper.cl")

    def __init__(self, sino_shape, slice_shape=None, axis_position=None,
                 angles=None, filter_name=None, ctx=None, devicetype="all",
                 platformid=None, deviceid=None, profile=False):
        """Constructor of the OpenCL (filtered) backprojection

        :param sino_shape: shape of the sinogram. The sinogram is in the format
                           (n_b, n_a) where n_b is the number of detector bins
                           and n_a is the number of angles.
        :param slice_shape: Optional, shape of the reconstructed slice. By
                            default, it is a square slice where the dimension
                            is the "x dimension" of the sinogram (number of
                            bins).
        :param axis_position: Optional, axis position. Default is
                              `(shape[1]-1)/2.0`.
        :param angles: Optional, a list of custom angles in radian.
        :param filter_name: Optional, name of the filter for FBP. Default is
                            the Ram-Lak filter.
        :param ctx: actual working context, left to None for automatic
                    initialization from device type or platformid/deviceid
        :param devicetype: type of device, can be "CPU", "GPU", "ACC" or "ALL"
        :param platformid: integer with the platform_identifier, as given by
                           clinfo
        :param deviceid: Integer with the device identifier, as given by clinfo
        :param profile: switch on profiling to be able to profile at the kernel
                        level, store profiling elements (makes code slightly
                        slower)
        """
        # OS X enforces a workgroup size of 1 when the kernel has
        # synchronization barriers if sys.platform.startswith('darwin'):
        #  assuming no discrete GPU
        #    raise NotImplementedError("Backprojection is not implemented on CPU for OS X yet")

        OpenclProcessing.__init__(self, ctx=ctx, devicetype=devicetype,
                                  platformid=platformid, deviceid=deviceid,
                                  profile=profile)
        self.shape = sino_shape

        self.num_bins = numpy.int32(sino_shape[1])
        self.num_projs = numpy.int32(sino_shape[0])
        self.angles = angles
        if slice_shape is None:
            self.slice_shape = (self.num_bins, self.num_bins)
        else:
            self.slice_shape = slice_shape
        self.dimrec_shape = (
            _idivup(self.slice_shape[0], 32) * 32,
            _idivup(self.slice_shape[1], 32) * 32
        )
        self.slice = numpy.zeros(self.dimrec_shape, dtype=numpy.float32)
        self.filter_name = filter_name if filter_name else "Ram-Lak"
        if axis_position:
            self.axis_pos = numpy.float32(axis_position)
        else:
            self.axis_pos = numpy.float32((sino_shape[1] - 1.) / 2)
        self.axis_array = None  # TODO: add axis correction front-end

        self.is_cpu = False
        if self.device.type == "CPU":
            self.is_cpu = True

        self.compute_fft_plans()
        self.buffers = [
                       BufferDescription("_d_slice", numpy.prod(self.dimrec_shape), numpy.float32, mf.READ_WRITE),
                       BufferDescription("d_sino", self.num_projs * self.num_bins, numpy.float32, mf.READ_WRITE),  # before transferring to texture (if available)
                       BufferDescription("d_cos", self.num_projs, numpy.float32, mf.READ_ONLY),
                       BufferDescription("d_sin", self.num_projs, numpy.float32, mf.READ_ONLY),
                       BufferDescription("d_axes", self.num_projs, numpy.float32, mf.READ_ONLY),
                      ]
        self.allocate_buffers()
        if not(self.is_cpu):
            self.allocate_textures()
        self.compute_filter()
        if self.pyfft_plan:
            self.add_to_cl_mem({
                "d_filter": self.d_filter,
                "d_sino_z": self.d_sino_z
            })
        self.d_sino = self.cl_mem["d_sino"]  # shorthand
        self.compute_angles()

        self.local_mem = 256 * 3 * _sizeof(numpy.float32)  # constant for all image sizes
        OpenclProcessing.compile_kernels(self, self.kernel_files)
        # check that workgroup can actually be (16, 16)
        self.check_workgroup_size("backproj_cpu_kernel")
        # Workgroup and ndrange sizes are always the same
        self.wg = (16, 16)
        self.ndrange = (
            _idivup(int(self.dimrec_shape[1]), 32) * self.wg[0],  # int(): pyopencl <= 2015.1
            _idivup(int(self.dimrec_shape[0]), 32) * self.wg[1]  # int(): pyopencl <= 2015.1
        )

    def compute_angles(self):
        if self.angles is None:
            self.angles = numpy.linspace(0, numpy.pi, self.num_projs, False)
        h_cos = numpy.cos(self.angles).astype(numpy.float32)
        h_sin = numpy.sin(self.angles).astype(numpy.float32)
        pyopencl.enqueue_copy(self.queue, self.cl_mem["d_cos"], h_cos)
        pyopencl.enqueue_copy(self.queue, self.cl_mem["d_sin"], h_sin)
        if self.axis_array:
            pyopencl.enqueue_copy(self.queue,
                                  self.cl_mem["d_axes"],
                                  self.axis_array.astype(numpy.float32))
        else:
            pyopencl.enqueue_copy(self.queue,
                                  self.cl_mem["d_axes"],
                                  numpy.ones(self.num_projs, dtype=numpy.float32) * self.axis_pos)

    def allocate_textures(self):
        """
        Allocate the texture for the sinogram.
        """
        self.d_sino_tex = pyopencl.Image(
                                        self.ctx,
                                        mf.READ_ONLY | mf.USE_HOST_PTR,
                                        pyopencl.ImageFormat(
                                                             pyopencl.channel_order.INTENSITY,
                                                             pyopencl.channel_type.FLOAT
                                                            ),
                                        hostbuf=numpy.zeros(self.shape[::-1], dtype=numpy.float32)
                                        )

    def compute_fft_plans(self):
        """
        If pyfft is installed, prepare a batched 1D FFT plan for the filtering
        of FBP

        """
        self.fft_size = nextpow2(self.num_bins * 2 - 1)
        if _has_pyfft:
            logger.debug("pyfft is available. Computing FFT plans...")
            # batched 1D transform
            self.pyfft_plan = pyfft_Plan(self.fft_size, queue=self.queue,
                                         wait_for_finish=True)
            self.d_sino_z = parray.zeros(self.queue,
                                         (self.num_projs, self.fft_size),
                                         dtype=numpy.complex64)
            logger.debug("... done")
        else:
            logger.debug("pyfft not available, using numpy.fft")
            self.pyfft_plan = None
            # TODO: fall-back to fftw if present ?

    def compute_filter(self):
        """
        Compute the filter for FBP
        """
        if self.filter_name == "Ram-Lak":
            L = self.fft_size
            h = numpy.zeros(L, dtype=numpy.float32)
            L2 = L // 2 + 1
            h[0] = 1 / 4.
            j = numpy.linspace(1, L2, L2 // 2, False)
            h[1:L2:2] = -1. / (numpy.pi ** 2 * j ** 2)
            h[L2:] = numpy.copy(h[1:L2 - 1][::-1])
        else:
            # TODO: other filters
            raise ValueError("Filter %s is not available" % self.filter_name)
        self.filter = h
        if self.pyfft_plan:
            self.d_filter = parray.to_device(self.queue, h.astype(numpy.complex64))
            self.pyfft_plan.execute(self.d_filter.data)
        else:
            self.filter = numpy.fft.fft(h).astype(numpy.complex64)
            self.d_filter = None

    def _get_local_mem(self):
        return pyopencl.LocalMemory(self.local_mem)  # constant for all image sizes

    def cpy2d_to_slice(self, dst):
        ndrange = (int(self.slice_shape[1]), int(self.slice_shape[0]))  # pyopencl < 2015.2
        slice_shape_ocl = numpy.int32(ndrange)
        wg = None
        kernel_args = (
            dst.data,
            self.cl_mem["_d_slice"],
            numpy.int32(self.slice_shape[1]),
            numpy.int32(self.dimrec_shape[1]),
            numpy.int32((0, 0)),
            numpy.int32((0, 0)),
            slice_shape_ocl
        )
        return self.kernels.cpy2d(self.queue, ndrange, wg, *kernel_args)

    def transfer_to_texture(self, sino):
        sino2 = sino
        if not(sino.flags["C_CONTIGUOUS"] and sino.dtype == numpy.float32):
            sino2 = numpy.ascontiguousarray(sino, dtype=numpy.float32)
        if self.is_cpu:
            ev = pyopencl.enqueue_copy(
                                        self.queue,
                                        self.d_sino,
                                        sino2
                                        )
            what = "transfer filtered sino H->D buffer"
        else:
            ev = pyopencl.enqueue_copy(
                                       self.queue,
                                       self.d_sino_tex,
                                       sino2,
                                       origin=(0, 0),
                                       region=self.shape[::-1]
                                       )
            what = "transfer filtered sino H->D texture"
        return EventDescription(what, ev)

    def transfer_device_to_texture(self, d_sino):
        if self.is_cpu:
            if id(self.d_sino) == id(d_sino):
                return
            ev = pyopencl.enqueue_copy(
                                       self.queue,
                                       self.d_sino,
                                       d_sino
                                       )
            what = "transfer filtered sino D->D buffer"
        else:
            ev = pyopencl.enqueue_copy(
                                       self.queue,
                                       self.d_sino_tex,
                                       d_sino,
                                       offset=0,
                                       origin=(0, 0),
                                       region=self.shape[::-1]
                                       )
            what = "transfer filtered sino D->D texture"
        return EventDescription(what, ev)

    def backprojection(self, sino=None, dst=None):
        """Perform the backprojection on an input sinogram

        :param sino: sinogram. If provided, it returns the plain backprojection.
        :param dst: destination (pyopencl.Array). If provided, the result will be written in this array.
        :return: backprojection of sinogram
        """
        events = []
        with self.sem:

            if sino is not None:  # assuming numpy.ndarray
                events.append(self.transfer_to_texture(sino))
            # Prepare arguments for the kernel call
            if self.is_cpu:
                d_sino_ref = self.d_sino
            else:
                d_sino_ref = self.d_sino_tex
            kernel_args = (
                self.num_projs,  # num of projections (int32)
                self.num_bins,  # num of bins (int32)
                self.axis_pos,  # axis position (float32)
                self.cl_mem["_d_slice"],  # d_slice (__global float32*)
                d_sino_ref,  # d_sino (__read_only image2d_t or float*)
                numpy.float32(0),  # gpu_offset_x (float32)
                numpy.float32(0),  # gpu_offset_y (float32)
                self.cl_mem["d_cos"],  # d_cos (__global float32*)
                self.cl_mem["d_sin"],  # d_sin (__global float32*)
                self.cl_mem["d_axes"],  # d_axis  (__global float32*)
                self._get_local_mem()  # shared mem (__local float32*)
            )
            # Call the kernel
            if self.is_cpu:
                kernel_to_call = self.kernels.backproj_cpu_kernel
            else:
                kernel_to_call = self.kernels.backproj_kernel
            event_bpj = kernel_to_call(
                self.queue,
                self.ndrange,
                self.wg,
                *kernel_args
            )
            if dst is None:
                self.slice[:] = 0
                events.append(EventDescription("backprojection", event_bpj))
                ev = pyopencl.enqueue_copy(self.queue, self.slice,
                                           self.cl_mem["_d_slice"])
                events.append(EventDescription("copy D->H result", ev))
                ev.wait()
                res = numpy.copy(self.slice)
                if self.dimrec_shape[0] > self.slice_shape[0] or self.dimrec_shape[1] > self.slice_shape[1]:
                    res = res[:self.slice_shape[0], :self.slice_shape[1]]
                # if the slice is backprojected onto a bigger grid
                if self.slice_shape[1] > self.num_bins:
                    res = res[:self.slice_shape[0], :self.slice_shape[1]]
            else:
                ev = self.cpy2d_to_slice(dst)
                events.append(EventDescription("copy D->D result", ev))
                ev.wait()
                res = dst

        # /with self.sem
        if self.profile:
            self.events += events

        return res

    def filter_projections(self, sino, rescale=True):
        """
        Performs the FBP on a given sinogram.

        :param sinogram: sinogram to (filter-)backproject
        :param rescale: if True (default), the sinogram is multiplied with
                        (pi/n_projs)
        """
        if sino.shape[0] != self.num_projs or sino.shape[1] != self.num_bins:
            raise ValueError("Expected sinogram with (projs, bins) = (%d, %d)" % (self.num_projs, self.num_bins))
        if rescale:
            sino = sino * numpy.pi / self.num_projs
        events = []
        # if pyfft is available, all can be done on the device
        if self.d_filter is not None:

            # Zero-pad the sinogram.
            # TODO: this can be done on GPU with a "Memcpy2D":
            #  cl.enqueue_copy(queue, dst, src, host_origin=(0,0), buffer_origin=(0,0), region=shape, host_pitches=(sino.shape[1],), buffer_pitches=(self.fft_size,))
            # However it does not work properly, and raises an error for pyopencl < 2017.1
            sino_zeropadded = numpy.zeros((sino.shape[0], self.fft_size), dtype=numpy.complex64)
            sino_zeropadded[:, :self.num_bins] = sino.astype(numpy.float32)
            sino_zeropadded = numpy.ascontiguousarray(sino_zeropadded, dtype=numpy.complex64)
            with self.sem:
                # send to GPU
                ev = pyopencl.enqueue_copy(self.queue, self.d_sino_z.data, sino_zeropadded)
                events.append(EventDescription("Send sino H->D", ev))

                # FFT (in-place)
                self.pyfft_plan.execute(self.d_sino_z.data, batch=self.num_projs)

                # Multiply (complex-wise) with the the filter
                ev = self.kernels.mult(self.queue,
                                       tuple(int(i) for i in self.d_sino_z.shape[::-1]),
                                       None,
                                       self.d_sino_z.data,
                                       self.d_filter.data,
                                       numpy.int32(self.fft_size),
                                       self.num_projs
                                       )
                events.append(EventDescription("complex 2D-1D multiplication", ev))
                # Inverse FFT (in-place)
                self.pyfft_plan.execute(self.d_sino_z.data, batch=self.num_projs, inverse=True)
                # Copy the real part of d_sino_z[:, :self.num_bins] (complex64) to d_sino (float32)
                ev = self.kernels.cpy2d_c2r(self.queue, self.shape[::-1], None,
                                            self.d_sino,
                                            self.d_sino_z.data,
                                            self.num_bins,
                                            self.num_projs,
                                            numpy.int32(self.fft_size)
                                            )
                events.append(EventDescription("conversion from complex padded sinogram to sinogram", ev))
                # debug
#                 ev.wait()
#                 h_sino = numpy.zeros(sino.shape, dtype=numpy.float32)
#                 ev = pyopencl.enqueue_copy(self.queue, h_sino, self.d_sino)
#                 ev.wait()
#                 numpy.save("/tmp/filtered_sinogram_%s.npy" % self.ctx.devices[0].platform.name.split()[0], h_sino)
                events.append(self.transfer_device_to_texture(self.d_sino))
            # ------
        else:  # no pyfft
            sino_filtered = fourier_filter(sino, filter_=self.filter, fft_size=self.fft_size)
            with self.sem:
                events.append(self.transfer_to_texture(sino_filtered))
        if self.profile:
            self.events += events

    def filtered_backprojection(self, sino):
        """
        Compute the filtered backprojection (FBP) on a sinogram.

        :param sino: sinogram (`numpy.ndarray`) in the format (projections,
                     bins)
        """

        self.filter_projections(sino)
        res = self.backprojection()
        return res

    __call__ = filtered_backprojection