summaryrefslogtreecommitdiff
path: root/silx/opencl/statistics.py
blob: bd8e7b7535a3673f37a4095392877b79955a4444 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# -*- coding: utf-8 -*-
#
#    Project: SILX
#             https://github.com/silx-kit/silx
#
#    Copyright (C) 2012-2019 European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
#  Permission is hereby granted, free of charge, to any person obtaining a copy
#  of this software and associated documentation files (the "Software"), to deal
#  in the Software without restriction, including without limitation the rights
#  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#  copies of the Software, and to permit persons to whom the Software is
#  furnished to do so, subject to the following conditions:
#  .
#  The above copyright notice and this permission notice shall be included in
#  all copies or substantial portions of the Software.
#  .
#  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
#  THE SOFTWARE.

"""A module for performing basic statistical analysis (min, max, mean, std) on
large data where numpy is not very efficient.
"""

from __future__ import absolute_import, print_function, with_statement, division


__author__ = "Jerome Kieffer"
__license__ = "MIT"
__date__ = "11/01/2019"
__copyright__ = "2012-2017, ESRF, Grenoble"
__contact__ = "jerome.kieffer@esrf.fr"

import logging
import numpy
from collections import OrderedDict, namedtuple
from math import sqrt

from .common import pyopencl
from .processing import EventDescription, OpenclProcessing, BufferDescription
from .utils import concatenate_cl_kernel

if pyopencl:
    mf = pyopencl.mem_flags
    from pyopencl.reduction import ReductionKernel
    try:
        from pyopencl import cltypes
    except ImportError:
        v = pyopencl.array.vec()
        float8 = v.float8
    else:
        float8 = cltypes.float8

else:
    raise ImportError("pyopencl is not installed")
logger = logging.getLogger(__name__)

StatResults = namedtuple("StatResults", ["min", "max", "cnt", "sum", "mean",
                                         "var", "std"])
zero8 = "(float8)(FLT_MAX, -FLT_MAX, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)"
#                    min      max    cnt  cnt_e  sum   sum_e  var  var_e


class Statistics(OpenclProcessing):
    """A class for doing statistical analysis using OpenCL

    :param List[int] size: Shape of input data to treat
    :param numpy.dtype dtype: Input data type
    :param numpy.ndarray template: Data template to extract size & dtype
    :param ctx: Actual working context, left to None for automatic
                initialization from device type or platformid/deviceid
    :param str devicetype: Type of device, can be "CPU", "GPU", "ACC" or "ALL"
    :param int platformid: Platform identifier as given by clinfo
    :param int deviceid: Device identifier as given by clinfo
    :param int block_size:
        Preferred workgroup size, may vary depending on the outcome of the compilation
    :param bool profile:
        Switch on profiling to be able to profile at the kernel level,
        store profiling elements (makes code slightly slower)
    """
    buffers = [
        BufferDescription("raw", 1, numpy.float32, mf.READ_ONLY),
        BufferDescription("converted", 1, numpy.float32, mf.READ_WRITE),
    ]
    kernel_files = ["preprocess.cl"]
    mapping = {numpy.int8: "s8_to_float",
               numpy.uint8: "u8_to_float",
               numpy.int16: "s16_to_float",
               numpy.uint16: "u16_to_float",
               numpy.uint32: "u32_to_float",
               numpy.int32: "s32_to_float"}

    def __init__(self, size=None, dtype=None, template=None,
                 ctx=None, devicetype="all", platformid=None, deviceid=None,
                 block_size=None, profile=False
                 ):
        OpenclProcessing.__init__(self, ctx=ctx, devicetype=devicetype,
                                  platformid=platformid, deviceid=deviceid,
                                  block_size=block_size, profile=profile)
        self.size = size
        self.dtype = dtype
        if template is not None:
            self.size = template.size
            self.dtype = template.dtype

        self.buffers = [BufferDescription(i.name, i.size * self.size, i.dtype, i.flags)
                        for i in self.__class__.buffers]

        self.allocate_buffers(use_array=True)
        self.compile_kernels()
        self.set_kernel_arguments()

    def set_kernel_arguments(self):
        """Parametrize all kernel arguments"""
        for val in self.mapping.values():
            self.cl_kernel_args[val] = OrderedDict(((i, self.cl_mem[i]) for i in ("raw", "converted")))

    def compile_kernels(self):
        """Compile the kernel"""
        OpenclProcessing.compile_kernels(self,
                                         self.kernel_files,
                                         "-D NIMAGE=%i" % self.size)
        compiler_options = self.get_compiler_options(x87_volatile=True)
        src = concatenate_cl_kernel(("kahan.cl", "statistics.cl"))
        self.reduction_comp = ReductionKernel(self.ctx,
                                              dtype_out=float8,
                                              neutral=zero8,
                                              map_expr="map_statistics(data, i)",
                                              reduce_expr="reduce_statistics(a,b)",
                                              arguments="__global float *data",
                                              preamble=src,
                                              options=compiler_options)
        self.reduction_simple = ReductionKernel(self.ctx,
                                                dtype_out=float8,
                                                neutral=zero8,
                                                map_expr="map_statistics(data, i)",
                                                reduce_expr="reduce_statistics_simple(a,b)",
                                                arguments="__global float *data",
                                                preamble=src,
                                                options=compiler_options)

    def send_buffer(self, data, dest):
        """
        Send a numpy array to the device, including the cast on the device if
        possible

        :param numpy.ndarray data: numpy array with data
        :param dest: name of the buffer as registered in the class
        """

        dest_type = numpy.dtype([i.dtype for i in self.buffers if i.name == dest][0])
        events = []
        if (data.dtype == dest_type) or (data.dtype.itemsize > dest_type.itemsize):
            copy_image = pyopencl.enqueue_copy(self.queue,
                                               self.cl_mem[dest].data,
                                               numpy.ascontiguousarray(data, dest_type))
            events.append(EventDescription("copy H->D %s" % dest, copy_image))
        else:
            copy_image = pyopencl.enqueue_copy(self.queue,
                                               self.cl_mem["raw"].data,
                                               numpy.ascontiguousarray(data))
            kernel = getattr(self.program, self.mapping[data.dtype.type])
            cast_to_float = kernel(self.queue,
                                   (self.size,),
                                   None,
                                   self.cl_mem["raw"].data,
                                   self.cl_mem[dest].data)
            events += [
                EventDescription("copy H->D %s" % dest, copy_image),
                EventDescription("cast to float", cast_to_float)
            ]
        if self.profile:
            self.events += events
        return events

    def process(self, data, comp=True):
        """Actually calculate the statics on the data

        :param numpy.ndarray data: numpy array with the image
        :param comp: use Kahan compensated arithmetics for the calculation 
        :return: Statistics named tuple
        :rtype: StatResults
        """
        if data.ndim != 1:
            data = data.ravel()
        size = data.size
        assert size <= self.size, "size is OK"
        events = []
        with self.sem:
            self.send_buffer(data, "converted")
            if comp:
                reduction = self.reduction_comp
            else:
                reduction = self.reduction_simple
            res_d, evt = reduction(self.cl_mem["converted"][:self.size],
                                   queue=self.queue,
                                   return_event=True)
            events.append(EventDescription("statistical reduction %s" % ("comp"if comp else "simple"), evt))
            if self.profile:
                self.events += events
            res_h = res_d.get()
        min_ = 1.0 * res_h["s0"]
        max_ = 1.0 * res_h["s1"]
        count = 1.0 * res_h["s2"] + res_h["s3"]
        sum_ = 1.0 * res_h["s4"] + res_h["s5"]
        m2 = 1.0 * res_h["s6"] + res_h["s7"]
        var = m2 / (count - 1.0)
        res = StatResults(min_,
                          max_,
                          count,
                          sum_,
                          sum_ / count,
                          var,
                          sqrt(var))
        return res

    __call__ = process