summaryrefslogtreecommitdiff
path: root/src/modules/common/sapphire.cpp
blob: 7b141d2f5f16b422ffcf06245125143bf06f52e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/* sapphire.cpp -- the Saphire II stream cipher class.
   Dedicated to the Public Domain the author and inventor:
   (Michael Paul Johnson).  This code comes with no warranty.
   Use it at your own risk.
   Ported from the Pascal implementation of the Sapphire Stream
   Cipher 9 December 1994.
   Added hash pre- and post-processing 27 December 1994.
   Modified initialization to make index variables key dependent,
   made the output function more resistant to cryptanalysis,
   and renamed to Sapphire II 2 January 1995
*/


#include <string.h>

#include "sapphire.h"

SWORD_NAMESPACE_START

unsigned char sapphire::keyrand(int limit,
                                unsigned char *user_key,
                                unsigned char keysize,
                                unsigned char *rsum,
                                unsigned *keypos)
    {
    unsigned u,             // Value from 0 to limit to return.
        retry_limiter,      // No infinite loops allowed.
        mask;               // Select just enough bits.

    if (!limit) return 0;   // Avoid divide by zero error.
    retry_limiter = 0;
    mask = 1;               // Fill mask with enough bits to cover
    while (mask < (unsigned)limit)    // the desired range.
        mask = (mask << 1) + 1;
    do
        {
        *rsum = cards[*rsum] + user_key[(*keypos)++];
        if (*keypos >= keysize)
            {
            *keypos = 0;            // Recycle the user key.
            *rsum += keysize;   // key "aaaa" != key "aaaaaaaa"
            }
        u = mask & *rsum;
        if (++retry_limiter > 11)
            u %= limit;     // Prevent very rare long loops.
        }
    while (u > (unsigned)limit);
    return u;
    }

void sapphire::initialize(unsigned char *key, unsigned char keysize)
    {
    // Key size may be up to 256 bytes.
    // Pass phrases may be used directly, with longer length
    // compensating for the low entropy expected in such keys.
    // Alternatively, shorter keys hashed from a pass phrase or
    // generated randomly may be used. For random keys, lengths
    // of from 4 to 16 bytes are recommended, depending on how
    // secure you want this to be.

    int i;
    unsigned char toswap, swaptemp, rsum;
    unsigned keypos;

    // If we have been given no key, assume the default hash setup.

    if (keysize < 1)
        {
        hash_init();
        return;
        }

    // Start with cards all in order, one of each.

    for (i=0;i<256;i++)
        cards[i] = i;

    // Swap the card at each position with some other card.

    toswap = 0;
    keypos = 0;         // Start with first byte of user key.
    rsum = 0;
    for (i=255;i>=0;i--)
        {
        toswap = keyrand(i, key, keysize, &rsum, &keypos);
        swaptemp = cards[i];
        cards[i] = cards[toswap];
        cards[toswap] = swaptemp;
        }

    // Initialize the indices and data dependencies.
    // Indices are set to different values instead of all 0
    // to reduce what is known about the state of the cards
    // when the first byte is emitted.

    rotor = cards[1];
    ratchet = cards[3];
    avalanche = cards[5];
    last_plain = cards[7];
    last_cipher = cards[rsum];

    toswap = swaptemp = rsum = 0;
    keypos = 0;
    }

void sapphire::hash_init(void)
    {
    // This function is used to initialize non-keyed hash
    // computation.

    int i, j;

    // Initialize the indices and data dependencies.

    rotor = 1;
    ratchet = 3;
    avalanche = 5;
    last_plain = 7;
    last_cipher = 11;

    // Start with cards all in inverse order.

    for (i=0, j=255;i<256;i++,j--)
        cards[i] = (unsigned char) j;
    }

sapphire::sapphire(unsigned char *key, unsigned char keysize)
    {
    if (key && keysize)
        initialize(key, keysize);
    }

void sapphire::burn(void)
    {
    // Destroy the key and state information in RAM.
    memset(cards, 0, 256);
    rotor = ratchet = avalanche = last_plain = last_cipher = 0;
    }

sapphire::~sapphire()
    {
    burn();
    }

unsigned char sapphire::encrypt(unsigned char b)
    {
    // Picture a single enigma rotor with 256 positions, rewired
    // on the fly by card-shuffling.

    // This cipher is a variant of one invented and written
    // by Michael Paul Johnson in November, 1993.

    unsigned char swaptemp;

    // Shuffle the deck a little more.

    ratchet += cards[rotor++];
    swaptemp = cards[last_cipher];
    cards[last_cipher] = cards[ratchet];
    cards[ratchet] = cards[last_plain];
    cards[last_plain] = cards[rotor];
    cards[rotor] = swaptemp;
    avalanche += cards[swaptemp];

    // Output one byte from the state in such a way as to make it
    // very hard to figure out which one you are looking at.

    last_cipher = b^cards[(cards[ratchet] + cards[rotor]) & 0xFF] ^
                  cards[cards[(cards[last_plain] +
                               cards[last_cipher] +
                               cards[avalanche])&0xFF]];
    last_plain = b;
    return last_cipher;
    }

unsigned char sapphire::decrypt(unsigned char b)
    {
    unsigned char swaptemp;

    // Shuffle the deck a little more.

    ratchet += cards[rotor++];
    swaptemp = cards[last_cipher];
    cards[last_cipher] = cards[ratchet];
    cards[ratchet] = cards[last_plain];
    cards[last_plain] = cards[rotor];
    cards[rotor] = swaptemp;
    avalanche += cards[swaptemp];

    // Output one byte from the state in such a way as to make it
    // very hard to figure out which one you are looking at.

    last_plain = b^cards[(cards[ratchet] + cards[rotor]) & 0xFF] ^
                   cards[cards[(cards[last_plain] +
                                cards[last_cipher] +
                                cards[avalanche])&0xFF]];
    last_cipher = b;
    return last_plain;
    }

void sapphire::hash_final(unsigned char *hash,      // Destination
                          unsigned char hashlength) // Size of hash.
    {
    int i;

    for (i=255;i>=0;i--)
        encrypt((unsigned char) i);
    for (i=0;i<hashlength;i++)
        hash[i] = encrypt(0);
    }

SWORD_NAMESPACE_END