/* ** $Id: lcode.c,v 1.4 2004/06/04 13:42:10 neil Exp $ ** Code generator for Lua ** See Copyright Notice in lua.h */ #include "stdlib.h" #include "lua.h" #include "lcode.h" #include "ldo.h" #include "llex.h" #include "lmem.h" #include "lobject.h" #include "lopcodes.h" #include "lparser.h" void luaK_error (LexState *ls, const char *msg) { luaX_error(ls, msg, ls->t.token); } /* ** Returns the the previous instruction, for optimizations. ** If there is a jump target between this and the current instruction, ** returns a dummy instruction to avoid wrong optimizations. */ static Instruction previous_instruction (FuncState *fs) { if (fs->pc > fs->lasttarget) /* no jumps to current position? */ return fs->f->code[fs->pc-1]; /* returns previous instruction */ else return CREATE_0(OP_END); /* no optimizations after an `END' */ } int luaK_jump (FuncState *fs) { int j = luaK_code1(fs, OP_JMP, NO_JUMP); if (j == fs->lasttarget) { /* possible jumps to this jump? */ luaK_concat(fs, &j, fs->jlt); /* keep them on hold */ fs->jlt = NO_JUMP; } return j; } static void luaK_fixjump (FuncState *fs, int pc, int dest) { Instruction *jmp = &fs->f->code[pc]; if (dest == NO_JUMP) SETARG_S(*jmp, NO_JUMP); /* point to itself to represent end of list */ else { /* jump is relative to position following jump instruction */ int offset = dest-(pc+1); if (abs(offset) > MAXARG_S) luaK_error(fs->ls, "control structure too long"); SETARG_S(*jmp, offset); } } static int luaK_getjump (FuncState *fs, int pc) { int offset = GETARG_S(fs->f->code[pc]); if (offset == NO_JUMP) /* point to itself represents end of list */ return NO_JUMP; /* end of list */ else return (pc+1)+offset; /* turn offset into absolute position */ } /* ** returns current `pc' and marks it as a jump target (to avoid wrong ** optimizations with consecutive instructions not in the same basic block). ** discharge list of jumps to last target. */ int luaK_getlabel (FuncState *fs) { if (fs->pc != fs->lasttarget) { int lasttarget = fs->lasttarget; fs->lasttarget = fs->pc; luaK_patchlist(fs, fs->jlt, lasttarget); /* discharge old list `jlt' */ fs->jlt = NO_JUMP; /* nobody jumps to this new label (yet) */ } return fs->pc; } void luaK_deltastack (FuncState *fs, int delta) { fs->stacklevel += delta; if (fs->stacklevel > fs->f->maxstacksize) { if (fs->stacklevel > MAXSTACK) luaK_error(fs->ls, "function or expression too complex"); fs->f->maxstacksize = fs->stacklevel; } } void luaK_kstr (LexState *ls, int c) { luaK_code1(ls->fs, OP_PUSHSTRING, c); } static int number_constant (FuncState *fs, Number r) { /* check whether `r' has appeared within the last LOOKBACKNUMS entries */ Proto *f = fs->f; int c = f->nknum; int lim = c < LOOKBACKNUMS ? 0 : c-LOOKBACKNUMS; while (--c >= lim) if (f->knum[c] == r) return c; /* not found; create a new entry */ luaM_growvector(fs->L, f->knum, f->nknum, 1, Number, "constant table overflow", MAXARG_U); c = f->nknum++; f->knum[c] = r; return c; } void luaK_number (FuncState *fs, Number f) { if (f <= (Number)MAXARG_S && (Number)(int)f == f) luaK_code1(fs, OP_PUSHINT, (int)f); /* f has a short integer value */ else luaK_code1(fs, OP_PUSHNUM, number_constant(fs, f)); } void luaK_adjuststack (FuncState *fs, int n) { if (n > 0) luaK_code1(fs, OP_POP, n); else luaK_code1(fs, OP_PUSHNIL, -n); } int luaK_lastisopen (FuncState *fs) { /* check whether last instruction is an open function call */ Instruction i = previous_instruction(fs); if (GET_OPCODE(i) == OP_CALL && GETARG_B(i) == MULT_RET) return 1; else return 0; } void luaK_setcallreturns (FuncState *fs, int nresults) { if (luaK_lastisopen(fs)) { /* expression is an open function call? */ SETARG_B(fs->f->code[fs->pc-1], nresults); /* set number of results */ luaK_deltastack(fs, nresults); /* push results */ } } static int discharge (FuncState *fs, expdesc *var) { switch (var->k) { case VLOCAL: luaK_code1(fs, OP_GETLOCAL, var->u.index); break; case VGLOBAL: luaK_code1(fs, OP_GETGLOBAL, var->u.index); break; case VINDEXED: luaK_code0(fs, OP_GETTABLE); break; case VEXP: return 0; /* nothing to do */ } var->k = VEXP; var->u.l.t = var->u.l.f = NO_JUMP; return 1; } static void discharge1 (FuncState *fs, expdesc *var) { discharge(fs, var); /* if it has jumps then it is already discharged */ if (var->u.l.t == NO_JUMP && var->u.l.f == NO_JUMP) luaK_setcallreturns(fs, 1); /* call must return 1 value */ } void luaK_storevar (LexState *ls, const expdesc *var) { FuncState *fs = ls->fs; switch (var->k) { case VLOCAL: luaK_code1(fs, OP_SETLOCAL, var->u.index); break; case VGLOBAL: luaK_code1(fs, OP_SETGLOBAL, var->u.index); break; case VINDEXED: /* table is at top-3; pop 3 elements after operation */ luaK_code2(fs, OP_SETTABLE, 3, 3); break; default: LUA_INTERNALERROR("invalid var kind to store"); } } static OpCode invertjump (OpCode op) { switch (op) { case OP_JMPNE: return OP_JMPEQ; case OP_JMPEQ: return OP_JMPNE; case OP_JMPLT: return OP_JMPGE; case OP_JMPLE: return OP_JMPGT; case OP_JMPGT: return OP_JMPLE; case OP_JMPGE: return OP_JMPLT; case OP_JMPT: case OP_JMPONT: return OP_JMPF; case OP_JMPF: case OP_JMPONF: return OP_JMPT; default: LUA_INTERNALERROR("invalid jump instruction"); return OP_END; /* to avoid warnings */ } } static void luaK_patchlistaux (FuncState *fs, int list, int target, OpCode special, int special_target) { Instruction *code = fs->f->code; while (list != NO_JUMP) { int next = luaK_getjump(fs, list); Instruction *i = &code[list]; OpCode op = GET_OPCODE(*i); if (op == special) /* this `op' already has a value */ luaK_fixjump(fs, list, special_target); else { luaK_fixjump(fs, list, target); /* do the patch */ if (op == OP_JMPONT) /* remove eventual values */ SET_OPCODE(*i, OP_JMPT); else if (op == OP_JMPONF) SET_OPCODE(*i, OP_JMPF); } list = next; } } void luaK_patchlist (FuncState *fs, int list, int target) { if (target == fs->lasttarget) /* same target that list `jlt'? */ luaK_concat(fs, &fs->jlt, list); /* delay fixing */ else luaK_patchlistaux(fs, list, target, OP_END, 0); } static int need_value (FuncState *fs, int list, OpCode hasvalue) { /* check whether list has a jump without a value */ for (; list != NO_JUMP; list = luaK_getjump(fs, list)) if (GET_OPCODE(fs->f->code[list]) != hasvalue) return 1; return 0; /* not found */ } void luaK_concat (FuncState *fs, int *l1, int l2) { if (*l1 == NO_JUMP) *l1 = l2; else { int list = *l1; for (;;) { /* traverse `l1' */ int next = luaK_getjump(fs, list); if (next == NO_JUMP) { /* end of list? */ luaK_fixjump(fs, list, l2); return; } list = next; } } } static void luaK_testgo (FuncState *fs, expdesc *v, int invert, OpCode jump) { int prevpos; /* position of last instruction */ Instruction *previous; int *golist, *exitlist; if (!invert) { golist = &v->u.l.f; /* go if false */ exitlist = &v->u.l.t; /* exit if true */ } else { golist = &v->u.l.t; /* go if true */ exitlist = &v->u.l.f; /* exit if false */ } discharge1(fs, v); prevpos = fs->pc-1; previous = &fs->f->code[prevpos]; LUA_ASSERT(*previous==previous_instruction(fs), "no jump allowed here"); if (!ISJUMP(GET_OPCODE(*previous))) prevpos = luaK_code1(fs, jump, NO_JUMP); else { /* last instruction is already a jump */ if (invert) SET_OPCODE(*previous, invertjump(GET_OPCODE(*previous))); } luaK_concat(fs, exitlist, prevpos); /* insert last jump in `exitlist' */ luaK_patchlist(fs, *golist, luaK_getlabel(fs)); *golist = NO_JUMP; } void luaK_goiftrue (FuncState *fs, expdesc *v, int keepvalue) { luaK_testgo(fs, v, 1, keepvalue ? OP_JMPONF : OP_JMPF); } static void luaK_goiffalse (FuncState *fs, expdesc *v, int keepvalue) { luaK_testgo(fs, v, 0, keepvalue ? OP_JMPONT : OP_JMPT); } static int code_label (FuncState *fs, OpCode op, int arg) { luaK_getlabel(fs); /* those instructions may be jump targets */ return luaK_code1(fs, op, arg); } void luaK_tostack (LexState *ls, expdesc *v, int onlyone) { FuncState *fs = ls->fs; if (!discharge(fs, v)) { /* `v' is an expression? */ OpCode previous = GET_OPCODE(fs->f->code[fs->pc-1]); if (!ISJUMP(previous) && v->u.l.f == NO_JUMP && v->u.l.t == NO_JUMP) { /* expression has no jumps */ if (onlyone) luaK_setcallreturns(fs, 1); /* call must return 1 value */ } else { /* expression has jumps */ int final; /* position after whole expression */ int j = NO_JUMP; /* eventual jump over values */ int p_nil = NO_JUMP; /* position of an eventual PUSHNIL */ int p_1 = NO_JUMP; /* position of an eventual PUSHINT */ if (ISJUMP(previous) || need_value(fs, v->u.l.f, OP_JMPONF) || need_value(fs, v->u.l.t, OP_JMPONT)) { /* expression needs values */ if (ISJUMP(previous)) luaK_concat(fs, &v->u.l.t, fs->pc-1); /* put `previous' in t. list */ else { j = code_label(fs, OP_JMP, NO_JUMP); /* to jump over both pushes */ /* correct stack for compiler and symbolic execution */ luaK_adjuststack(fs, 1); } p_nil = code_label(fs, OP_PUSHNILJMP, 0); p_1 = code_label(fs, OP_PUSHINT, 1); luaK_patchlist(fs, j, luaK_getlabel(fs)); } final = luaK_getlabel(fs); luaK_patchlistaux(fs, v->u.l.f, p_nil, OP_JMPONF, final); luaK_patchlistaux(fs, v->u.l.t, p_1, OP_JMPONT, final); v->u.l.f = v->u.l.t = NO_JUMP; } } } void luaK_prefix (LexState *ls, UnOpr op, expdesc *v) { FuncState *fs = ls->fs; if (op == OPR_MINUS) { luaK_tostack(ls, v, 1); luaK_code0(fs, OP_MINUS); } else { /* op == NOT */ Instruction *previous; discharge1(fs, v); previous = &fs->f->code[fs->pc-1]; if (ISJUMP(GET_OPCODE(*previous))) SET_OPCODE(*previous, invertjump(GET_OPCODE(*previous))); else luaK_code0(fs, OP_NOT); /* interchange true and false lists */ { int temp = v->u.l.f; v->u.l.f = v->u.l.t; v->u.l.t = temp; } } } void luaK_infix (LexState *ls, BinOpr op, expdesc *v) { FuncState *fs = ls->fs; switch (op) { case OPR_AND: luaK_goiftrue(fs, v, 1); break; case OPR_OR: luaK_goiffalse(fs, v, 1); break; default: luaK_tostack(ls, v, 1); /* all other binary operators need a value */ } } static const struct { OpCode opcode; /* opcode for each binary operator */ int arg; /* default argument for the opcode */ } codes[] = { /* ORDER OPR */ {OP_ADD, 0}, {OP_SUB, 0}, {OP_MULT, 0}, {OP_DIV, 0}, {OP_POW, 0}, {OP_CONCAT, 2}, {OP_JMPNE, NO_JUMP}, {OP_JMPEQ, NO_JUMP}, {OP_JMPLT, NO_JUMP}, {OP_JMPLE, NO_JUMP}, {OP_JMPGT, NO_JUMP}, {OP_JMPGE, NO_JUMP} }; void luaK_posfix (LexState *ls, BinOpr op, expdesc *v1, expdesc *v2) { FuncState *fs = ls->fs; switch (op) { case OPR_AND: { LUA_ASSERT(v1->u.l.t == NO_JUMP, "list must be closed"); discharge1(fs, v2); v1->u.l.t = v2->u.l.t; luaK_concat(fs, &v1->u.l.f, v2->u.l.f); break; } case OPR_OR: { LUA_ASSERT(v1->u.l.f == NO_JUMP, "list must be closed"); discharge1(fs, v2); v1->u.l.f = v2->u.l.f; luaK_concat(fs, &v1->u.l.t, v2->u.l.t); break; } default: { luaK_tostack(ls, v2, 1); /* `v2' must be a value */ luaK_code1(fs, codes[op].opcode, codes[op].arg); } } } static void codelineinfo (FuncState *fs) { Proto *f = fs->f; LexState *ls = fs->ls; if (ls->lastline > fs->lastline) { luaM_growvector(fs->L, f->lineinfo, f->nlineinfo, 2, int, "line info overflow", MAX_INT); if (ls->lastline > fs->lastline+1) f->lineinfo[f->nlineinfo++] = -(ls->lastline - (fs->lastline+1)); f->lineinfo[f->nlineinfo++] = fs->pc; fs->lastline = ls->lastline; } } int luaK_code0 (FuncState *fs, OpCode o) { return luaK_code2(fs, o, 0, 0); } int luaK_code1 (FuncState *fs, OpCode o, int arg1) { return luaK_code2(fs, o, arg1, 0); } int luaK_code2 (FuncState *fs, OpCode o, int arg1, int arg2) { Instruction i = previous_instruction(fs); int delta = luaK_opproperties[o].push - luaK_opproperties[o].pop; int optm = 0; /* 1 when there is an optimization */ switch (o) { case OP_CLOSURE: { delta = -arg2+1; break; } case OP_SETTABLE: { delta = -arg2; break; } case OP_SETLIST: { if (arg2 == 0) return NO_JUMP; /* nothing to do */ delta = -arg2; break; } case OP_SETMAP: { if (arg1 == 0) return NO_JUMP; /* nothing to do */ delta = -2*arg1; break; } case OP_RETURN: { if (GET_OPCODE(i) == OP_CALL && GETARG_B(i) == MULT_RET) { SET_OPCODE(i, OP_TAILCALL); SETARG_B(i, arg1); optm = 1; } break; } case OP_PUSHNIL: { if (arg1 == 0) return NO_JUMP; /* nothing to do */ delta = arg1; switch(GET_OPCODE(i)) { case OP_PUSHNIL: SETARG_U(i, GETARG_U(i)+arg1); optm = 1; break; default: break; } break; } case OP_POP: { if (arg1 == 0) return NO_JUMP; /* nothing to do */ delta = -arg1; switch(GET_OPCODE(i)) { case OP_SETTABLE: SETARG_B(i, GETARG_B(i)+arg1); optm = 1; break; default: break; } break; } case OP_GETTABLE: { switch(GET_OPCODE(i)) { case OP_PUSHSTRING: /* `t.x' */ SET_OPCODE(i, OP_GETDOTTED); optm = 1; break; case OP_GETLOCAL: /* `t[i]' */ SET_OPCODE(i, OP_GETINDEXED); optm = 1; break; default: break; } break; } case OP_ADD: { switch(GET_OPCODE(i)) { case OP_PUSHINT: SET_OPCODE(i, OP_ADDI); optm = 1; break; /* `a+k' */ default: break; } break; } case OP_SUB: { switch(GET_OPCODE(i)) { case OP_PUSHINT: /* `a-k' */ i = CREATE_S(OP_ADDI, -GETARG_S(i)); optm = 1; break; default: break; } break; } case OP_CONCAT: { delta = -arg1+1; switch(GET_OPCODE(i)) { case OP_CONCAT: /* `a..b..c' */ SETARG_U(i, GETARG_U(i)+1); optm = 1; break; default: break; } break; } case OP_MINUS: { switch(GET_OPCODE(i)) { case OP_PUSHINT: /* `-k' */ SETARG_S(i, -GETARG_S(i)); optm = 1; break; case OP_PUSHNUM: /* `-k' */ SET_OPCODE(i, OP_PUSHNEGNUM); optm = 1; break; default: break; } break; } case OP_JMPNE: { if (i == CREATE_U(OP_PUSHNIL, 1)) { /* `a~=nil' */ i = CREATE_S(OP_JMPT, NO_JUMP); optm = 1; } break; } case OP_JMPEQ: { if (i == CREATE_U(OP_PUSHNIL, 1)) { /* `a==nil' */ i = CREATE_0(OP_NOT); delta = -1; /* just undo effect of previous PUSHNIL */ optm = 1; } break; } case OP_JMPT: case OP_JMPONT: { switch (GET_OPCODE(i)) { case OP_NOT: { i = CREATE_S(OP_JMPF, NO_JUMP); optm = 1; break; } case OP_PUSHINT: { if (o == OP_JMPT) { /* JMPONT must keep original integer value */ i = CREATE_S(OP_JMP, NO_JUMP); optm = 1; } break; } case OP_PUSHNIL: { if (GETARG_U(i) == 1) { fs->pc--; /* erase previous instruction */ luaK_deltastack(fs, -1); /* correct stack */ return NO_JUMP; } break; } default: break; } break; } case OP_JMPF: case OP_JMPONF: { switch (GET_OPCODE(i)) { case OP_NOT: { i = CREATE_S(OP_JMPT, NO_JUMP); optm = 1; break; } case OP_PUSHINT: { /* `while 1 do ...' */ fs->pc--; /* erase previous instruction */ luaK_deltastack(fs, -1); /* correct stack */ return NO_JUMP; } case OP_PUSHNIL: { /* `repeat ... until nil' */ if (GETARG_U(i) == 1) { i = CREATE_S(OP_JMP, NO_JUMP); optm = 1; } break; } default: break; } break; } case OP_GETDOTTED: case OP_GETINDEXED: case OP_TAILCALL: case OP_ADDI: { LUA_INTERNALERROR("instruction used only for optimizations"); break; } default: { LUA_ASSERT(delta != VD, "invalid delta"); break; } } luaK_deltastack(fs, delta); if (optm) { /* optimize: put instruction in place of last one */ fs->f->code[fs->pc-1] = i; /* change previous instruction */ return fs->pc-1; /* do not generate new instruction */ } /* else build new instruction */ switch ((enum Mode)luaK_opproperties[o].mode) { case iO: i = CREATE_0(o); break; case iU: i = CREATE_U(o, arg1); break; case iS: i = CREATE_S(o, arg1); break; case iAB: i = CREATE_AB(o, arg1, arg2); break; } codelineinfo(fs); /* put new instruction in code array */ luaM_growvector(fs->L, fs->f->code, fs->pc, 1, Instruction, "code size overflow", MAX_INT); fs->f->code[fs->pc] = i; return fs->pc++; } const struct OpProperties luaK_opproperties[NUM_OPCODES] = { {iO, 0, 0}, /* OP_END */ {iU, 0, 0}, /* OP_RETURN */ {iAB, 0, 0}, /* OP_CALL */ {iAB, 0, 0}, /* OP_TAILCALL */ {iU, VD, 0}, /* OP_PUSHNIL */ {iU, VD, 0}, /* OP_POP */ {iS, 1, 0}, /* OP_PUSHINT */ {iU, 1, 0}, /* OP_PUSHSTRING */ {iU, 1, 0}, /* OP_PUSHNUM */ {iU, 1, 0}, /* OP_PUSHNEGNUM */ {iU, 1, 0}, /* OP_PUSHUPVALUE */ {iU, 1, 0}, /* OP_GETLOCAL */ {iU, 1, 0}, /* OP_GETGLOBAL */ {iO, 1, 2}, /* OP_GETTABLE */ {iU, 1, 1}, /* OP_GETDOTTED */ {iU, 1, 1}, /* OP_GETINDEXED */ {iU, 2, 1}, /* OP_PUSHSELF */ {iU, 1, 0}, /* OP_CREATETABLE */ {iU, 0, 1}, /* OP_SETLOCAL */ {iU, 0, 1}, /* OP_SETGLOBAL */ {iAB, VD, 0}, /* OP_SETTABLE */ {iAB, VD, 0}, /* OP_SETLIST */ {iU, VD, 0}, /* OP_SETMAP */ {iO, 1, 2}, /* OP_ADD */ {iS, 1, 1}, /* OP_ADDI */ {iO, 1, 2}, /* OP_SUB */ {iO, 1, 2}, /* OP_MULT */ {iO, 1, 2}, /* OP_DIV */ {iO, 1, 2}, /* OP_POW */ {iU, VD, 0}, /* OP_CONCAT */ {iO, 1, 1}, /* OP_MINUS */ {iO, 1, 1}, /* OP_NOT */ {iS, 0, 2}, /* OP_JMPNE */ {iS, 0, 2}, /* OP_JMPEQ */ {iS, 0, 2}, /* OP_JMPLT */ {iS, 0, 2}, /* OP_JMPLE */ {iS, 0, 2}, /* OP_JMPGT */ {iS, 0, 2}, /* OP_JMPGE */ {iS, 0, 1}, /* OP_JMPT */ {iS, 0, 1}, /* OP_JMPF */ {iS, 0, 1}, /* OP_JMPONT */ {iS, 0, 1}, /* OP_JMPONF */ {iS, 0, 0}, /* OP_JMP */ {iO, 0, 0}, /* OP_PUSHNILJMP */ {iS, 0, 0}, /* OP_FORPREP */ {iS, 0, 3}, /* OP_FORLOOP */ {iS, 2, 0}, /* OP_LFORPREP */ {iS, 0, 3}, /* OP_LFORLOOP */ {iAB, VD, 0} /* OP_CLOSURE */ };