summaryrefslogtreecommitdiff
path: root/vendor/pcg-cpp-0.98/include/pcg_extras.hpp
blob: ec3e5694e24b5d927e1e4b0e8feeed59390f54e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
/*
 * PCG Random Number Generation for C++
 *
 * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * For additional information about the PCG random number generation scheme,
 * including its license and other licensing options, visit
 *
 *     http://www.pcg-random.org
 */

/*
 * This file provides support code that is useful for random-number generation
 * but not specific to the PCG generation scheme, including:
 *      - 128-bit int support for platforms where it isn't available natively
 *      - bit twiddling operations
 *      - I/O of 128-bit and 8-bit integers
 *      - Handling the evilness of SeedSeq
 *      - Support for efficiently producing random numbers less than a given
 *        bound
 */

#ifndef PCG_EXTRAS_HPP_INCLUDED
#define PCG_EXTRAS_HPP_INCLUDED 1

#include <cinttypes>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include <limits>
#include <iostream>
#include <type_traits>
#include <utility>
#include <locale>
#include <iterator>
#include <utility>

#ifdef __GNUC__
    #include <cxxabi.h>
#endif

/*
 * Abstractions for compiler-specific directives
 */

#ifdef __GNUC__
    #define PCG_NOINLINE __attribute__((noinline))
#else
    #define PCG_NOINLINE
#endif

/*
 * Some members of the PCG library use 128-bit math.  When compiling on 64-bit
 * platforms, both GCC and Clang provide 128-bit integer types that are ideal
 * for the job.
 *
 * On 32-bit platforms (or with other compilers), we fall back to a C++
 * class that provides 128-bit unsigned integers instead.  It may seem
 * like we're reinventing the wheel here, because libraries already exist
 * that support large integers, but most existing libraries provide a very
 * generic multiprecision code, but here we're operating at a fixed size.
 * Also, most other libraries are fairly heavyweight.  So we use a direct
 * implementation.  Sadly, it's much slower than hand-coded assembly or
 * direct CPU support.
 *
 */
#if __SIZEOF_INT128__
    namespace pcg_extras {
        typedef __uint128_t pcg128_t;
    }
    #define PCG_128BIT_CONSTANT(high,low) \
            ((pcg128_t(high) << 64) + low)
#else
    #include "pcg_uint128.hpp"
    namespace pcg_extras {
        typedef pcg_extras::uint_x4<uint32_t,uint64_t> pcg128_t;
    }
    #define PCG_128BIT_CONSTANT(high,low) \
            pcg128_t(high,low)
    #define PCG_EMULATED_128BIT_MATH 1
#endif


namespace pcg_extras {

/*
 * We often need to represent a "number of bits".  When used normally, these
 * numbers are never greater than 128, so an unsigned char is plenty.
 * If you're using a nonstandard generator of a larger size, you can set
 * PCG_BITCOUNT_T to have it define it as a larger size.  (Some compilers
 * might produce faster code if you set it to an unsigned int.)
 */

#ifndef PCG_BITCOUNT_T
    typedef uint8_t bitcount_t;
#else
    typedef PCG_BITCOUNT_T bitcount_t;
#endif

/*
 * C++ requires us to be able to serialize RNG state by printing or reading
 * it from a stream.  Because we use 128-bit ints, we also need to be able
 * ot print them, so here is code to do so.
 *
 * This code provides enough functionality to print 128-bit ints in decimal
 * and zero-padded in hex.  It's not a full-featured implementation.
 */

template <typename CharT, typename Traits>
std::basic_ostream<CharT,Traits>&
operator<<(std::basic_ostream<CharT,Traits>& out, pcg128_t value)
{
    auto desired_base = out.flags() & out.basefield;
    bool want_hex = desired_base == out.hex;

    if (want_hex) {
        uint64_t highpart = uint64_t(value >> 64);
        uint64_t lowpart  = uint64_t(value);
        auto desired_width = out.width();
        if (desired_width > 16) {
            out.width(desired_width - 16);
        }
        if (highpart != 0 || desired_width > 16)
            out << highpart;
        CharT oldfill;
        if (highpart != 0) {
            out.width(16);
            oldfill = out.fill('0');
        }
        auto oldflags = out.setf(decltype(desired_base){}, out.showbase);
        out << lowpart;
        out.setf(oldflags);
        if (highpart != 0) {
            out.fill(oldfill);
        }
        return out;
    }
    constexpr size_t MAX_CHARS_128BIT = 40;

    char buffer[MAX_CHARS_128BIT];
    char* pos = buffer+sizeof(buffer);
    *(--pos) = '\0';
    constexpr auto BASE = pcg128_t(10ULL);
    do {
        auto div = value / BASE;
        auto mod = uint32_t(value - (div * BASE));
        *(--pos) = '0' + mod;
        value = div;
    } while(value != pcg128_t(0ULL));
    return out << pos;
}

template <typename CharT, typename Traits>
std::basic_istream<CharT,Traits>&
operator>>(std::basic_istream<CharT,Traits>& in, pcg128_t& value)
{
    typename std::basic_istream<CharT,Traits>::sentry s(in);

    if (!s)
         return in;

    constexpr auto BASE = pcg128_t(10ULL);
    pcg128_t current(0ULL);
    bool did_nothing = true;
    bool overflow = false;
    for(;;) {
        CharT wide_ch = in.get();
        if (!in.good())
            break;
        auto ch = in.narrow(wide_ch, '\0');
        if (ch < '0' || ch > '9') {
            in.unget();
            break;
        }
        did_nothing = false;
        pcg128_t digit(uint32_t(ch - '0'));
        pcg128_t timesbase = current*BASE;
        overflow = overflow || timesbase < current;
        current = timesbase + digit;
        overflow = overflow || current < digit;
    }

    if (did_nothing || overflow) {
        in.setstate(std::ios::failbit);
        if (overflow)
            current = ~pcg128_t(0ULL);
    }

    value = current;

    return in;
}

/*
 * Likewise, if people use tiny rngs, we'll be serializing uint8_t.
 * If we just used the provided IO operators, they'd read/write chars,
 * not ints, so we need to define our own.  We *can* redefine this operator
 * here because we're in our own namespace.
 */

template <typename CharT, typename Traits>
std::basic_ostream<CharT,Traits>&
operator<<(std::basic_ostream<CharT,Traits>&out, uint8_t value)
{
    return out << uint32_t(value);
}

template <typename CharT, typename Traits>
std::basic_istream<CharT,Traits>&
operator>>(std::basic_istream<CharT,Traits>& in, uint8_t target)
{
    uint32_t value = 0xdecea5edU;
    in >> value;
    if (!in && value == 0xdecea5edU)
        return in;
    if (value > uint8_t(~0)) {
        in.setstate(std::ios::failbit);
        value = ~0U;
    }
    target = uint8_t(value);
    return in;
}

/* Unfortunately, the above functions don't get found in preference to the
 * built in ones, so we create some more specific overloads that will.
 * Ugh.
 */

inline std::ostream& operator<<(std::ostream& out, uint8_t value)
{
    return pcg_extras::operator<< <char>(out, value);
}

inline std::istream& operator>>(std::istream& in, uint8_t& value)
{
    return pcg_extras::operator>> <char>(in, value);
}



/*
 * Useful bitwise operations.
 */

/*
 * XorShifts are invertable, but they are someting of a pain to invert.
 * This function backs them out.  It's used by the whacky "inside out"
 * generator defined later.
 */

template <typename itype>
inline itype unxorshift(itype x, bitcount_t bits, bitcount_t shift)
{
    if (2*shift >= bits) {
        return x ^ (x >> shift);
    }
    itype lowmask1 = (itype(1U) << (bits - shift*2)) - 1;
    itype highmask1 = ~lowmask1;
    itype top1 = x;
    itype bottom1 = x & lowmask1;
    top1 ^= top1 >> shift;
    top1 &= highmask1;
    x = top1 | bottom1;
    itype lowmask2 = (itype(1U) << (bits - shift)) - 1;
    itype bottom2 = x & lowmask2;
    bottom2 = unxorshift(bottom2, bits - shift, shift);
    bottom2 &= lowmask1;
    return top1 | bottom2;
}

/*
 * Rotate left and right.
 *
 * In ideal world, compilers would spot idiomatic rotate code and convert it
 * to a rotate instruction.  Of course, opinions vary on what the correct
 * idiom is and how to spot it.  For clang, sometimes it generates better
 * (but still crappy) code if you define PCG_USE_ZEROCHECK_ROTATE_IDIOM.
 */

template <typename itype>
inline itype rotl(itype value, bitcount_t rot)
{
    constexpr bitcount_t bits = sizeof(itype) * 8;
    constexpr bitcount_t mask = bits - 1;
#if PCG_USE_ZEROCHECK_ROTATE_IDIOM
    return rot ? (value << rot) | (value >> (bits - rot)) : value;
#else
    return (value << rot) | (value >> ((- rot) & mask));
#endif
}

template <typename itype>
inline itype rotr(itype value, bitcount_t rot)
{
    constexpr bitcount_t bits = sizeof(itype) * 8;
    constexpr bitcount_t mask = bits - 1;
#if PCG_USE_ZEROCHECK_ROTATE_IDIOM
    return rot ? (value >> rot) | (value << (bits - rot)) : value;
#else
    return (value >> rot) | (value << ((- rot) & mask));
#endif
}

/* Unfortunately, both Clang and GCC sometimes perform poorly when it comes
 * to properly recognizing idiomatic rotate code, so for we also provide
 * assembler directives (enabled with PCG_USE_INLINE_ASM).  Boo, hiss.
 * (I hope that these compilers get better so that this code can die.)
 *
 * These overloads will be preferred over the general template code above.
 */
#if PCG_USE_INLINE_ASM && __GNUC__ && (__x86_64__  || __i386__)

inline uint8_t rotr(uint8_t value, bitcount_t rot)
{
    asm ("rorb   %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
    return value;
}

inline uint16_t rotr(uint16_t value, bitcount_t rot)
{
    asm ("rorw   %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
    return value;
}

inline uint32_t rotr(uint32_t value, bitcount_t rot)
{
    asm ("rorl   %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
    return value;
}

#if __x86_64__
inline uint64_t rotr(uint64_t value, bitcount_t rot)
{
    asm ("rorq   %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
    return value;
}
#endif // __x86_64__

#endif // PCG_USE_INLINE_ASM


/*
 * The C++ SeedSeq concept (modelled by seed_seq) can fill an array of
 * 32-bit integers with seed data, but sometimes we want to produce
 * larger or smaller integers.
 *
 * The following code handles this annoyance.
 *
 * uneven_copy will copy an array of 32-bit ints to an array of larger or
 * smaller ints (actually, the code is general it only needing forward
 * iterators).  The copy is identical to the one that would be performed if
 * we just did memcpy on a standard little-endian machine, but works
 * regardless of the endian of the machine (or the weirdness of the ints
 * involved).
 *
 * generate_to initializes an array of integers using a SeedSeq
 * object.  It is given the size as a static constant at compile time and
 * tries to avoid memory allocation.  If we're filling in 32-bit constants
 * we just do it directly.  If we need a separate buffer and it's small,
 * we allocate it on the stack.  Otherwise, we fall back to heap allocation.
 * Ugh.
 *
 * generate_one produces a single value of some integral type using a
 * SeedSeq object.
 */

 /* uneven_copy helper, case where destination ints are less than 32 bit. */

template<class SrcIter, class DestIter>
SrcIter uneven_copy_impl(
    SrcIter src_first, DestIter dest_first, DestIter dest_last,
    std::true_type)
{
    typedef typename std::iterator_traits<SrcIter>::value_type  src_t;
    typedef typename std::iterator_traits<DestIter>::value_type dest_t;

    constexpr bitcount_t SRC_SIZE  = sizeof(src_t);
    constexpr bitcount_t DEST_SIZE = sizeof(dest_t);
    constexpr bitcount_t DEST_BITS = DEST_SIZE * 8;
    constexpr bitcount_t SCALE     = SRC_SIZE / DEST_SIZE;

    size_t count = 0;
    src_t value;

    while (dest_first != dest_last) {
        if ((count++ % SCALE) == 0)
            value = *src_first++;       // Get more bits
        else
            value >>= DEST_BITS;        // Move down bits

        *dest_first++ = dest_t(value);  // Truncates, ignores high bits.
    }
    return src_first;
}

 /* uneven_copy helper, case where destination ints are more than 32 bit. */

template<class SrcIter, class DestIter>
SrcIter uneven_copy_impl(
    SrcIter src_first, DestIter dest_first, DestIter dest_last,
    std::false_type)
{
    typedef typename std::iterator_traits<SrcIter>::value_type  src_t;
    typedef typename std::iterator_traits<DestIter>::value_type dest_t;

    constexpr auto SRC_SIZE  = sizeof(src_t);
    constexpr auto SRC_BITS  = SRC_SIZE * 8;
    constexpr auto DEST_SIZE = sizeof(dest_t);
    constexpr auto SCALE     = (DEST_SIZE+SRC_SIZE-1) / SRC_SIZE;

    while (dest_first != dest_last) {
        dest_t value(0UL);
        unsigned int shift = 0;

        for (size_t i = 0; i < SCALE; ++i) {
            value |= dest_t(*src_first++) << shift;
            shift += SRC_BITS;
        }

        *dest_first++ = value;
    }
    return src_first;
}

/* uneven_copy, call the right code for larger vs. smaller */

template<class SrcIter, class DestIter>
inline SrcIter uneven_copy(SrcIter src_first,
                           DestIter dest_first, DestIter dest_last)
{
    typedef typename std::iterator_traits<SrcIter>::value_type  src_t;
    typedef typename std::iterator_traits<DestIter>::value_type dest_t;

    constexpr bool DEST_IS_SMALLER = sizeof(dest_t) < sizeof(src_t);

    return uneven_copy_impl(src_first, dest_first, dest_last,
                            std::integral_constant<bool, DEST_IS_SMALLER>{});
}

/* generate_to, fill in a fixed-size array of integral type using a SeedSeq
 * (actually works for any random-access iterator)
 */

template <size_t size, typename SeedSeq, typename DestIter>
inline void generate_to_impl(SeedSeq&& generator, DestIter dest,
                             std::true_type)
{
    generator.generate(dest, dest+size);
}

template <size_t size, typename SeedSeq, typename DestIter>
void generate_to_impl(SeedSeq&& generator, DestIter dest,
                      std::false_type)
{
    typedef typename std::iterator_traits<DestIter>::value_type dest_t;
    constexpr auto DEST_SIZE = sizeof(dest_t);
    constexpr auto GEN_SIZE  = sizeof(uint32_t);

    constexpr bool GEN_IS_SMALLER = GEN_SIZE < DEST_SIZE;
    constexpr size_t FROM_ELEMS =
        GEN_IS_SMALLER
            ? size * ((DEST_SIZE+GEN_SIZE-1) / GEN_SIZE)
            : (size + (GEN_SIZE / DEST_SIZE) - 1)
                / ((GEN_SIZE / DEST_SIZE) + GEN_IS_SMALLER);
                        //  this odd code ^^^^^^^^^^^^^^^^^ is work-around for
                        //  a bug: http://llvm.org/bugs/show_bug.cgi?id=21287

    if (FROM_ELEMS <= 1024) {
        uint32_t buffer[FROM_ELEMS];
        generator.generate(buffer, buffer+FROM_ELEMS);
        uneven_copy(buffer, dest, dest+size);
    } else {
        uint32_t* buffer = (uint32_t*) malloc(GEN_SIZE * FROM_ELEMS);
        generator.generate(buffer, buffer+FROM_ELEMS);
        uneven_copy(buffer, dest, dest+size);
        free(buffer);
    }
}

template <size_t size, typename SeedSeq, typename DestIter>
inline void generate_to(SeedSeq&& generator, DestIter dest)
{
    typedef typename std::iterator_traits<DestIter>::value_type dest_t;
    constexpr bool IS_32BIT = sizeof(dest_t) == sizeof(uint32_t);

    generate_to_impl<size>(std::forward<SeedSeq>(generator), dest,
                           std::integral_constant<bool, IS_32BIT>{});
}

/* generate_one, produce a value of integral type using a SeedSeq
 * (optionally, we can have it produce more than one and pick which one
 * we want)
 */

template <typename UInt, size_t i = 0UL, size_t N = i+1UL, typename SeedSeq>
inline UInt generate_one(SeedSeq&& generator)
{
    UInt result[N];
    generate_to<N>(std::forward<SeedSeq>(generator), result);
    return result[i];
}

template <typename RngType>
auto bounded_rand(RngType& rng, typename RngType::result_type upper_bound)
        -> typename RngType::result_type
{
    typedef typename RngType::result_type rtype;
    rtype threshold = (RngType::max() - RngType::min() + rtype(1) - upper_bound)
                    % upper_bound;
    for (;;) {
        rtype r = rng() - RngType::min();
        if (r >= threshold)
            return r % upper_bound;
    }
}

template <typename Iter, typename RandType>
void shuffle(Iter from, Iter to, RandType&& rng)
{
    typedef typename std::iterator_traits<Iter>::difference_type delta_t;
    auto count = to - from;
    while (count > 1) {
        delta_t chosen(bounded_rand(rng, count));
        --count;
        --to;
        using std::swap;
        swap(*(from+chosen), *to);
    }
}

/*
 * Although std::seed_seq is useful, it isn't everything.  Often we want to
 * initialize a random-number generator some other way, such as from a random
 * device.
 *
 * Technically, it does not meet the requirements of a SeedSequence because
 * it lacks some of the rarely-used member functions (some of which would
 * be impossible to provide).  However the C++ standard is quite specific
 * that actual engines only called the generate method, so it ought not to be
 * a problem in practice.
 */

template <typename RngType>
class seed_seq_from {
private:
    RngType rng_;

    typedef uint_least32_t result_type;

public:
    template<typename... Args>
    seed_seq_from(Args&&... args) :
        rng_(std::forward<Args>(args)...)
    {
        // Nothing (else) to do...
    }

    template<typename Iter>
    void generate(Iter start, Iter finish)
    {
        for (auto i = start; i != finish; ++i)
            *i = result_type(rng_());
    }

    constexpr size_t size() const
    {
        return (sizeof(typename RngType::result_type) > sizeof(result_type)
                && RngType::max() > ~size_t(0UL))
             ? ~size_t(0UL)
             : size_t(RngType::max());
    }
};

/*
 * Sometimes you might want a distinct seed based on when the program
 * was compiled.  That way, a particular instance of the program will
 * behave the same way, but when recompiled it'll produce a different
 * value.
 */

template <typename IntType>
struct static_arbitrary_seed {
private:
    static constexpr IntType fnv(IntType hash, const char* pos) {
        return *pos == '\0'
             ? hash
             : fnv((hash * IntType(16777619U)) ^ *pos, (pos+1));
    }

public:
    static constexpr IntType value = fnv(IntType(2166136261U ^ sizeof(IntType)),
                        __DATE__ __TIME__ __FILE__);
};

// Sometimes, when debugging or testing, it's handy to be able print the name
// of a (in human-readable form).  This code allows the idiom:
//
//      cout << printable_typename<my_foo_type_t>()
//
// to print out my_foo_type_t (or its concrete type if it is a synonym)

template <typename T>
struct printable_typename {};

template <typename T>
std::ostream& operator<<(std::ostream& out, printable_typename<T>) {
    const char *implementation_typename = typeid(T).name();
#ifdef __GNUC__
    int status;
    const char* pretty_name =
        abi::__cxa_demangle(implementation_typename, NULL, NULL, &status);
    if (status == 0)
        out << pretty_name;
    free((void*) pretty_name);
    if (status == 0)
        return out;
#endif
    out << implementation_typename;
    return out;
}

} // namespace pcg_extras

#endif // PCG_EXTRAS_HPP_INCLUDED