summaryrefslogtreecommitdiff
path: root/vendor/pcg-cpp-0.98/include/pcg_random.hpp
blob: 3f04d854e61baa262788dd206b96f13528332f24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
/*
 * PCG Random Number Generation for C++
 *
 * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * For additional information about the PCG random number generation scheme,
 * including its license and other licensing options, visit
 *
 *     http://www.pcg-random.org
 */

/*
 * This code provides the reference implementation of the PCG family of
 * random number generators.  The code is complex because it implements
 *
 *      - several members of the PCG family, specifically members corresponding
 *        to the output functions:
 *             - XSH RR         (good for 64-bit state, 32-bit output)
 *             - XSH RS         (good for 64-bit state, 32-bit output)
 *             - XSL RR         (good for 128-bit state, 64-bit output)
 *             - RXS M XS       (statistically most powerful generator)
 *             - XSL RR RR      (good for 128-bit state, 128-bit output)
 *             - and RXS, RXS M, XSH, XSL       (mostly for testing)
 *      - at potentially *arbitrary* bit sizes
 *      - with four different techniques for random streams (MCG, one-stream
 *        LCG, settable-stream LCG, unique-stream LCG)
 *      - and the extended generation schemes allowing arbitrary periods
 *      - with all features of C++11 random number generation (and more),
 *        some of which are somewhat painful, including
 *            - initializing with a SeedSequence which writes 32-bit values
 *              to memory, even though the state of the generator may not
 *              use 32-bit values (it might use smaller or larger integers)
 *            - I/O for RNGs and a prescribed format, which needs to handle
 *              the issue that 8-bit and 128-bit integers don't have working
 *              I/O routines (e.g., normally 8-bit = char, not integer)
 *            - equality and inequality for RNGs
 *      - and a number of convenience typedefs to mask all the complexity
 *
 * The code employes a fairly heavy level of abstraction, and has to deal
 * with various C++ minutia.  If you're looking to learn about how the PCG
 * scheme works, you're probably best of starting with one of the other
 * codebases (see www.pcg-random.org).  But if you're curious about the
 * constants for the various output functions used in those other, simpler,
 * codebases, this code shows how they are calculated.
 *
 * On the positive side, at least there are convenience typedefs so that you
 * can say
 *
 *      pcg32 myRNG;
 *
 * rather than:
 *
 *      pcg_detail::engine<
 *          uint32_t,                                           // Output Type
 *          uint64_t,                                           // State Type
 *          pcg_detail::xsh_rr_mixin<uint32_t, uint64_t>, true, // Output Func
 *          pcg_detail::specific_stream<uint64_t>,              // Stream Kind
 *          pcg_detail::default_multiplier<uint64_t>            // LCG Mult
 *      > myRNG;
 *
 */

#ifndef PCG_RAND_HPP_INCLUDED
#define PCG_RAND_HPP_INCLUDED 1

#include <cinttypes>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include <limits>
#include <iostream>
#include <type_traits>
#include <utility>
#include <locale>
#include <new>
#include <stdexcept>

/*
 * The pcg_extras namespace contains some support code that is likley to
 * be useful for a variety of RNGs, including:
 *      - 128-bit int support for platforms where it isn't available natively
 *      - bit twiddling operations
 *      - I/O of 128-bit and 8-bit integers
 *      - Handling the evilness of SeedSeq
 *      - Support for efficiently producing random numbers less than a given
 *        bound
 */

#include "pcg_extras.hpp"

namespace pcg_detail {

using namespace pcg_extras;

/*
 * The LCG generators need some constants to function.  This code lets you
 * look up the constant by *type*.  For example
 *
 *      default_multiplier<uint32_t>::multiplier()
 *
 * gives you the default multipler for 32-bit integers.  We use the name
 * of the constant and not a generic word like value to allow these classes
 * to be used as mixins.
 */

template <typename T>
struct default_multiplier {
    // Not defined for an arbitrary type
};

template <typename T>
struct default_increment {
    // Not defined for an arbitrary type
};

#define PCG_DEFINE_CONSTANT(type, what, kind, constant) \
        template <>                                     \
        struct what ## _ ## kind<type> {                \
            static constexpr type kind() {              \
                return constant;                        \
            }                                           \
        };

PCG_DEFINE_CONSTANT(uint8_t,  default, multiplier, 141U)
PCG_DEFINE_CONSTANT(uint8_t,  default, increment,  77U)

PCG_DEFINE_CONSTANT(uint16_t, default, multiplier, 12829U)
PCG_DEFINE_CONSTANT(uint16_t, default, increment,  47989U)

PCG_DEFINE_CONSTANT(uint32_t, default, multiplier, 747796405U)
PCG_DEFINE_CONSTANT(uint32_t, default, increment,  2891336453U)

PCG_DEFINE_CONSTANT(uint64_t, default, multiplier, 6364136223846793005ULL)
PCG_DEFINE_CONSTANT(uint64_t, default, increment,  1442695040888963407ULL)

PCG_DEFINE_CONSTANT(pcg128_t, default, multiplier,
        PCG_128BIT_CONSTANT(2549297995355413924ULL,4865540595714422341ULL))
PCG_DEFINE_CONSTANT(pcg128_t, default, increment,
        PCG_128BIT_CONSTANT(6364136223846793005ULL,1442695040888963407ULL))


/*
 * Each PCG generator is available in four variants, based on how it applies
 * the additive constant for its underlying LCG; the variations are:
 *
 *     single stream   - all instances use the same fixed constant, thus
 *                       the RNG always somewhere in same sequence
 *     mcg             - adds zero, resulting in a single stream and reduced
 *                       period
 *     specific stream - the constant can be changed at any time, selecting
 *                       a different random sequence
 *     unique stream   - the constant is based on the memory addresss of the
 *                       object, thus every RNG has its own unique sequence
 *
 * This variation is provided though mixin classes which define a function
 * value called increment() that returns the nesessary additive constant.
 */



/*
 * unique stream
 */


template <typename itype>
class unique_stream {
protected:
    static constexpr bool is_mcg = false;

    // Is never called, but is provided for symmetry with specific_stream
    void set_stream(...)
    {
        abort();
    }

public:
    typedef itype state_type;

    constexpr itype increment() const {
        return itype(reinterpret_cast<unsigned long>(this) | 1);
    }

    constexpr itype stream() const
    {
         return increment() >> 1;
    }

    static constexpr bool can_specify_stream = false;

    static constexpr size_t streams_pow2()
    {
        return (sizeof(itype) < sizeof(size_t) ? sizeof(itype)
                                               : sizeof(size_t))*8 - 1u;
    }

protected:
    constexpr unique_stream() = default;
};


/*
 * no stream (mcg)
 */

template <typename itype>
class no_stream {
protected:
    static constexpr bool is_mcg = true;

    // Is never called, but is provided for symmetry with specific_stream
    void set_stream(...)
    {
        abort();
    }

public:
    typedef itype state_type;

    static constexpr itype increment() {
        return 0;
    }

    static constexpr bool can_specify_stream = false;

    static constexpr size_t streams_pow2()
    {
        return 0u;
    }

protected:
    constexpr no_stream() = default;
};


/*
 * single stream/sequence (oneseq)
 */

template <typename itype>
class oneseq_stream : public default_increment<itype> {
protected:
    static constexpr bool is_mcg = false;

    // Is never called, but is provided for symmetry with specific_stream
    void set_stream(...)
    {
        abort();
    }

public:
    typedef itype state_type;

    static constexpr itype stream()
    {
         return default_increment<itype>::increment() >> 1;
    }

    static constexpr bool can_specify_stream = false;

    static constexpr size_t streams_pow2()
    {
        return 0u;
    }

protected:
    constexpr oneseq_stream() = default;
};


/*
 * specific stream
 */

template <typename itype>
class specific_stream {
protected:
    static constexpr bool is_mcg = false;

    itype inc_ = default_increment<itype>::increment();

public:
    typedef itype state_type;
    typedef itype stream_state;

    constexpr itype increment() const {
        return inc_;
    }

    itype stream()
    {
         return inc_ >> 1;
    }

    void set_stream(itype specific_seq)
    {
         inc_ = (specific_seq << 1) | 1;
    }

    static constexpr bool can_specify_stream = true;

    static constexpr size_t streams_pow2()
    {
        return (sizeof(itype)*8) - 1u;
    }

protected:
    specific_stream() = default;

    specific_stream(itype specific_seq)
        : inc_((specific_seq << 1) | itype(1U))
    {
        // Nothing (else) to do.
    }
};


/*
 * This is where it all comes together.  This function joins together three
 * mixin classes which define
 *    - the LCG additive constant (the stream)
 *    - the LCG multiplier
 *    - the output function
 * in addition, we specify the type of the LCG state, and the result type,
 * and whether to use the pre-advance version of the state for the output
 * (increasing instruction-level parallelism) or the post-advance version
 * (reducing register pressure).
 *
 * Given the high level of parameterization, the code has to use some
 * template-metaprogramming tricks to handle some of the suble variations
 * involved.
 */

template <typename xtype, typename itype,
          typename output_mixin,
          bool output_previous = true,
          typename stream_mixin = oneseq_stream<itype>,
          typename multiplier_mixin = default_multiplier<itype> >
class engine : protected output_mixin,
               public stream_mixin,
               protected multiplier_mixin {
protected:
    itype state_;

    struct can_specify_stream_tag {};
    struct no_specifiable_stream_tag {};

    using stream_mixin::increment;
    using multiplier_mixin::multiplier;

public:
    typedef xtype result_type;
    typedef itype state_type;

    static constexpr size_t period_pow2()
    {
        return sizeof(state_type)*8 - 2*stream_mixin::is_mcg;
    }

    // It would be nice to use std::numeric_limits for these, but
    // we can't be sure that it'd be defined for the 128-bit types.

    static constexpr result_type min()
    {
        return result_type(0UL);
    }

    static constexpr result_type max()
    {
        return ~result_type(0UL);
    }

protected:
    itype bump(itype state)
    {
        return state * multiplier() + increment();
    }

    itype base_generate()
    {
        return state_ = bump(state_);
    }

    itype base_generate0()
    {
        itype old_state = state_;
        state_ = bump(state_);
        return old_state;
    }

public:
    result_type operator()()
    {
        if (output_previous)
            return this->output(base_generate0());
        else
            return this->output(base_generate());
    }

    result_type operator()(result_type upper_bound)
    {
        return bounded_rand(*this, upper_bound);
    }

protected:
    static itype advance(itype state, itype delta,
                         itype cur_mult, itype cur_plus);

    static itype distance(itype cur_state, itype newstate, itype cur_mult,
                          itype cur_plus, itype mask = ~itype(0U));

    itype distance(itype newstate, itype mask = ~itype(0U)) const
    {
        return distance(state_, newstate, multiplier(), increment(), mask);
    }

public:
    void advance(itype delta)
    {
        state_ = advance(state_, delta, this->multiplier(), this->increment());
    }

    void backstep(itype delta)
    {
        advance(-delta);
    }

    void discard(itype delta)
    {
        advance(delta);
    }

    bool wrapped()
    {
        if (stream_mixin::is_mcg) {
            // For MCGs, the low order two bits never change. In this
            // implementation, we keep them fixed at 3 to make this test
            // easier.
            return state_ == 3;
        } else {
            return state_ == 0;
        }
    }

    engine(itype state = itype(0xcafef00dd15ea5e5ULL))
        : state_(this->is_mcg ? state|state_type(3U)
                              : bump(state + this->increment()))
    {
        // Nothing else to do.
    }

    // This function may or may not exist.  It thus has to be a template
    // to use SFINAE; users don't have to worry about its template-ness.

    template <typename sm = stream_mixin>
    engine(itype state, typename sm::stream_state stream_seed)
        : stream_mixin(stream_seed),
          state_(this->is_mcg ? state|state_type(3U)
                              : bump(state + this->increment()))
    {
        // Nothing else to do.
    }

    template<typename SeedSeq>
    engine(SeedSeq&& seedSeq, typename std::enable_if<
                  !stream_mixin::can_specify_stream
               && !std::is_convertible<SeedSeq, itype>::value
               && !std::is_convertible<SeedSeq, engine>::value,
               no_specifiable_stream_tag>::type = {})
        : engine(generate_one<itype>(std::forward<SeedSeq>(seedSeq)))
    {
        // Nothing else to do.
    }

    template<typename SeedSeq>
    engine(SeedSeq&& seedSeq, typename std::enable_if<
                   stream_mixin::can_specify_stream
               && !std::is_convertible<SeedSeq, itype>::value
               && !std::is_convertible<SeedSeq, engine>::value,
        can_specify_stream_tag>::type = {})
        : engine(generate_one<itype,1,2>(seedSeq),
                 generate_one<itype,0,2>(seedSeq))
    {
        // Nothing else to do.
    }


    template<typename... Args>
    void seed(Args&&... args)
    {
        new (this) engine(std::forward<Args>(args)...);
    }

    template <typename xtype1, typename itype1,
              typename output_mixin1, bool output_previous1,
              typename stream_mixin_lhs, typename multiplier_mixin_lhs,
              typename stream_mixin_rhs, typename multiplier_mixin_rhs>
    friend bool operator==(const engine<xtype1,itype1,
                                     output_mixin1,output_previous1,
                                     stream_mixin_lhs, multiplier_mixin_lhs>&,
                           const engine<xtype1,itype1,
                                     output_mixin1,output_previous1,
                                     stream_mixin_rhs, multiplier_mixin_rhs>&);

    template <typename xtype1, typename itype1,
              typename output_mixin1, bool output_previous1,
              typename stream_mixin_lhs, typename multiplier_mixin_lhs,
              typename stream_mixin_rhs, typename multiplier_mixin_rhs>
    friend itype1 operator-(const engine<xtype1,itype1,
                                     output_mixin1,output_previous1,
                                     stream_mixin_lhs, multiplier_mixin_lhs>&,
                            const engine<xtype1,itype1,
                                     output_mixin1,output_previous1,
                                     stream_mixin_rhs, multiplier_mixin_rhs>&);

    template <typename CharT, typename Traits,
              typename xtype1, typename itype1,
              typename output_mixin1, bool output_previous1,
              typename stream_mixin1, typename multiplier_mixin1>
    friend std::basic_ostream<CharT,Traits>&
    operator<<(std::basic_ostream<CharT,Traits>& out,
               const engine<xtype1,itype1,
                              output_mixin1,output_previous1,
                              stream_mixin1, multiplier_mixin1>&);

    template <typename CharT, typename Traits,
              typename xtype1, typename itype1,
              typename output_mixin1, bool output_previous1,
              typename stream_mixin1, typename multiplier_mixin1>
    friend std::basic_istream<CharT,Traits>&
    operator>>(std::basic_istream<CharT,Traits>& in,
               engine<xtype1, itype1,
                        output_mixin1, output_previous1,
                        stream_mixin1, multiplier_mixin1>& rng);
};

template <typename CharT, typename Traits,
          typename xtype, typename itype,
          typename output_mixin, bool output_previous,
          typename stream_mixin, typename multiplier_mixin>
std::basic_ostream<CharT,Traits>&
operator<<(std::basic_ostream<CharT,Traits>& out,
           const engine<xtype,itype,
                          output_mixin,output_previous,
                          stream_mixin, multiplier_mixin>& rng)
{
    auto orig_flags = out.flags(std::ios_base::dec | std::ios_base::left);
    auto space = out.widen(' ');
    auto orig_fill = out.fill();

    out << rng.multiplier() << space
        << rng.increment() << space
        << rng.state_;

    out.flags(orig_flags);
    out.fill(orig_fill);
    return out;
}


template <typename CharT, typename Traits,
          typename xtype, typename itype,
          typename output_mixin, bool output_previous,
          typename stream_mixin, typename multiplier_mixin>
std::basic_istream<CharT,Traits>&
operator>>(std::basic_istream<CharT,Traits>& in,
           engine<xtype,itype,
                    output_mixin,output_previous,
                    stream_mixin, multiplier_mixin>& rng)
{
    auto orig_flags = in.flags(std::ios_base::dec | std::ios_base::skipws);

    itype multiplier, increment, state;
    in >> multiplier >> increment >> state;

    if (!in.fail()) {
        bool good = true;
        if (multiplier != rng.multiplier()) {
           good = false;
        } else if (rng.can_specify_stream) {
           rng.set_stream(increment >> 1);
        } else if (increment != rng.increment()) {
           good = false;
        }
        if (good) {
            rng.state_ = state;
        } else {
            in.clear(std::ios::failbit);
        }
    }

    in.flags(orig_flags);
    return in;
}


template <typename xtype, typename itype,
          typename output_mixin, bool output_previous,
          typename stream_mixin, typename multiplier_mixin>
itype engine<xtype,itype,output_mixin,output_previous,stream_mixin,
             multiplier_mixin>::advance(
    itype state, itype delta, itype cur_mult, itype cur_plus)
{
    // The method used here is based on Brown, "Random Number Generation
    // with Arbitrary Stride,", Transactions of the American Nuclear
    // Society (Nov. 1994).  The algorithm is very similar to fast
    // exponentiation.
    //
    // Even though delta is an unsigned integer, we can pass a
    // signed integer to go backwards, it just goes "the long way round".

    constexpr itype ZERO = 0u;  // itype may be a non-trivial types, so
    constexpr itype ONE  = 1u;  // we define some ugly constants.
    itype acc_mult = 1;
    itype acc_plus = 0;
    while (delta > ZERO) {
       if (delta & ONE) {
          acc_mult *= cur_mult;
          acc_plus = acc_plus*cur_mult + cur_plus;
       }
       cur_plus = (cur_mult+ONE)*cur_plus;
       cur_mult *= cur_mult;
       delta >>= 1;
    }
    return acc_mult * state + acc_plus;
}

template <typename xtype, typename itype,
          typename output_mixin, bool output_previous,
          typename stream_mixin, typename multiplier_mixin>
itype engine<xtype,itype,output_mixin,output_previous,stream_mixin,
               multiplier_mixin>::distance(
    itype cur_state, itype newstate, itype cur_mult, itype cur_plus, itype mask)
{
    constexpr itype ONE  = 1u;  // itype could be weird, so use constant
    itype the_bit = stream_mixin::is_mcg ? itype(4u) : itype(1u);
    itype distance = 0u;
    while ((cur_state & mask) != (newstate & mask)) {
       if ((cur_state & the_bit) != (newstate & the_bit)) {
           cur_state = cur_state * cur_mult + cur_plus;
           distance |= the_bit;
       }
       assert((cur_state & the_bit) == (newstate & the_bit));
       the_bit <<= 1;
       cur_plus = (cur_mult+ONE)*cur_plus;
       cur_mult *= cur_mult;
    }
    return stream_mixin::is_mcg ? distance >> 2 : distance;
}

template <typename xtype, typename itype,
          typename output_mixin, bool output_previous,
          typename stream_mixin_lhs, typename multiplier_mixin_lhs,
          typename stream_mixin_rhs, typename multiplier_mixin_rhs>
itype operator-(const engine<xtype,itype,
                               output_mixin,output_previous,
                               stream_mixin_lhs, multiplier_mixin_lhs>& lhs,
               const engine<xtype,itype,
                               output_mixin,output_previous,
                               stream_mixin_rhs, multiplier_mixin_rhs>& rhs)
{
    if (lhs.multiplier() != rhs.multiplier()
        || lhs.increment() != rhs.increment())
        throw std::logic_error("incomparable generators");
    return rhs.distance(lhs.state_);
}


template <typename xtype, typename itype,
          typename output_mixin, bool output_previous,
          typename stream_mixin_lhs, typename multiplier_mixin_lhs,
          typename stream_mixin_rhs, typename multiplier_mixin_rhs>
bool operator==(const engine<xtype,itype,
                               output_mixin,output_previous,
                               stream_mixin_lhs, multiplier_mixin_lhs>& lhs,
                const engine<xtype,itype,
                               output_mixin,output_previous,
                               stream_mixin_rhs, multiplier_mixin_rhs>& rhs)
{
    return    (lhs.multiplier() == rhs.multiplier())
           && (lhs.increment()  == rhs.increment())
           && (lhs.state_       == rhs.state_);
}

template <typename xtype, typename itype,
          typename output_mixin, bool output_previous,
          typename stream_mixin_lhs, typename multiplier_mixin_lhs,
          typename stream_mixin_rhs, typename multiplier_mixin_rhs>
inline bool operator!=(const engine<xtype,itype,
                               output_mixin,output_previous,
                               stream_mixin_lhs, multiplier_mixin_lhs>& lhs,
                       const engine<xtype,itype,
                               output_mixin,output_previous,
                               stream_mixin_rhs, multiplier_mixin_rhs>& rhs)
{
    return !operator==(lhs,rhs);
}


template <typename xtype, typename itype,
         template<typename XT,typename IT> class output_mixin,
         bool output_previous = (sizeof(itype) <= 8)>
using oneseq_base  = engine<xtype, itype,
                        output_mixin<xtype, itype>, output_previous,
                        oneseq_stream<itype> >;

template <typename xtype, typename itype,
         template<typename XT,typename IT> class output_mixin,
         bool output_previous = (sizeof(itype) <= 8)>
using unique_base = engine<xtype, itype,
                         output_mixin<xtype, itype>, output_previous,
                         unique_stream<itype> >;

template <typename xtype, typename itype,
         template<typename XT,typename IT> class output_mixin,
         bool output_previous = (sizeof(itype) <= 8)>
using setseq_base = engine<xtype, itype,
                         output_mixin<xtype, itype>, output_previous,
                         specific_stream<itype> >;

template <typename xtype, typename itype,
         template<typename XT,typename IT> class output_mixin,
         bool output_previous = (sizeof(itype) <= 8)>
using mcg_base = engine<xtype, itype,
                      output_mixin<xtype, itype>, output_previous,
                      no_stream<itype> >;

/*
 * OUTPUT FUNCTIONS.
 *
 * These are the core of the PCG generation scheme.  They specify how to
 * turn the base LCG's internal state into the output value of the final
 * generator.
 *
 * They're implemented as mixin classes.
 *
 * All of the classes have code that is written to allow it to be applied
 * at *arbitrary* bit sizes, although in practice they'll only be used at
 * standard sizes supported by C++.
 */

/*
 * XSH RS -- high xorshift, followed by a random shift
 *
 * Fast.  A good performer.
 */

template <typename xtype, typename itype>
struct xsh_rs_mixin {
    static xtype output(itype internal)
    {
        constexpr bitcount_t bits        = bitcount_t(sizeof(itype) * 8);
        constexpr bitcount_t xtypebits   = bitcount_t(sizeof(xtype) * 8);
        constexpr bitcount_t sparebits   = bits - xtypebits;
        constexpr bitcount_t opbits =
                              sparebits-5 >= 64 ? 5
                            : sparebits-4 >= 32 ? 4
                            : sparebits-3 >= 16 ? 3
                            : sparebits-2 >= 4  ? 2
                            : sparebits-1 >= 1  ? 1
                            :                     0;
        constexpr bitcount_t mask = (1 << opbits) - 1;
        constexpr bitcount_t maxrandshift  = mask;
        constexpr bitcount_t topspare     = opbits;
        constexpr bitcount_t bottomspare = sparebits - topspare;
        constexpr bitcount_t xshift     = topspare + (xtypebits+maxrandshift)/2;
        bitcount_t rshift =
            opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0;
        internal ^= internal >> xshift;
        xtype result = xtype(internal >> (bottomspare - maxrandshift + rshift));
        return result;
    }
};

/*
 * XSH RR -- high xorshift, followed by a random rotate
 *
 * Fast.  A good performer.  Slightly better statistically than XSH RS.
 */

template <typename xtype, typename itype>
struct xsh_rr_mixin {
    static xtype output(itype internal)
    {
        constexpr bitcount_t bits        = bitcount_t(sizeof(itype) * 8);
        constexpr bitcount_t xtypebits   = bitcount_t(sizeof(xtype)*8);
        constexpr bitcount_t sparebits   = bits - xtypebits;
        constexpr bitcount_t wantedopbits =
                              xtypebits >= 128 ? 7
                            : xtypebits >=  64 ? 6
                            : xtypebits >=  32 ? 5
                            : xtypebits >=  16 ? 4
                            :                    3;
        constexpr bitcount_t opbits =
                              sparebits >= wantedopbits ? wantedopbits
                                                        : sparebits;
        constexpr bitcount_t amplifier = wantedopbits - opbits;
        constexpr bitcount_t mask = (1 << opbits) - 1;
        constexpr bitcount_t topspare    = opbits;
        constexpr bitcount_t bottomspare = sparebits - topspare;
        constexpr bitcount_t xshift      = (topspare + xtypebits)/2;
        bitcount_t rot = opbits ? bitcount_t(internal >> (bits - opbits)) & mask
                                : 0;
        bitcount_t amprot = (rot << amplifier) & mask;
        internal ^= internal >> xshift;
        xtype result = xtype(internal >> bottomspare);
        result = rotr(result, amprot);
        return result;
    }
};

/*
 * RXS -- random xorshift
 */

template <typename xtype, typename itype>
struct rxs_mixin {
static xtype output_rxs(itype internal)
    {
        constexpr bitcount_t bits        = bitcount_t(sizeof(itype) * 8);
        constexpr bitcount_t xtypebits   = bitcount_t(sizeof(xtype)*8);
        constexpr bitcount_t shift       = bits - xtypebits;
        constexpr bitcount_t extrashift  = (xtypebits - shift)/2;
        bitcount_t rshift = shift > 64+8 ? (internal >> (bits - 6)) & 63
                       : shift > 32+4 ? (internal >> (bits - 5)) & 31
                       : shift > 16+2 ? (internal >> (bits - 4)) & 15
                       : shift >  8+1 ? (internal >> (bits - 3)) & 7
                       : shift >  4+1 ? (internal >> (bits - 2)) & 3
                       : shift >  2+1 ? (internal >> (bits - 1)) & 1
                       :              0;
        internal ^= internal >> (shift + extrashift - rshift);
        xtype result = internal >> rshift;
        return result;
    }
};

/*
 * RXS M XS -- random xorshift, mcg multiply, fixed xorshift
 *
 * The most statistically powerful generator, but all those steps
 * make it slower than some of the others.  We give it the rottenest jobs.
 *
 * Because it's usually used in contexts where the state type and the
 * result type are the same, it is a permutation and is thus invertable.
 * We thus provide a function to invert it.  This function is used to
 * for the "inside out" generator used by the extended generator.
 */

/* Defined type-based concepts for the multiplication step.  They're actually
 * all derived by truncating the 128-bit, which was computed to be a good
 * "universal" constant.
 */

template <typename T>
struct mcg_multiplier {
    // Not defined for an arbitrary type
};

template <typename T>
struct mcg_unmultiplier {
    // Not defined for an arbitrary type
};

PCG_DEFINE_CONSTANT(uint8_t,  mcg, multiplier,   217U)
PCG_DEFINE_CONSTANT(uint8_t,  mcg, unmultiplier, 105U)

PCG_DEFINE_CONSTANT(uint16_t, mcg, multiplier,   62169U)
PCG_DEFINE_CONSTANT(uint16_t, mcg, unmultiplier, 28009U)

PCG_DEFINE_CONSTANT(uint32_t, mcg, multiplier,   277803737U)
PCG_DEFINE_CONSTANT(uint32_t, mcg, unmultiplier, 2897767785U)

PCG_DEFINE_CONSTANT(uint64_t, mcg, multiplier,   12605985483714917081ULL)
PCG_DEFINE_CONSTANT(uint64_t, mcg, unmultiplier, 15009553638781119849ULL)

PCG_DEFINE_CONSTANT(pcg128_t, mcg, multiplier,
        PCG_128BIT_CONSTANT(17766728186571221404ULL, 12605985483714917081ULL))
PCG_DEFINE_CONSTANT(pcg128_t, mcg, unmultiplier,
        PCG_128BIT_CONSTANT(14422606686972528997ULL, 15009553638781119849ULL))


template <typename xtype, typename itype>
struct rxs_m_xs_mixin {
    static xtype output(itype internal)
    {
        constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
        constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
        constexpr bitcount_t opbits = xtypebits >= 128 ? 6
                                 : xtypebits >=  64 ? 5
                                 : xtypebits >=  32 ? 4
                                 : xtypebits >=  16 ? 3
                                 :                    2;
        constexpr bitcount_t shift = bits - xtypebits;
        constexpr bitcount_t mask = (1 << opbits) - 1;
        bitcount_t rshift =
            opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0;
        internal ^= internal >> (opbits + rshift);
        internal *= mcg_multiplier<itype>::multiplier();
        xtype result = internal >> shift;
        result ^= result >> ((2U*xtypebits+2U)/3U);
        return result;
    }

    static itype unoutput(itype internal)
    {
        constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
        constexpr bitcount_t opbits = bits >= 128 ? 6
                                 : bits >=  64 ? 5
                                 : bits >=  32 ? 4
                                 : bits >=  16 ? 3
                                 :               2;
        constexpr bitcount_t mask = (1 << opbits) - 1;

        internal = unxorshift(internal, bits, (2U*bits+2U)/3U);

        internal *= mcg_unmultiplier<itype>::unmultiplier();

        bitcount_t rshift = opbits ? (internal >> (bits - opbits)) & mask : 0;
        internal = unxorshift(internal, bits, opbits + rshift);

        return internal;
    }
};


/*
 * RXS M -- random xorshift, mcg multiply
 */

template <typename xtype, typename itype>
struct rxs_m_mixin {
    static xtype output(itype internal)
    {
        constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
        constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
        constexpr bitcount_t opbits = xtypebits >= 128 ? 6
                                 : xtypebits >=  64 ? 5
                                 : xtypebits >=  32 ? 4
                                 : xtypebits >=  16 ? 3
                                 :                    2;
        constexpr bitcount_t shift = bits - xtypebits;
        constexpr bitcount_t mask = (1 << opbits) - 1;
        bitcount_t rshift = opbits ? (internal >> (bits - opbits)) & mask : 0;
        internal ^= internal >> (opbits + rshift);
        internal *= mcg_multiplier<itype>::multiplier();
        xtype result = internal >> shift;
        return result;
    }
};

/*
 * XSL RR -- fixed xorshift (to low bits), random rotate
 *
 * Useful for 128-bit types that are split across two CPU registers.
 */

template <typename xtype, typename itype>
struct xsl_rr_mixin {
    static xtype output(itype internal)
    {
        constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
        constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
        constexpr bitcount_t sparebits = bits - xtypebits;
        constexpr bitcount_t wantedopbits = xtypebits >= 128 ? 7
                                       : xtypebits >=  64 ? 6
                                       : xtypebits >=  32 ? 5
                                       : xtypebits >=  16 ? 4
                                       :                    3;
        constexpr bitcount_t opbits = sparebits >= wantedopbits ? wantedopbits
                                                             : sparebits;
        constexpr bitcount_t amplifier = wantedopbits - opbits;
        constexpr bitcount_t mask = (1 << opbits) - 1;
        constexpr bitcount_t topspare = sparebits;
        constexpr bitcount_t bottomspare = sparebits - topspare;
        constexpr bitcount_t xshift = (topspare + xtypebits) / 2;

        bitcount_t rot =
            opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0;
        bitcount_t amprot = (rot << amplifier) & mask;
        internal ^= internal >> xshift;
        xtype result = xtype(internal >> bottomspare);
        result = rotr(result, amprot);
        return result;
    }
};


/*
 * XSL RR RR -- fixed xorshift (to low bits), random rotate (both parts)
 *
 * Useful for 128-bit types that are split across two CPU registers.
 * If you really want an invertable 128-bit RNG, I guess this is the one.
 */

template <typename T> struct halfsize_trait {};
template <> struct halfsize_trait<pcg128_t>  { typedef uint64_t type; };
template <> struct halfsize_trait<uint64_t>  { typedef uint32_t type; };
template <> struct halfsize_trait<uint32_t>  { typedef uint16_t type; };
template <> struct halfsize_trait<uint16_t>  { typedef uint8_t type;  };

template <typename xtype, typename itype>
struct xsl_rr_rr_mixin {
    typedef typename halfsize_trait<itype>::type htype;

    static itype output(itype internal)
    {
        constexpr bitcount_t htypebits = bitcount_t(sizeof(htype) * 8);
        constexpr bitcount_t bits      = bitcount_t(sizeof(itype) * 8);
        constexpr bitcount_t sparebits = bits - htypebits;
        constexpr bitcount_t wantedopbits = htypebits >= 128 ? 7
                                       : htypebits >=  64 ? 6
                                       : htypebits >=  32 ? 5
                                       : htypebits >=  16 ? 4
                                       :                    3;
        constexpr bitcount_t opbits = sparebits >= wantedopbits ? wantedopbits
                                                                : sparebits;
        constexpr bitcount_t amplifier = wantedopbits - opbits;
        constexpr bitcount_t mask = (1 << opbits) - 1;
        constexpr bitcount_t topspare = sparebits;
        constexpr bitcount_t xshift = (topspare + htypebits) / 2;

        bitcount_t rot =
            opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0;
        bitcount_t amprot = (rot << amplifier) & mask;
        internal ^= internal >> xshift;
        htype lowbits = htype(internal);
        lowbits = rotr(lowbits, amprot);
        htype highbits = htype(internal >> topspare);
        bitcount_t rot2 = lowbits & mask;
        bitcount_t amprot2 = (rot2 << amplifier) & mask;
        highbits = rotr(highbits, amprot2);
        return (itype(highbits) << topspare) ^ itype(lowbits);
    }
};


/*
 * XSH -- fixed xorshift (to high bits)
 *
 * You shouldn't use this at 64-bits or less.
 */

template <typename xtype, typename itype>
struct xsh_mixin {
    static xtype output(itype internal)
    {
        constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
        constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
        constexpr bitcount_t sparebits = bits - xtypebits;
        constexpr bitcount_t topspare = 0;
        constexpr bitcount_t bottomspare = sparebits - topspare;
        constexpr bitcount_t xshift = (topspare + xtypebits) / 2;

        internal ^= internal >> xshift;
        xtype result = internal >> bottomspare;
        return result;
    }
};

/*
 * XSL -- fixed xorshift (to low bits)
 *
 * You shouldn't use this at 64-bits or less.
 */

template <typename xtype, typename itype>
struct xsl_mixin {
    inline xtype output(itype internal)
    {
        constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
        constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
        constexpr bitcount_t sparebits = bits - xtypebits;
        constexpr bitcount_t topspare = sparebits;
        constexpr bitcount_t bottomspare = sparebits - topspare;
        constexpr bitcount_t xshift = (topspare + xtypebits) / 2;

        internal ^= internal >> xshift;
        xtype result = internal >> bottomspare;
        return result;
    }
};

/* ---- End of Output Functions ---- */


template <typename baseclass>
struct inside_out : private baseclass {
    inside_out() = delete;

    typedef typename baseclass::result_type result_type;
    typedef typename baseclass::state_type  state_type;
    static_assert(sizeof(result_type) == sizeof(state_type),
                  "Require a RNG whose output function is a permutation");

    static bool external_step(result_type& randval, size_t i)
    {
        state_type state = baseclass::unoutput(randval);
        state = state * baseclass::multiplier() + baseclass::increment()
                + state_type(i*2);
        result_type result = baseclass::output(state);
        randval = result;
        state_type zero =
            baseclass::is_mcg ? state & state_type(3U) : state_type(0U);
        return result == zero;
    }

    static bool external_advance(result_type& randval, size_t i,
                                 result_type delta, bool forwards = true)
    {
        state_type state = baseclass::unoutput(randval);
        state_type mult  = baseclass::multiplier();
        state_type inc   = baseclass::increment() + state_type(i*2);
        state_type zero =
            baseclass::is_mcg ? state & state_type(3U) : state_type(0U);
        state_type dist_to_zero = baseclass::distance(state, zero, mult, inc);
        bool crosses_zero =
            forwards ? dist_to_zero <= delta
                     : (-dist_to_zero) <= delta;
        if (!forwards)
            delta = -delta;
        state = baseclass::advance(state, delta, mult, inc);
        randval = baseclass::output(state);
        return crosses_zero;
    }
};


template <bitcount_t table_pow2, bitcount_t advance_pow2, typename baseclass, typename extvalclass, bool kdd = true>
class extended : public baseclass {
public:
    typedef typename baseclass::state_type  state_type;
    typedef typename baseclass::result_type result_type;
    typedef inside_out<extvalclass> insideout;

private:
    static constexpr bitcount_t rtypebits = sizeof(result_type)*8;
    static constexpr bitcount_t stypebits = sizeof(state_type)*8;

    static constexpr bitcount_t tick_limit_pow2 = 64U;

    static constexpr size_t table_size  = 1UL << table_pow2;
    static constexpr size_t table_shift = stypebits - table_pow2;
    static constexpr state_type table_mask =
        (state_type(1U) << table_pow2) - state_type(1U);

    static constexpr bool   may_tick  =
        (advance_pow2 < stypebits) && (advance_pow2 < tick_limit_pow2);
    static constexpr size_t tick_shift = stypebits - advance_pow2;
    static constexpr state_type tick_mask  =
        may_tick ? state_type(
                       (uint64_t(1) << (advance_pow2*may_tick)) - 1)
                                        // ^-- stupidity to appease GCC warnings
                 : ~state_type(0U);

    static constexpr bool may_tock = stypebits < tick_limit_pow2;

    result_type data_[table_size];

    PCG_NOINLINE void advance_table();

    PCG_NOINLINE void advance_table(state_type delta, bool isForwards = true);

    result_type& get_extended_value()
    {
        state_type state = this->state_;
        if (kdd && baseclass::is_mcg) {
            // The low order bits of an MCG are constant, so drop them.
            state >>= 2;
        }
        size_t index       = kdd ? state &  table_mask
                                 : state >> table_shift;

        if (may_tick) {
            bool tick = kdd ? (state & tick_mask) == state_type(0u)
                            : (state >> tick_shift) == state_type(0u);
            if (tick)
                    advance_table();
        }
        if (may_tock) {
            bool tock = state == state_type(0u);
            if (tock)
                advance_table();
        }
        return data_[index];
    }

public:
    static constexpr size_t period_pow2()
    {
        return baseclass::period_pow2() + table_size*extvalclass::period_pow2();
    }

    __attribute__((always_inline)) result_type operator()()
    {
        result_type rhs = get_extended_value();
        result_type lhs = this->baseclass::operator()();
        return lhs ^ rhs;
    }

    result_type operator()(result_type upper_bound)
    {
        return bounded_rand(*this, upper_bound);
    }

    void set(result_type wanted)
    {
        result_type& rhs = get_extended_value();
        result_type lhs = this->baseclass::operator()();
        rhs = lhs ^ wanted;
    }

    void advance(state_type distance, bool forwards = true);

    void backstep(state_type distance)
    {
        advance(distance, false);
    }

    extended(const result_type* data)
        : baseclass()
    {
        datainit(data);
    }

    extended(const result_type* data, state_type seed)
        : baseclass(seed)
    {
        datainit(data);
    }

    // This function may or may not exist.  It thus has to be a template
    // to use SFINAE; users don't have to worry about its template-ness.

    template <typename bc = baseclass>
    extended(const result_type* data, state_type seed,
            typename bc::stream_state stream_seed)
        : baseclass(seed, stream_seed)
    {
        datainit(data);
    }

    extended()
        : baseclass()
    {
        selfinit();
    }

    extended(state_type seed)
        : baseclass(seed)
    {
        selfinit();
    }

    // This function may or may not exist.  It thus has to be a template
    // to use SFINAE; users don't have to worry about its template-ness.

    template <typename bc = baseclass>
    extended(state_type seed, typename bc::stream_state stream_seed)
        : baseclass(seed, stream_seed)
    {
        selfinit();
    }

private:
    void selfinit();
    void datainit(const result_type* data);

public:

    template<typename SeedSeq, typename = typename std::enable_if<
           !std::is_convertible<SeedSeq, result_type>::value
        && !std::is_convertible<SeedSeq, extended>::value>::type>
    extended(SeedSeq&& seedSeq)
        : baseclass(seedSeq)
    {
        generate_to<table_size>(seedSeq, data_);
    }

    template<typename... Args>
    void seed(Args&&... args)
    {
        new (this) extended(std::forward<Args>(args)...);
    }

    template <bitcount_t table_pow2_, bitcount_t advance_pow2_,
              typename baseclass_, typename extvalclass_, bool kdd_>
    friend bool operator==(const extended<table_pow2_, advance_pow2_,
                                              baseclass_, extvalclass_, kdd_>&,
                           const extended<table_pow2_, advance_pow2_,
                                              baseclass_, extvalclass_, kdd_>&);

    template <typename CharT, typename Traits,
              bitcount_t table_pow2_, bitcount_t advance_pow2_,
              typename baseclass_, typename extvalclass_, bool kdd_>
    friend std::basic_ostream<CharT,Traits>&
    operator<<(std::basic_ostream<CharT,Traits>& out,
               const extended<table_pow2_, advance_pow2_,
                              baseclass_, extvalclass_, kdd_>&);

    template <typename CharT, typename Traits,
              bitcount_t table_pow2_, bitcount_t advance_pow2_,
              typename baseclass_, typename extvalclass_, bool kdd_>
    friend std::basic_istream<CharT,Traits>&
    operator>>(std::basic_istream<CharT,Traits>& in,
               extended<table_pow2_, advance_pow2_,
                        baseclass_, extvalclass_, kdd_>&);

};


template <bitcount_t table_pow2, bitcount_t advance_pow2,
          typename baseclass, typename extvalclass, bool kdd>
void extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::datainit(
         const result_type* data)
{
    for (size_t i = 0; i < table_size; ++i)
        data_[i] = data[i];
}

template <bitcount_t table_pow2, bitcount_t advance_pow2,
          typename baseclass, typename extvalclass, bool kdd>
void extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::selfinit()
{
    // We need to fill the extended table with something, and we have
    // very little provided data, so we use the base generator to
    // produce values.  Although not ideal (use a seed sequence, folks!),
    // unexpected correlations are mitigated by
    //      - using XOR differences rather than the number directly
    //      - the way the table is accessed, its values *won't* be accessed
    //        in the same order the were written.
    //      - any strange correlations would only be apparent if we
    //        were to backstep the generator so that the base generator
    //        was generating the same values again
    result_type xdiff = baseclass::operator()() - baseclass::operator()();
    for (size_t i = 0; i < table_size; ++i) {
        data_[i] = baseclass::operator()() ^ xdiff;
    }
}

template <bitcount_t table_pow2, bitcount_t advance_pow2,
          typename baseclass, typename extvalclass, bool kdd>
bool operator==(const extended<table_pow2, advance_pow2,
                               baseclass, extvalclass, kdd>& lhs,
                const extended<table_pow2, advance_pow2,
                               baseclass, extvalclass, kdd>& rhs)
{
    auto& base_lhs = static_cast<const baseclass&>(lhs);
    auto& base_rhs = static_cast<const baseclass&>(rhs);
    return base_lhs == base_rhs
        && !memcmp((void*) lhs.data_, (void*) rhs.data_, sizeof(lhs.data_));
}

template <bitcount_t table_pow2, bitcount_t advance_pow2,
          typename baseclass, typename extvalclass, bool kdd>
inline bool operator!=(const extended<table_pow2, advance_pow2,
                                      baseclass, extvalclass, kdd>& lhs,
                       const extended<table_pow2, advance_pow2,
                                      baseclass, extvalclass, kdd>& rhs)
{
    return lhs != rhs;
}

template <typename CharT, typename Traits,
          bitcount_t table_pow2, bitcount_t advance_pow2,
          typename baseclass, typename extvalclass, bool kdd>
std::basic_ostream<CharT,Traits>&
operator<<(std::basic_ostream<CharT,Traits>& out,
           const extended<table_pow2, advance_pow2,
                          baseclass, extvalclass, kdd>& rng)
{
    auto orig_flags = out.flags(std::ios_base::dec | std::ios_base::left);
    auto space = out.widen(' ');
    auto orig_fill = out.fill();

    out << rng.multiplier() << space
        << rng.increment() << space
        << rng.state_;

    for (const auto& datum : rng.data_)
        out << space << datum;

    out.flags(orig_flags);
    out.fill(orig_fill);
    return out;
}

template <typename CharT, typename Traits,
          bitcount_t table_pow2, bitcount_t advance_pow2,
          typename baseclass, typename extvalclass, bool kdd>
std::basic_istream<CharT,Traits>&
operator>>(std::basic_istream<CharT,Traits>& in,
           extended<table_pow2, advance_pow2,
                    baseclass, extvalclass, kdd>& rng)
{
    extended<table_pow2, advance_pow2, baseclass, extvalclass> new_rng;
    auto& base_rng = static_cast<baseclass&>(new_rng);
    in >> base_rng;

    if (in.fail())
        return in;

    auto orig_flags = in.flags(std::ios_base::dec | std::ios_base::skipws);

    for (auto& datum : new_rng.data_) {
        in >> datum;
        if (in.fail())
            goto bail;
    }

    rng = new_rng;

bail:
    in.flags(orig_flags);
    return in;
}



template <bitcount_t table_pow2, bitcount_t advance_pow2,
          typename baseclass, typename extvalclass, bool kdd>
void
extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::advance_table()
{
    bool carry = false;
    for (size_t i = 0; i < table_size; ++i) {
        if (carry) {
            carry = insideout::external_step(data_[i],i+1);
        }
        bool carry2 = insideout::external_step(data_[i],i+1);
        carry = carry || carry2;
    }
}

template <bitcount_t table_pow2, bitcount_t advance_pow2,
          typename baseclass, typename extvalclass, bool kdd>
void
extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::advance_table(
        state_type delta, bool isForwards)
{
    typedef typename baseclass::state_type   base_state_t;
    typedef typename extvalclass::state_type ext_state_t;
    constexpr bitcount_t basebits = sizeof(base_state_t)*8;
    constexpr bitcount_t extbits  = sizeof(ext_state_t)*8;
    static_assert(basebits <= extbits || advance_pow2 > 0,
                  "Current implementation might overflow its carry");

    base_state_t carry = 0;
    for (size_t i = 0; i < table_size; ++i) {
        base_state_t total_delta = carry + delta;
        ext_state_t  trunc_delta = ext_state_t(total_delta);
        if (basebits > extbits) {
            carry = total_delta >> extbits;
        } else {
            carry = 0;
        }
        carry +=
            insideout::external_advance(data_[i],i+1, trunc_delta, isForwards);
    }
}

template <bitcount_t table_pow2, bitcount_t advance_pow2,
          typename baseclass, typename extvalclass, bool kdd>
void extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::advance(
    state_type distance, bool forwards)
{
    static_assert(kdd,
        "Efficient advance is too hard for non-kdd extension. "
        "For a weak advance, cast to base class");
    state_type zero =
        baseclass::is_mcg ? this->state_ & state_type(3U) : state_type(0U);
    if (may_tick) {
        state_type ticks = distance >> (advance_pow2*may_tick);
                                        // ^-- stupidity to appease GCC
                                        // warnings
        state_type adv_mask =
            baseclass::is_mcg ? tick_mask << 2 : tick_mask;
        state_type next_advance_distance = this->distance(zero, adv_mask);
        if (!forwards)
            next_advance_distance = (-next_advance_distance) & tick_mask;
        if (next_advance_distance < (distance & tick_mask)) {
            ++ticks;
        }
        if (ticks)
            advance_table(ticks, forwards);
    }
    if (forwards) {
        if (may_tock && this->distance(zero) <= distance)
            advance_table();
        baseclass::advance(distance);
    } else {
        if (may_tock && -(this->distance(zero)) <= distance)
            advance_table(state_type(1U), false);
        baseclass::advance(-distance);
    }
}

} // namespace pcg_detail

namespace pcg_engines {

using namespace pcg_detail;

/* Predefined types for XSH RS */

typedef oneseq_base<uint8_t,  uint16_t, xsh_rs_mixin>  oneseq_xsh_rs_16_8;
typedef oneseq_base<uint16_t, uint32_t, xsh_rs_mixin>  oneseq_xsh_rs_32_16;
typedef oneseq_base<uint32_t, uint64_t, xsh_rs_mixin>  oneseq_xsh_rs_64_32;
typedef oneseq_base<uint64_t, pcg128_t, xsh_rs_mixin>  oneseq_xsh_rs_128_64;

typedef unique_base<uint8_t,  uint16_t, xsh_rs_mixin>  unique_xsh_rs_16_8;
typedef unique_base<uint16_t, uint32_t, xsh_rs_mixin>  unique_xsh_rs_32_16;
typedef unique_base<uint32_t, uint64_t, xsh_rs_mixin>  unique_xsh_rs_64_32;
typedef unique_base<uint64_t, pcg128_t, xsh_rs_mixin>  unique_xsh_rs_128_64;

typedef setseq_base<uint8_t,  uint16_t, xsh_rs_mixin>  setseq_xsh_rs_16_8;
typedef setseq_base<uint16_t, uint32_t, xsh_rs_mixin>  setseq_xsh_rs_32_16;
typedef setseq_base<uint32_t, uint64_t, xsh_rs_mixin>  setseq_xsh_rs_64_32;
typedef setseq_base<uint64_t, pcg128_t, xsh_rs_mixin>  setseq_xsh_rs_128_64;

typedef mcg_base<uint8_t,  uint16_t, xsh_rs_mixin>  mcg_xsh_rs_16_8;
typedef mcg_base<uint16_t, uint32_t, xsh_rs_mixin>  mcg_xsh_rs_32_16;
typedef mcg_base<uint32_t, uint64_t, xsh_rs_mixin>  mcg_xsh_rs_64_32;
typedef mcg_base<uint64_t, pcg128_t, xsh_rs_mixin>  mcg_xsh_rs_128_64;

/* Predefined types for XSH RR */

typedef oneseq_base<uint8_t,  uint16_t, xsh_rr_mixin>  oneseq_xsh_rr_16_8;
typedef oneseq_base<uint16_t, uint32_t, xsh_rr_mixin>  oneseq_xsh_rr_32_16;
typedef oneseq_base<uint32_t, uint64_t, xsh_rr_mixin>  oneseq_xsh_rr_64_32;
typedef oneseq_base<uint64_t, pcg128_t, xsh_rr_mixin>  oneseq_xsh_rr_128_64;

typedef unique_base<uint8_t,  uint16_t, xsh_rr_mixin>  unique_xsh_rr_16_8;
typedef unique_base<uint16_t, uint32_t, xsh_rr_mixin>  unique_xsh_rr_32_16;
typedef unique_base<uint32_t, uint64_t, xsh_rr_mixin>  unique_xsh_rr_64_32;
typedef unique_base<uint64_t, pcg128_t, xsh_rr_mixin>  unique_xsh_rr_128_64;

typedef setseq_base<uint8_t,  uint16_t, xsh_rr_mixin>  setseq_xsh_rr_16_8;
typedef setseq_base<uint16_t, uint32_t, xsh_rr_mixin>  setseq_xsh_rr_32_16;
typedef setseq_base<uint32_t, uint64_t, xsh_rr_mixin>  setseq_xsh_rr_64_32;
typedef setseq_base<uint64_t, pcg128_t, xsh_rr_mixin>  setseq_xsh_rr_128_64;

typedef mcg_base<uint8_t,  uint16_t, xsh_rr_mixin>  mcg_xsh_rr_16_8;
typedef mcg_base<uint16_t, uint32_t, xsh_rr_mixin>  mcg_xsh_rr_32_16;
typedef mcg_base<uint32_t, uint64_t, xsh_rr_mixin>  mcg_xsh_rr_64_32;
typedef mcg_base<uint64_t, pcg128_t, xsh_rr_mixin>  mcg_xsh_rr_128_64;


/* Predefined types for RXS M XS */

typedef oneseq_base<uint8_t,  uint8_t, rxs_m_xs_mixin>   oneseq_rxs_m_xs_8_8;
typedef oneseq_base<uint16_t, uint16_t, rxs_m_xs_mixin>  oneseq_rxs_m_xs_16_16;
typedef oneseq_base<uint32_t, uint32_t, rxs_m_xs_mixin>  oneseq_rxs_m_xs_32_32;
typedef oneseq_base<uint64_t, uint64_t, rxs_m_xs_mixin>  oneseq_rxs_m_xs_64_64;
typedef oneseq_base<pcg128_t, pcg128_t, rxs_m_xs_mixin>  oneseq_rxs_m_xs_128_128;

typedef unique_base<uint8_t,  uint8_t, rxs_m_xs_mixin>  unique_rxs_m_xs_8_8;
typedef unique_base<uint16_t, uint16_t, rxs_m_xs_mixin> unique_rxs_m_xs_16_16;
typedef unique_base<uint32_t, uint32_t, rxs_m_xs_mixin> unique_rxs_m_xs_32_32;
typedef unique_base<uint64_t, uint64_t, rxs_m_xs_mixin> unique_rxs_m_xs_64_64;
typedef unique_base<pcg128_t, pcg128_t, rxs_m_xs_mixin> unique_rxs_m_xs_128_128;

typedef setseq_base<uint8_t,  uint8_t, rxs_m_xs_mixin>  setseq_rxs_m_xs_8_8;
typedef setseq_base<uint16_t, uint16_t, rxs_m_xs_mixin> setseq_rxs_m_xs_16_16;
typedef setseq_base<uint32_t, uint32_t, rxs_m_xs_mixin> setseq_rxs_m_xs_32_32;
typedef setseq_base<uint64_t, uint64_t, rxs_m_xs_mixin> setseq_rxs_m_xs_64_64;
typedef setseq_base<pcg128_t, pcg128_t, rxs_m_xs_mixin> setseq_rxs_m_xs_128_128;

                // MCG versions don't make sense here, so aren't defined.

/* Predefined types for XSL RR (only defined for "large" types) */

typedef oneseq_base<uint32_t, uint64_t, xsl_rr_mixin>  oneseq_xsl_rr_64_32;
typedef oneseq_base<uint64_t, pcg128_t, xsl_rr_mixin>  oneseq_xsl_rr_128_64;

typedef unique_base<uint32_t, uint64_t, xsl_rr_mixin>  unique_xsl_rr_64_32;
typedef unique_base<uint64_t, pcg128_t, xsl_rr_mixin>  unique_xsl_rr_128_64;

typedef setseq_base<uint32_t, uint64_t, xsl_rr_mixin>  setseq_xsl_rr_64_32;
typedef setseq_base<uint64_t, pcg128_t, xsl_rr_mixin>  setseq_xsl_rr_128_64;

typedef mcg_base<uint32_t, uint64_t, xsl_rr_mixin>  mcg_xsl_rr_64_32;
typedef mcg_base<uint64_t, pcg128_t, xsl_rr_mixin>  mcg_xsl_rr_128_64;


/* Predefined types for XSL RR RR (only defined for "large" types) */

typedef oneseq_base<uint64_t, uint64_t, xsl_rr_rr_mixin>
    oneseq_xsl_rr_rr_64_64;
typedef oneseq_base<pcg128_t, pcg128_t, xsl_rr_rr_mixin>
    oneseq_xsl_rr_rr_128_128;

typedef unique_base<uint64_t, uint64_t, xsl_rr_rr_mixin>
    unique_xsl_rr_rr_64_64;
typedef unique_base<pcg128_t, pcg128_t, xsl_rr_rr_mixin>
    unique_xsl_rr_rr_128_128;

typedef setseq_base<uint64_t, uint64_t, xsl_rr_rr_mixin>
    setseq_xsl_rr_rr_64_64;
typedef setseq_base<pcg128_t, pcg128_t, xsl_rr_rr_mixin>
    setseq_xsl_rr_rr_128_128;

                // MCG versions don't make sense here, so aren't defined.

/* Extended generators */

template <bitcount_t table_pow2, bitcount_t advance_pow2,
          typename BaseRNG, bool kdd = true>
using ext_std8 = extended<table_pow2, advance_pow2, BaseRNG,
                          oneseq_rxs_m_xs_8_8, kdd>;

template <bitcount_t table_pow2, bitcount_t advance_pow2,
          typename BaseRNG, bool kdd = true>
using ext_std16 = extended<table_pow2, advance_pow2, BaseRNG,
                           oneseq_rxs_m_xs_16_16, kdd>;

template <bitcount_t table_pow2, bitcount_t advance_pow2,
          typename BaseRNG, bool kdd = true>
using ext_std32 = extended<table_pow2, advance_pow2, BaseRNG,
                           oneseq_rxs_m_xs_32_32, kdd>;

template <bitcount_t table_pow2, bitcount_t advance_pow2,
          typename BaseRNG, bool kdd = true>
using ext_std64 = extended<table_pow2, advance_pow2, BaseRNG,
                           oneseq_rxs_m_xs_64_64, kdd>;


template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
using ext_oneseq_rxs_m_xs_32_32 =
          ext_std32<table_pow2, advance_pow2, oneseq_rxs_m_xs_32_32, kdd>;

template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
using ext_mcg_xsh_rs_64_32 =
          ext_std32<table_pow2, advance_pow2, mcg_xsh_rs_64_32, kdd>;

template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
using ext_oneseq_xsh_rs_64_32 =
          ext_std32<table_pow2, advance_pow2, oneseq_xsh_rs_64_32, kdd>;

template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
using ext_setseq_xsh_rr_64_32 =
          ext_std32<table_pow2, advance_pow2, setseq_xsh_rr_64_32, kdd>;

template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
using ext_mcg_xsl_rr_128_64 =
          ext_std64<table_pow2, advance_pow2, mcg_xsl_rr_128_64, kdd>;

template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
using ext_oneseq_xsl_rr_128_64 =
          ext_std64<table_pow2, advance_pow2, oneseq_xsl_rr_128_64, kdd>;

template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
using ext_setseq_xsl_rr_128_64 =
          ext_std64<table_pow2, advance_pow2, setseq_xsl_rr_128_64, kdd>;

} // namespace pcg_engines

typedef pcg_engines::setseq_xsh_rr_64_32        pcg32;
typedef pcg_engines::oneseq_xsh_rr_64_32        pcg32_oneseq;
typedef pcg_engines::unique_xsh_rr_64_32        pcg32_unique;
typedef pcg_engines::mcg_xsh_rs_64_32           pcg32_fast;

typedef pcg_engines::setseq_xsl_rr_128_64       pcg64;
typedef pcg_engines::oneseq_xsl_rr_128_64       pcg64_oneseq;
typedef pcg_engines::unique_xsl_rr_128_64       pcg64_unique;
typedef pcg_engines::mcg_xsl_rr_128_64          pcg64_fast;

typedef pcg_engines::setseq_rxs_m_xs_8_8        pcg8_once_insecure;
typedef pcg_engines::setseq_rxs_m_xs_16_16      pcg16_once_insecure;
typedef pcg_engines::setseq_rxs_m_xs_32_32      pcg32_once_insecure;
typedef pcg_engines::setseq_rxs_m_xs_64_64      pcg64_once_insecure;
typedef pcg_engines::setseq_xsl_rr_rr_128_128   pcg128_once_insecure;

typedef pcg_engines::oneseq_rxs_m_xs_8_8        pcg8_oneseq_once_insecure;
typedef pcg_engines::oneseq_rxs_m_xs_16_16      pcg16_oneseq_once_insecure;
typedef pcg_engines::oneseq_rxs_m_xs_32_32      pcg32_oneseq_once_insecure;
typedef pcg_engines::oneseq_rxs_m_xs_64_64      pcg64_oneseq_once_insecure;
typedef pcg_engines::oneseq_xsl_rr_rr_128_128   pcg128_oneseq_once_insecure;


// These two extended RNGs provide two-dimensionally equidistributed
// 32-bit generators.  pcg32_k2_fast occupies the same space as pcg64,
// and can be called twice to generate 64 bits, but does not required
// 128-bit math; on 32-bit systems, it's faster than pcg64 as well.

typedef pcg_engines::ext_setseq_xsh_rr_64_32<6,16,true>     pcg32_k2;
typedef pcg_engines::ext_oneseq_xsh_rs_64_32<6,32,true>     pcg32_k2_fast;

// These eight extended RNGs have about as much state as arc4random
//
//  - the k variants are k-dimensionally equidistributed
//  - the c variants offer better crypographic security
//
// (just how good the cryptographic security is is an open question)

typedef pcg_engines::ext_setseq_xsh_rr_64_32<6,16,true>     pcg32_k64;
typedef pcg_engines::ext_mcg_xsh_rs_64_32<6,32,true>        pcg32_k64_oneseq;
typedef pcg_engines::ext_oneseq_xsh_rs_64_32<6,32,true>     pcg32_k64_fast;

typedef pcg_engines::ext_setseq_xsh_rr_64_32<6,16,false>    pcg32_c64;
typedef pcg_engines::ext_oneseq_xsh_rs_64_32<6,32,false>    pcg32_c64_oneseq;
typedef pcg_engines::ext_mcg_xsh_rs_64_32<6,32,false>       pcg32_c64_fast;

typedef pcg_engines::ext_setseq_xsl_rr_128_64<5,16,true>    pcg64_k32;
typedef pcg_engines::ext_oneseq_xsl_rr_128_64<5,128,true>   pcg64_k32_oneseq;
typedef pcg_engines::ext_mcg_xsl_rr_128_64<5,128,true>      pcg64_k32_fast;

typedef pcg_engines::ext_setseq_xsl_rr_128_64<5,16,false>   pcg64_c32;
typedef pcg_engines::ext_oneseq_xsl_rr_128_64<5,128,false>  pcg64_c32_oneseq;
typedef pcg_engines::ext_mcg_xsl_rr_128_64<5,128,false>     pcg64_c32_fast;

// These eight extended RNGs have more state than the Mersenne twister
//
//  - the k variants are k-dimensionally equidistributed
//  - the c variants offer better crypographic security
//
// (just how good the cryptographic security is is an open question)

typedef pcg_engines::ext_setseq_xsh_rr_64_32<10,16,true>    pcg32_k1024;
typedef pcg_engines::ext_oneseq_xsh_rs_64_32<10,32,true>    pcg32_k1024_fast;

typedef pcg_engines::ext_setseq_xsh_rr_64_32<10,16,false>   pcg32_c1024;
typedef pcg_engines::ext_oneseq_xsh_rs_64_32<10,32,false>   pcg32_c1024_fast;

typedef pcg_engines::ext_setseq_xsl_rr_128_64<10,16,true>   pcg64_k1024;
typedef pcg_engines::ext_oneseq_xsl_rr_128_64<10,128,true>  pcg64_k1024_fast;

typedef pcg_engines::ext_setseq_xsl_rr_128_64<10,16,false>  pcg64_c1024;
typedef pcg_engines::ext_oneseq_xsl_rr_128_64<10,128,false> pcg64_c1024_fast;

// These generators have an insanely huge period (2^524352), and is suitable
// for silly party tricks, such as dumping out 64 KB ZIP files at an arbitrary
// point in the future.   [Actually, over the full period of the generator, it
// will produce every 64 KB ZIP file 2^64 times!]

typedef pcg_engines::ext_setseq_xsh_rr_64_32<14,16,true>    pcg32_k16384;
typedef pcg_engines::ext_oneseq_xsh_rs_64_32<14,32,true>    pcg32_k16384_fast;

#endif // PCG_RAND_HPP_INCLUDED