/*********************************************************************** Copyright (c) 2006-2011, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Internet Society, IETF or IETF Trust, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "main.h" #include "../celt/stack_alloc.h" /*********************************************/ /* Encode quantization indices of excitation */ /*********************************************/ static OPUS_INLINE opus_int combine_and_check( /* return ok */ opus_int *pulses_comb, /* O */ const opus_int *pulses_in, /* I */ opus_int max_pulses, /* I max value for sum of pulses */ opus_int len /* I number of output values */ ) { opus_int k, sum; for( k = 0; k < len; k++ ) { sum = pulses_in[ 2 * k ] + pulses_in[ 2 * k + 1 ]; if( sum > max_pulses ) { return 1; } pulses_comb[ k ] = sum; } return 0; } /* Encode quantization indices of excitation */ void silk_encode_pulses( ec_enc *psRangeEnc, /* I/O compressor data structure */ const opus_int signalType, /* I Signal type */ const opus_int quantOffsetType, /* I quantOffsetType */ opus_int8 pulses[], /* I quantization indices */ const opus_int frame_length /* I Frame length */ ) { opus_int i, k, j, iter, bit, nLS, scale_down, RateLevelIndex = 0; opus_int32 abs_q, minSumBits_Q5, sumBits_Q5; VARDECL( opus_int, abs_pulses ); VARDECL( opus_int, sum_pulses ); VARDECL( opus_int, nRshifts ); opus_int pulses_comb[ 8 ]; opus_int *abs_pulses_ptr; const opus_int8 *pulses_ptr; const opus_uint8 *cdf_ptr; const opus_uint8 *nBits_ptr; SAVE_STACK; silk_memset( pulses_comb, 0, 8 * sizeof( opus_int ) ); /* Fixing Valgrind reported problem*/ /****************************/ /* Prepare for shell coding */ /****************************/ /* Calculate number of shell blocks */ silk_assert( 1 << LOG2_SHELL_CODEC_FRAME_LENGTH == SHELL_CODEC_FRAME_LENGTH ); iter = silk_RSHIFT( frame_length, LOG2_SHELL_CODEC_FRAME_LENGTH ); if( iter * SHELL_CODEC_FRAME_LENGTH < frame_length ) { celt_assert( frame_length == 12 * 10 ); /* Make sure only happens for 10 ms @ 12 kHz */ iter++; silk_memset( &pulses[ frame_length ], 0, SHELL_CODEC_FRAME_LENGTH * sizeof(opus_int8)); } /* Take the absolute value of the pulses */ ALLOC( abs_pulses, iter * SHELL_CODEC_FRAME_LENGTH, opus_int ); silk_assert( !( SHELL_CODEC_FRAME_LENGTH & 3 ) ); for( i = 0; i < iter * SHELL_CODEC_FRAME_LENGTH; i+=4 ) { abs_pulses[i+0] = ( opus_int )silk_abs( pulses[ i + 0 ] ); abs_pulses[i+1] = ( opus_int )silk_abs( pulses[ i + 1 ] ); abs_pulses[i+2] = ( opus_int )silk_abs( pulses[ i + 2 ] ); abs_pulses[i+3] = ( opus_int )silk_abs( pulses[ i + 3 ] ); } /* Calc sum pulses per shell code frame */ ALLOC( sum_pulses, iter, opus_int ); ALLOC( nRshifts, iter, opus_int ); abs_pulses_ptr = abs_pulses; for( i = 0; i < iter; i++ ) { nRshifts[ i ] = 0; while( 1 ) { /* 1+1 -> 2 */ scale_down = combine_and_check( pulses_comb, abs_pulses_ptr, silk_max_pulses_table[ 0 ], 8 ); /* 2+2 -> 4 */ scale_down += combine_and_check( pulses_comb, pulses_comb, silk_max_pulses_table[ 1 ], 4 ); /* 4+4 -> 8 */ scale_down += combine_and_check( pulses_comb, pulses_comb, silk_max_pulses_table[ 2 ], 2 ); /* 8+8 -> 16 */ scale_down += combine_and_check( &sum_pulses[ i ], pulses_comb, silk_max_pulses_table[ 3 ], 1 ); if( scale_down ) { /* We need to downscale the quantization signal */ nRshifts[ i ]++; for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) { abs_pulses_ptr[ k ] = silk_RSHIFT( abs_pulses_ptr[ k ], 1 ); } } else { /* Jump out of while(1) loop and go to next shell coding frame */ break; } } abs_pulses_ptr += SHELL_CODEC_FRAME_LENGTH; } /**************/ /* Rate level */ /**************/ /* find rate level that leads to fewest bits for coding of pulses per block info */ minSumBits_Q5 = silk_int32_MAX; for( k = 0; k < N_RATE_LEVELS - 1; k++ ) { nBits_ptr = silk_pulses_per_block_BITS_Q5[ k ]; sumBits_Q5 = silk_rate_levels_BITS_Q5[ signalType >> 1 ][ k ]; for( i = 0; i < iter; i++ ) { if( nRshifts[ i ] > 0 ) { sumBits_Q5 += nBits_ptr[ SILK_MAX_PULSES + 1 ]; } else { sumBits_Q5 += nBits_ptr[ sum_pulses[ i ] ]; } } if( sumBits_Q5 < minSumBits_Q5 ) { minSumBits_Q5 = sumBits_Q5; RateLevelIndex = k; } } ec_enc_icdf( psRangeEnc, RateLevelIndex, silk_rate_levels_iCDF[ signalType >> 1 ], 8 ); /***************************************************/ /* Sum-Weighted-Pulses Encoding */ /***************************************************/ cdf_ptr = silk_pulses_per_block_iCDF[ RateLevelIndex ]; for( i = 0; i < iter; i++ ) { if( nRshifts[ i ] == 0 ) { ec_enc_icdf( psRangeEnc, sum_pulses[ i ], cdf_ptr, 8 ); } else { ec_enc_icdf( psRangeEnc, SILK_MAX_PULSES + 1, cdf_ptr, 8 ); for( k = 0; k < nRshifts[ i ] - 1; k++ ) { ec_enc_icdf( psRangeEnc, SILK_MAX_PULSES + 1, silk_pulses_per_block_iCDF[ N_RATE_LEVELS - 1 ], 8 ); } ec_enc_icdf( psRangeEnc, sum_pulses[ i ], silk_pulses_per_block_iCDF[ N_RATE_LEVELS - 1 ], 8 ); } } /******************/ /* Shell Encoding */ /******************/ for( i = 0; i < iter; i++ ) { if( sum_pulses[ i ] > 0 ) { silk_shell_encoder( psRangeEnc, &abs_pulses[ i * SHELL_CODEC_FRAME_LENGTH ] ); } } /****************/ /* LSB Encoding */ /****************/ for( i = 0; i < iter; i++ ) { if( nRshifts[ i ] > 0 ) { pulses_ptr = &pulses[ i * SHELL_CODEC_FRAME_LENGTH ]; nLS = nRshifts[ i ] - 1; for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) { abs_q = (opus_int8)silk_abs( pulses_ptr[ k ] ); for( j = nLS; j > 0; j-- ) { bit = silk_RSHIFT( abs_q, j ) & 1; ec_enc_icdf( psRangeEnc, bit, silk_lsb_iCDF, 8 ); } bit = abs_q & 1; ec_enc_icdf( psRangeEnc, bit, silk_lsb_iCDF, 8 ); } } } /****************/ /* Encode signs */ /****************/ silk_encode_signs( psRangeEnc, pulses, frame_length, signalType, quantOffsetType, sum_pulses ); RESTORE_STACK; }