summaryrefslogtreecommitdiff
path: root/tests/openmsp430/rtl/omsp_multiplier.v
diff options
context:
space:
mode:
authorClifford Wolf <clifford@clifford.at>2013-01-05 11:13:26 +0100
committerClifford Wolf <clifford@clifford.at>2013-01-05 11:13:26 +0100
commit7764d0ba1dcf064ae487ee985c43083a0909e7f4 (patch)
tree18c05b8729df381af71b707748ce1d605e0df764 /tests/openmsp430/rtl/omsp_multiplier.v
initial import
Diffstat (limited to 'tests/openmsp430/rtl/omsp_multiplier.v')
-rw-r--r--tests/openmsp430/rtl/omsp_multiplier.v420
1 files changed, 420 insertions, 0 deletions
diff --git a/tests/openmsp430/rtl/omsp_multiplier.v b/tests/openmsp430/rtl/omsp_multiplier.v
new file mode 100644
index 00000000..4f7b04ca
--- /dev/null
+++ b/tests/openmsp430/rtl/omsp_multiplier.v
@@ -0,0 +1,420 @@
+//----------------------------------------------------------------------------
+// Copyright (C) 2009 , Olivier Girard
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+// * Neither the name of the authors nor the names of its contributors
+// may be used to endorse or promote products derived from this software
+// without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
+// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+// THE POSSIBILITY OF SUCH DAMAGE
+//
+//----------------------------------------------------------------------------
+//
+// *File Name: omsp_multiplier.v
+//
+// *Module Description:
+// 16x16 Hardware multiplier.
+//
+// *Author(s):
+// - Olivier Girard, olgirard@gmail.com
+//
+//----------------------------------------------------------------------------
+// $Rev: 23 $
+// $LastChangedBy: olivier.girard $
+// $LastChangedDate: 2009-08-30 18:39:26 +0200 (Sun, 30 Aug 2009) $
+//----------------------------------------------------------------------------
+`ifdef OMSP_NO_INCLUDE
+`else
+`include "openMSP430_defines.v"
+`endif
+
+module omsp_multiplier (
+
+// OUTPUTs
+ per_dout, // Peripheral data output
+
+// INPUTs
+ mclk, // Main system clock
+ per_addr, // Peripheral address
+ per_din, // Peripheral data input
+ per_en, // Peripheral enable (high active)
+ per_we, // Peripheral write enable (high active)
+ puc_rst, // Main system reset
+ scan_enable // Scan enable (active during scan shifting)
+);
+
+// OUTPUTs
+//=========
+output [15:0] per_dout; // Peripheral data output
+
+// INPUTs
+//=========
+input mclk; // Main system clock
+input [13:0] per_addr; // Peripheral address
+input [15:0] per_din; // Peripheral data input
+input per_en; // Peripheral enable (high active)
+input [1:0] per_we; // Peripheral write enable (high active)
+input puc_rst; // Main system reset
+input scan_enable; // Scan enable (active during scan shifting)
+
+
+//=============================================================================
+// 1) PARAMETER/REGISTERS & WIRE DECLARATION
+//=============================================================================
+
+// Register base address (must be aligned to decoder bit width)
+parameter [14:0] BASE_ADDR = 15'h0130;
+
+// Decoder bit width (defines how many bits are considered for address decoding)
+parameter DEC_WD = 4;
+
+// Register addresses offset
+parameter [DEC_WD-1:0] OP1_MPY = 'h0,
+ OP1_MPYS = 'h2,
+ OP1_MAC = 'h4,
+ OP1_MACS = 'h6,
+ OP2 = 'h8,
+ RESLO = 'hA,
+ RESHI = 'hC,
+ SUMEXT = 'hE;
+
+// Register one-hot decoder utilities
+parameter DEC_SZ = (1 << DEC_WD);
+parameter [DEC_SZ-1:0] BASE_REG = {{DEC_SZ-1{1'b0}}, 1'b1};
+
+// Register one-hot decoder
+parameter [DEC_SZ-1:0] OP1_MPY_D = (BASE_REG << OP1_MPY),
+ OP1_MPYS_D = (BASE_REG << OP1_MPYS),
+ OP1_MAC_D = (BASE_REG << OP1_MAC),
+ OP1_MACS_D = (BASE_REG << OP1_MACS),
+ OP2_D = (BASE_REG << OP2),
+ RESLO_D = (BASE_REG << RESLO),
+ RESHI_D = (BASE_REG << RESHI),
+ SUMEXT_D = (BASE_REG << SUMEXT);
+
+
+// Wire pre-declarations
+wire result_wr;
+wire result_clr;
+wire early_read;
+
+
+//============================================================================
+// 2) REGISTER DECODER
+//============================================================================
+
+// Local register selection
+wire reg_sel = per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]);
+
+// Register local address
+wire [DEC_WD-1:0] reg_addr = {per_addr[DEC_WD-2:0], 1'b0};
+
+// Register address decode
+wire [DEC_SZ-1:0] reg_dec = (OP1_MPY_D & {DEC_SZ{(reg_addr == OP1_MPY )}}) |
+ (OP1_MPYS_D & {DEC_SZ{(reg_addr == OP1_MPYS )}}) |
+ (OP1_MAC_D & {DEC_SZ{(reg_addr == OP1_MAC )}}) |
+ (OP1_MACS_D & {DEC_SZ{(reg_addr == OP1_MACS )}}) |
+ (OP2_D & {DEC_SZ{(reg_addr == OP2 )}}) |
+ (RESLO_D & {DEC_SZ{(reg_addr == RESLO )}}) |
+ (RESHI_D & {DEC_SZ{(reg_addr == RESHI )}}) |
+ (SUMEXT_D & {DEC_SZ{(reg_addr == SUMEXT )}});
+
+// Read/Write probes
+wire reg_write = |per_we & reg_sel;
+wire reg_read = ~|per_we & reg_sel;
+
+// Read/Write vectors
+wire [DEC_SZ-1:0] reg_wr = reg_dec & {DEC_SZ{reg_write}};
+wire [DEC_SZ-1:0] reg_rd = reg_dec & {DEC_SZ{reg_read}};
+
+
+//============================================================================
+// 3) REGISTERS
+//============================================================================
+
+// OP1 Register
+//-----------------
+reg [15:0] op1;
+
+wire op1_wr = reg_wr[OP1_MPY] |
+ reg_wr[OP1_MPYS] |
+ reg_wr[OP1_MAC] |
+ reg_wr[OP1_MACS];
+
+`ifdef CLOCK_GATING
+wire mclk_op1;
+omsp_clock_gate clock_gate_op1 (.gclk(mclk_op1),
+ .clk (mclk), .enable(op1_wr), .scan_enable(scan_enable));
+`else
+wire mclk_op1 = mclk;
+`endif
+
+always @ (posedge mclk_op1 or posedge puc_rst)
+ if (puc_rst) op1 <= 16'h0000;
+`ifdef CLOCK_GATING
+ else op1 <= per_din;
+`else
+ else if (op1_wr) op1 <= per_din;
+`endif
+
+wire [15:0] op1_rd = op1;
+
+
+// OP2 Register
+//-----------------
+reg [15:0] op2;
+
+wire op2_wr = reg_wr[OP2];
+
+`ifdef CLOCK_GATING
+wire mclk_op2;
+omsp_clock_gate clock_gate_op2 (.gclk(mclk_op2),
+ .clk (mclk), .enable(op2_wr), .scan_enable(scan_enable));
+`else
+wire mclk_op2 = mclk;
+`endif
+
+always @ (posedge mclk_op2 or posedge puc_rst)
+ if (puc_rst) op2 <= 16'h0000;
+`ifdef CLOCK_GATING
+ else op2 <= per_din;
+`else
+ else if (op2_wr) op2 <= per_din;
+`endif
+
+wire [15:0] op2_rd = op2;
+
+
+// RESLO Register
+//-----------------
+reg [15:0] reslo;
+
+wire [15:0] reslo_nxt;
+wire reslo_wr = reg_wr[RESLO];
+
+`ifdef CLOCK_GATING
+wire reslo_en = reslo_wr | result_clr | result_wr;
+wire mclk_reslo;
+omsp_clock_gate clock_gate_reslo (.gclk(mclk_reslo),
+ .clk (mclk), .enable(reslo_en), .scan_enable(scan_enable));
+`else
+wire mclk_reslo = mclk;
+`endif
+
+always @ (posedge mclk_reslo or posedge puc_rst)
+ if (puc_rst) reslo <= 16'h0000;
+ else if (reslo_wr) reslo <= per_din;
+ else if (result_clr) reslo <= 16'h0000;
+`ifdef CLOCK_GATING
+ else reslo <= reslo_nxt;
+`else
+ else if (result_wr) reslo <= reslo_nxt;
+`endif
+
+wire [15:0] reslo_rd = early_read ? reslo_nxt : reslo;
+
+
+// RESHI Register
+//-----------------
+reg [15:0] reshi;
+
+wire [15:0] reshi_nxt;
+wire reshi_wr = reg_wr[RESHI];
+
+`ifdef CLOCK_GATING
+wire reshi_en = reshi_wr | result_clr | result_wr;
+wire mclk_reshi;
+omsp_clock_gate clock_gate_reshi (.gclk(mclk_reshi),
+ .clk (mclk), .enable(reshi_en), .scan_enable(scan_enable));
+`else
+wire mclk_reshi = mclk;
+`endif
+
+always @ (posedge mclk_reshi or posedge puc_rst)
+ if (puc_rst) reshi <= 16'h0000;
+ else if (reshi_wr) reshi <= per_din;
+ else if (result_clr) reshi <= 16'h0000;
+`ifdef CLOCK_GATING
+ else reshi <= reshi_nxt;
+`else
+ else if (result_wr) reshi <= reshi_nxt;
+`endif
+
+wire [15:0] reshi_rd = early_read ? reshi_nxt : reshi;
+
+
+// SUMEXT Register
+//-----------------
+reg [1:0] sumext_s;
+
+wire [1:0] sumext_s_nxt;
+
+always @ (posedge mclk or posedge puc_rst)
+ if (puc_rst) sumext_s <= 2'b00;
+ else if (op2_wr) sumext_s <= 2'b00;
+ else if (result_wr) sumext_s <= sumext_s_nxt;
+
+wire [15:0] sumext_nxt = {{14{sumext_s_nxt[1]}}, sumext_s_nxt};
+wire [15:0] sumext = {{14{sumext_s[1]}}, sumext_s};
+wire [15:0] sumext_rd = early_read ? sumext_nxt : sumext;
+
+
+//============================================================================
+// 4) DATA OUTPUT GENERATION
+//============================================================================
+
+// Data output mux
+wire [15:0] op1_mux = op1_rd & {16{reg_rd[OP1_MPY] |
+ reg_rd[OP1_MPYS] |
+ reg_rd[OP1_MAC] |
+ reg_rd[OP1_MACS]}};
+wire [15:0] op2_mux = op2_rd & {16{reg_rd[OP2]}};
+wire [15:0] reslo_mux = reslo_rd & {16{reg_rd[RESLO]}};
+wire [15:0] reshi_mux = reshi_rd & {16{reg_rd[RESHI]}};
+wire [15:0] sumext_mux = sumext_rd & {16{reg_rd[SUMEXT]}};
+
+wire [15:0] per_dout = op1_mux |
+ op2_mux |
+ reslo_mux |
+ reshi_mux |
+ sumext_mux;
+
+
+//============================================================================
+// 5) HARDWARE MULTIPLIER FUNCTIONAL LOGIC
+//============================================================================
+
+// Multiplier configuration
+//--------------------------
+
+// Detect signed mode
+reg sign_sel;
+always @ (posedge mclk_op1 or posedge puc_rst)
+ if (puc_rst) sign_sel <= 1'b0;
+`ifdef CLOCK_GATING
+ else sign_sel <= reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
+`else
+ else if (op1_wr) sign_sel <= reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
+`endif
+
+
+// Detect accumulate mode
+reg acc_sel;
+always @ (posedge mclk_op1 or posedge puc_rst)
+ if (puc_rst) acc_sel <= 1'b0;
+`ifdef CLOCK_GATING
+ else acc_sel <= reg_wr[OP1_MAC] | reg_wr[OP1_MACS];
+`else
+ else if (op1_wr) acc_sel <= reg_wr[OP1_MAC] | reg_wr[OP1_MACS];
+`endif
+
+
+// Detect whenever the RESHI and RESLO registers should be cleared
+assign result_clr = op2_wr & ~acc_sel;
+
+// Combine RESHI & RESLO
+wire [31:0] result = {reshi, reslo};
+
+
+// 16x16 Multiplier (result computed in 1 clock cycle)
+//-----------------------------------------------------
+`ifdef MPY_16x16
+
+// Detect start of a multiplication
+reg cycle;
+always @ (posedge mclk or posedge puc_rst)
+ if (puc_rst) cycle <= 1'b0;
+ else cycle <= op2_wr;
+
+assign result_wr = cycle;
+
+// Expand the operands to support signed & unsigned operations
+wire signed [16:0] op1_xp = {sign_sel & op1[15], op1};
+wire signed [16:0] op2_xp = {sign_sel & op2[15], op2};
+
+
+// 17x17 signed multiplication
+wire signed [33:0] product = op1_xp * op2_xp;
+
+// Accumulate
+wire [32:0] result_nxt = {1'b0, result} + {1'b0, product[31:0]};
+
+
+// Next register values
+assign reslo_nxt = result_nxt[15:0];
+assign reshi_nxt = result_nxt[31:16];
+assign sumext_s_nxt = sign_sel ? {2{result_nxt[31]}} :
+ {1'b0, result_nxt[32]};
+
+
+// Since the MAC is completed within 1 clock cycle,
+// an early read can't happen.
+assign early_read = 1'b0;
+
+
+// 16x8 Multiplier (result computed in 2 clock cycles)
+//-----------------------------------------------------
+`else
+
+// Detect start of a multiplication
+reg [1:0] cycle;
+always @ (posedge mclk or posedge puc_rst)
+ if (puc_rst) cycle <= 2'b00;
+ else cycle <= {cycle[0], op2_wr};
+
+assign result_wr = |cycle;
+
+
+// Expand the operands to support signed & unsigned operations
+wire signed [16:0] op1_xp = {sign_sel & op1[15], op1};
+wire signed [8:0] op2_hi_xp = {sign_sel & op2[15], op2[15:8]};
+wire signed [8:0] op2_lo_xp = { 1'b0, op2[7:0]};
+wire signed [8:0] op2_xp = cycle[0] ? op2_hi_xp : op2_lo_xp;
+
+
+// 17x9 signed multiplication
+wire signed [25:0] product = op1_xp * op2_xp;
+
+wire [31:0] product_xp = cycle[0] ? {product[23:0], 8'h00} :
+ {{8{sign_sel & product[23]}}, product[23:0]};
+
+// Accumulate
+wire [32:0] result_nxt = {1'b0, result} + {1'b0, product_xp[31:0]};
+
+
+// Next register values
+assign reslo_nxt = result_nxt[15:0];
+assign reshi_nxt = result_nxt[31:16];
+assign sumext_s_nxt = sign_sel ? {2{result_nxt[31]}} :
+ {1'b0, result_nxt[32] | sumext_s[0]};
+
+// Since the MAC is completed within 2 clock cycle,
+// an early read can happen during the second cycle.
+assign early_read = cycle[1];
+
+`endif
+
+
+endmodule // omsp_multiplier
+
+`ifdef OMSP_NO_INCLUDE
+`else
+`include "openMSP430_undefines.v"
+`endif