summaryrefslogtreecommitdiff
path: root/tests/openmsp430/rtl/omsp_multiplier.v
diff options
context:
space:
mode:
Diffstat (limited to 'tests/openmsp430/rtl/omsp_multiplier.v')
-rw-r--r--tests/openmsp430/rtl/omsp_multiplier.v420
1 files changed, 0 insertions, 420 deletions
diff --git a/tests/openmsp430/rtl/omsp_multiplier.v b/tests/openmsp430/rtl/omsp_multiplier.v
deleted file mode 100644
index 4f7b04ca..00000000
--- a/tests/openmsp430/rtl/omsp_multiplier.v
+++ /dev/null
@@ -1,420 +0,0 @@
-//----------------------------------------------------------------------------
-// Copyright (C) 2009 , Olivier Girard
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions
-// are met:
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-// * Neither the name of the authors nor the names of its contributors
-// may be used to endorse or promote products derived from this software
-// without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
-// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
-// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
-// THE POSSIBILITY OF SUCH DAMAGE
-//
-//----------------------------------------------------------------------------
-//
-// *File Name: omsp_multiplier.v
-//
-// *Module Description:
-// 16x16 Hardware multiplier.
-//
-// *Author(s):
-// - Olivier Girard, olgirard@gmail.com
-//
-//----------------------------------------------------------------------------
-// $Rev: 23 $
-// $LastChangedBy: olivier.girard $
-// $LastChangedDate: 2009-08-30 18:39:26 +0200 (Sun, 30 Aug 2009) $
-//----------------------------------------------------------------------------
-`ifdef OMSP_NO_INCLUDE
-`else
-`include "openMSP430_defines.v"
-`endif
-
-module omsp_multiplier (
-
-// OUTPUTs
- per_dout, // Peripheral data output
-
-// INPUTs
- mclk, // Main system clock
- per_addr, // Peripheral address
- per_din, // Peripheral data input
- per_en, // Peripheral enable (high active)
- per_we, // Peripheral write enable (high active)
- puc_rst, // Main system reset
- scan_enable // Scan enable (active during scan shifting)
-);
-
-// OUTPUTs
-//=========
-output [15:0] per_dout; // Peripheral data output
-
-// INPUTs
-//=========
-input mclk; // Main system clock
-input [13:0] per_addr; // Peripheral address
-input [15:0] per_din; // Peripheral data input
-input per_en; // Peripheral enable (high active)
-input [1:0] per_we; // Peripheral write enable (high active)
-input puc_rst; // Main system reset
-input scan_enable; // Scan enable (active during scan shifting)
-
-
-//=============================================================================
-// 1) PARAMETER/REGISTERS & WIRE DECLARATION
-//=============================================================================
-
-// Register base address (must be aligned to decoder bit width)
-parameter [14:0] BASE_ADDR = 15'h0130;
-
-// Decoder bit width (defines how many bits are considered for address decoding)
-parameter DEC_WD = 4;
-
-// Register addresses offset
-parameter [DEC_WD-1:0] OP1_MPY = 'h0,
- OP1_MPYS = 'h2,
- OP1_MAC = 'h4,
- OP1_MACS = 'h6,
- OP2 = 'h8,
- RESLO = 'hA,
- RESHI = 'hC,
- SUMEXT = 'hE;
-
-// Register one-hot decoder utilities
-parameter DEC_SZ = (1 << DEC_WD);
-parameter [DEC_SZ-1:0] BASE_REG = {{DEC_SZ-1{1'b0}}, 1'b1};
-
-// Register one-hot decoder
-parameter [DEC_SZ-1:0] OP1_MPY_D = (BASE_REG << OP1_MPY),
- OP1_MPYS_D = (BASE_REG << OP1_MPYS),
- OP1_MAC_D = (BASE_REG << OP1_MAC),
- OP1_MACS_D = (BASE_REG << OP1_MACS),
- OP2_D = (BASE_REG << OP2),
- RESLO_D = (BASE_REG << RESLO),
- RESHI_D = (BASE_REG << RESHI),
- SUMEXT_D = (BASE_REG << SUMEXT);
-
-
-// Wire pre-declarations
-wire result_wr;
-wire result_clr;
-wire early_read;
-
-
-//============================================================================
-// 2) REGISTER DECODER
-//============================================================================
-
-// Local register selection
-wire reg_sel = per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]);
-
-// Register local address
-wire [DEC_WD-1:0] reg_addr = {per_addr[DEC_WD-2:0], 1'b0};
-
-// Register address decode
-wire [DEC_SZ-1:0] reg_dec = (OP1_MPY_D & {DEC_SZ{(reg_addr == OP1_MPY )}}) |
- (OP1_MPYS_D & {DEC_SZ{(reg_addr == OP1_MPYS )}}) |
- (OP1_MAC_D & {DEC_SZ{(reg_addr == OP1_MAC )}}) |
- (OP1_MACS_D & {DEC_SZ{(reg_addr == OP1_MACS )}}) |
- (OP2_D & {DEC_SZ{(reg_addr == OP2 )}}) |
- (RESLO_D & {DEC_SZ{(reg_addr == RESLO )}}) |
- (RESHI_D & {DEC_SZ{(reg_addr == RESHI )}}) |
- (SUMEXT_D & {DEC_SZ{(reg_addr == SUMEXT )}});
-
-// Read/Write probes
-wire reg_write = |per_we & reg_sel;
-wire reg_read = ~|per_we & reg_sel;
-
-// Read/Write vectors
-wire [DEC_SZ-1:0] reg_wr = reg_dec & {DEC_SZ{reg_write}};
-wire [DEC_SZ-1:0] reg_rd = reg_dec & {DEC_SZ{reg_read}};
-
-
-//============================================================================
-// 3) REGISTERS
-//============================================================================
-
-// OP1 Register
-//-----------------
-reg [15:0] op1;
-
-wire op1_wr = reg_wr[OP1_MPY] |
- reg_wr[OP1_MPYS] |
- reg_wr[OP1_MAC] |
- reg_wr[OP1_MACS];
-
-`ifdef CLOCK_GATING
-wire mclk_op1;
-omsp_clock_gate clock_gate_op1 (.gclk(mclk_op1),
- .clk (mclk), .enable(op1_wr), .scan_enable(scan_enable));
-`else
-wire mclk_op1 = mclk;
-`endif
-
-always @ (posedge mclk_op1 or posedge puc_rst)
- if (puc_rst) op1 <= 16'h0000;
-`ifdef CLOCK_GATING
- else op1 <= per_din;
-`else
- else if (op1_wr) op1 <= per_din;
-`endif
-
-wire [15:0] op1_rd = op1;
-
-
-// OP2 Register
-//-----------------
-reg [15:0] op2;
-
-wire op2_wr = reg_wr[OP2];
-
-`ifdef CLOCK_GATING
-wire mclk_op2;
-omsp_clock_gate clock_gate_op2 (.gclk(mclk_op2),
- .clk (mclk), .enable(op2_wr), .scan_enable(scan_enable));
-`else
-wire mclk_op2 = mclk;
-`endif
-
-always @ (posedge mclk_op2 or posedge puc_rst)
- if (puc_rst) op2 <= 16'h0000;
-`ifdef CLOCK_GATING
- else op2 <= per_din;
-`else
- else if (op2_wr) op2 <= per_din;
-`endif
-
-wire [15:0] op2_rd = op2;
-
-
-// RESLO Register
-//-----------------
-reg [15:0] reslo;
-
-wire [15:0] reslo_nxt;
-wire reslo_wr = reg_wr[RESLO];
-
-`ifdef CLOCK_GATING
-wire reslo_en = reslo_wr | result_clr | result_wr;
-wire mclk_reslo;
-omsp_clock_gate clock_gate_reslo (.gclk(mclk_reslo),
- .clk (mclk), .enable(reslo_en), .scan_enable(scan_enable));
-`else
-wire mclk_reslo = mclk;
-`endif
-
-always @ (posedge mclk_reslo or posedge puc_rst)
- if (puc_rst) reslo <= 16'h0000;
- else if (reslo_wr) reslo <= per_din;
- else if (result_clr) reslo <= 16'h0000;
-`ifdef CLOCK_GATING
- else reslo <= reslo_nxt;
-`else
- else if (result_wr) reslo <= reslo_nxt;
-`endif
-
-wire [15:0] reslo_rd = early_read ? reslo_nxt : reslo;
-
-
-// RESHI Register
-//-----------------
-reg [15:0] reshi;
-
-wire [15:0] reshi_nxt;
-wire reshi_wr = reg_wr[RESHI];
-
-`ifdef CLOCK_GATING
-wire reshi_en = reshi_wr | result_clr | result_wr;
-wire mclk_reshi;
-omsp_clock_gate clock_gate_reshi (.gclk(mclk_reshi),
- .clk (mclk), .enable(reshi_en), .scan_enable(scan_enable));
-`else
-wire mclk_reshi = mclk;
-`endif
-
-always @ (posedge mclk_reshi or posedge puc_rst)
- if (puc_rst) reshi <= 16'h0000;
- else if (reshi_wr) reshi <= per_din;
- else if (result_clr) reshi <= 16'h0000;
-`ifdef CLOCK_GATING
- else reshi <= reshi_nxt;
-`else
- else if (result_wr) reshi <= reshi_nxt;
-`endif
-
-wire [15:0] reshi_rd = early_read ? reshi_nxt : reshi;
-
-
-// SUMEXT Register
-//-----------------
-reg [1:0] sumext_s;
-
-wire [1:0] sumext_s_nxt;
-
-always @ (posedge mclk or posedge puc_rst)
- if (puc_rst) sumext_s <= 2'b00;
- else if (op2_wr) sumext_s <= 2'b00;
- else if (result_wr) sumext_s <= sumext_s_nxt;
-
-wire [15:0] sumext_nxt = {{14{sumext_s_nxt[1]}}, sumext_s_nxt};
-wire [15:0] sumext = {{14{sumext_s[1]}}, sumext_s};
-wire [15:0] sumext_rd = early_read ? sumext_nxt : sumext;
-
-
-//============================================================================
-// 4) DATA OUTPUT GENERATION
-//============================================================================
-
-// Data output mux
-wire [15:0] op1_mux = op1_rd & {16{reg_rd[OP1_MPY] |
- reg_rd[OP1_MPYS] |
- reg_rd[OP1_MAC] |
- reg_rd[OP1_MACS]}};
-wire [15:0] op2_mux = op2_rd & {16{reg_rd[OP2]}};
-wire [15:0] reslo_mux = reslo_rd & {16{reg_rd[RESLO]}};
-wire [15:0] reshi_mux = reshi_rd & {16{reg_rd[RESHI]}};
-wire [15:0] sumext_mux = sumext_rd & {16{reg_rd[SUMEXT]}};
-
-wire [15:0] per_dout = op1_mux |
- op2_mux |
- reslo_mux |
- reshi_mux |
- sumext_mux;
-
-
-//============================================================================
-// 5) HARDWARE MULTIPLIER FUNCTIONAL LOGIC
-//============================================================================
-
-// Multiplier configuration
-//--------------------------
-
-// Detect signed mode
-reg sign_sel;
-always @ (posedge mclk_op1 or posedge puc_rst)
- if (puc_rst) sign_sel <= 1'b0;
-`ifdef CLOCK_GATING
- else sign_sel <= reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
-`else
- else if (op1_wr) sign_sel <= reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
-`endif
-
-
-// Detect accumulate mode
-reg acc_sel;
-always @ (posedge mclk_op1 or posedge puc_rst)
- if (puc_rst) acc_sel <= 1'b0;
-`ifdef CLOCK_GATING
- else acc_sel <= reg_wr[OP1_MAC] | reg_wr[OP1_MACS];
-`else
- else if (op1_wr) acc_sel <= reg_wr[OP1_MAC] | reg_wr[OP1_MACS];
-`endif
-
-
-// Detect whenever the RESHI and RESLO registers should be cleared
-assign result_clr = op2_wr & ~acc_sel;
-
-// Combine RESHI & RESLO
-wire [31:0] result = {reshi, reslo};
-
-
-// 16x16 Multiplier (result computed in 1 clock cycle)
-//-----------------------------------------------------
-`ifdef MPY_16x16
-
-// Detect start of a multiplication
-reg cycle;
-always @ (posedge mclk or posedge puc_rst)
- if (puc_rst) cycle <= 1'b0;
- else cycle <= op2_wr;
-
-assign result_wr = cycle;
-
-// Expand the operands to support signed & unsigned operations
-wire signed [16:0] op1_xp = {sign_sel & op1[15], op1};
-wire signed [16:0] op2_xp = {sign_sel & op2[15], op2};
-
-
-// 17x17 signed multiplication
-wire signed [33:0] product = op1_xp * op2_xp;
-
-// Accumulate
-wire [32:0] result_nxt = {1'b0, result} + {1'b0, product[31:0]};
-
-
-// Next register values
-assign reslo_nxt = result_nxt[15:0];
-assign reshi_nxt = result_nxt[31:16];
-assign sumext_s_nxt = sign_sel ? {2{result_nxt[31]}} :
- {1'b0, result_nxt[32]};
-
-
-// Since the MAC is completed within 1 clock cycle,
-// an early read can't happen.
-assign early_read = 1'b0;
-
-
-// 16x8 Multiplier (result computed in 2 clock cycles)
-//-----------------------------------------------------
-`else
-
-// Detect start of a multiplication
-reg [1:0] cycle;
-always @ (posedge mclk or posedge puc_rst)
- if (puc_rst) cycle <= 2'b00;
- else cycle <= {cycle[0], op2_wr};
-
-assign result_wr = |cycle;
-
-
-// Expand the operands to support signed & unsigned operations
-wire signed [16:0] op1_xp = {sign_sel & op1[15], op1};
-wire signed [8:0] op2_hi_xp = {sign_sel & op2[15], op2[15:8]};
-wire signed [8:0] op2_lo_xp = { 1'b0, op2[7:0]};
-wire signed [8:0] op2_xp = cycle[0] ? op2_hi_xp : op2_lo_xp;
-
-
-// 17x9 signed multiplication
-wire signed [25:0] product = op1_xp * op2_xp;
-
-wire [31:0] product_xp = cycle[0] ? {product[23:0], 8'h00} :
- {{8{sign_sel & product[23]}}, product[23:0]};
-
-// Accumulate
-wire [32:0] result_nxt = {1'b0, result} + {1'b0, product_xp[31:0]};
-
-
-// Next register values
-assign reslo_nxt = result_nxt[15:0];
-assign reshi_nxt = result_nxt[31:16];
-assign sumext_s_nxt = sign_sel ? {2{result_nxt[31]}} :
- {1'b0, result_nxt[32] | sumext_s[0]};
-
-// Since the MAC is completed within 2 clock cycle,
-// an early read can happen during the second cycle.
-assign early_read = cycle[1];
-
-`endif
-
-
-endmodule // omsp_multiplier
-
-`ifdef OMSP_NO_INCLUDE
-`else
-`include "openMSP430_undefines.v"
-`endif