/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #ifndef SATGEN_H #define SATGEN_H #include "kernel/rtlil.h" #include "kernel/sigtools.h" #include "kernel/celltypes.h" #ifdef YOSYS_ENABLE_MINISAT # include "libs/ezsat/ezminisat.h" typedef ezMiniSAT ezDefaultSAT; #else # include "libs/ezsat/ezsat.h" typedef ezSAT ezDefaultSAT; #endif struct SatGen { ezSAT *ez; RTLIL::Design *design; SigMap *sigmap; std::string prefix; SigPool initial_signals; SatGen(ezSAT *ez, RTLIL::Design *design, SigMap *sigmap, std::string prefix = std::string()) : ez(ez), design(design), sigmap(sigmap), prefix(prefix) { } void setContext(RTLIL::Design *design, SigMap *sigmap, std::string prefix = std::string()) { this->design = design; this->sigmap = sigmap; this->prefix = prefix; } std::vector importSigSpec(RTLIL::SigSpec &sig, int timestep = -1) { assert(timestep < 0 || timestep > 0); RTLIL::SigSpec s = sig; sigmap->apply(s); s.expand(); std::vector vec; vec.reserve(s.chunks.size()); for (auto &c : s.chunks) if (c.wire == NULL) { vec.push_back(c.data.as_bool() ? ez->TRUE : ez->FALSE); } else { std::string name = prefix; name += timestep == -1 ? "" : stringf("@%d:", timestep); name += stringf(c.wire->width == 1 ? "%s" : "%s [%d]", RTLIL::id2cstr(c.wire->name), c.offset); vec.push_back(ez->literal(name)); } return vec; } void extendSignalWidth(std::vector &vec_a, std::vector &vec_b, RTLIL::Cell *cell) { bool is_signed_a = false, is_signed_b = false; if (cell->parameters.count("\\A_SIGNED") > 0) is_signed_a = cell->parameters["\\A_SIGNED"].as_bool(); if (cell->parameters.count("\\B_SIGNED") > 0) is_signed_b = cell->parameters["\\B_SIGNED"].as_bool(); while (vec_a.size() < vec_b.size()) vec_a.push_back(is_signed_a && vec_a.size() > 0 ? vec_a.back() : ez->FALSE); while (vec_b.size() < vec_a.size()) vec_b.push_back(is_signed_b && vec_b.size() > 0 ? vec_b.back() : ez->FALSE); } void extendSignalWidth(std::vector &vec_a, std::vector &vec_b, std::vector &vec_y, RTLIL::Cell *cell) { extendSignalWidth(vec_a, vec_b, cell); while (vec_y.size() < vec_a.size()) vec_y.push_back(ez->literal()); } bool importCell(RTLIL::Cell *cell, int timestep = -1) { if (cell->type == "$_AND_" || cell->type == "$_OR_" || cell->type == "$_XOR_" || cell->type == "$and" || cell->type == "$or" || cell->type == "$xor" || cell->type == "$xnor" || cell->type == "$add" || cell->type == "$sub") { std::vector a = importSigSpec(cell->connections.at("\\A"), timestep); std::vector b = importSigSpec(cell->connections.at("\\B"), timestep); std::vector y = importSigSpec(cell->connections.at("\\Y"), timestep); extendSignalWidth(a, b, y, cell); if (cell->type == "$and" || cell->type == "$_AND_") ez->assume(ez->vec_eq(ez->vec_and(a, b), y)); if (cell->type == "$or" || cell->type == "$_OR_") ez->assume(ez->vec_eq(ez->vec_or(a, b), y)); if (cell->type == "$xor" || cell->type == "$_XOR_") ez->assume(ez->vec_eq(ez->vec_xor(a, b), y)); if (cell->type == "$xnor") ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(a, b)), y)); if (cell->type == "$add") ez->assume(ez->vec_eq(ez->vec_add(a, b), y)); if (cell->type == "$sub") ez->assume(ez->vec_eq(ez->vec_sub(a, b), y)); return true; } if (cell->type == "$_INV_" || cell->type == "$not") { std::vector a = importSigSpec(cell->connections.at("\\A"), timestep); std::vector y = importSigSpec(cell->connections.at("\\Y"), timestep); ez->assume(ez->vec_eq(ez->vec_not(a), y)); return true; } if (cell->type == "$_MUX_" || cell->type == "$mux") { std::vector a = importSigSpec(cell->connections.at("\\A"), timestep); std::vector b = importSigSpec(cell->connections.at("\\B"), timestep); std::vector s = importSigSpec(cell->connections.at("\\S"), timestep); std::vector y = importSigSpec(cell->connections.at("\\Y"), timestep); ez->assume(ez->vec_eq(ez->vec_ite(s.at(0), b, a), y)); return true; } if (cell->type == "$pmux" || cell->type == "$safe_pmux") { std::vector a = importSigSpec(cell->connections.at("\\A"), timestep); std::vector b = importSigSpec(cell->connections.at("\\B"), timestep); std::vector s = importSigSpec(cell->connections.at("\\S"), timestep); std::vector y = importSigSpec(cell->connections.at("\\Y"), timestep); std::vector tmp = a; for (size_t i = 0; i < s.size(); i++) { std::vector part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size()); tmp = ez->vec_ite(s.at(i), part_of_b, tmp); } if (cell->type == "$safe_pmux") tmp = ez->vec_ite(ez->onehot(s, true), tmp, a); ez->assume(ez->vec_eq(tmp, y)); return true; } if (cell->type == "$pos" || cell->type == "$neg") { std::vector a = importSigSpec(cell->connections.at("\\A"), timestep); std::vector y = importSigSpec(cell->connections.at("\\Y"), timestep); if (cell->type == "$pos") { ez->assume(ez->vec_eq(a, y)); } else { std::vector zero(a.size(), ez->FALSE); ez->assume(ez->vec_eq(ez->vec_sub(zero, a), y)); } return true; } if (cell->type == "$reduce_and" || cell->type == "$reduce_or" || cell->type == "$reduce_xor" || cell->type == "$reduce_xnor" || cell->type == "$reduce_bool" || cell->type == "$logic_not") { std::vector a = importSigSpec(cell->connections.at("\\A"), timestep); std::vector y = importSigSpec(cell->connections.at("\\Y"), timestep); if (cell->type == "$reduce_and") ez->SET(ez->expression(ez->OpAnd, a), y.at(0)); if (cell->type == "$reduce_or" || cell->type == "$reduce_bool") ez->SET(ez->expression(ez->OpOr, a), y.at(0)); if (cell->type == "$reduce_xor") ez->SET(ez->expression(ez->OpXor, a), y.at(0)); if (cell->type == "$reduce_xnor") ez->SET(ez->NOT(ez->expression(ez->OpXor, a)), y.at(0)); if (cell->type == "$logic_not") ez->SET(ez->NOT(ez->expression(ez->OpOr, a)), y.at(0)); for (size_t i = 1; i < y.size(); i++) ez->SET(0, y.at(0)); return true; } if (cell->type == "$logic_and" || cell->type == "$logic_or") { int a = ez->expression(ez->OpOr, importSigSpec(cell->connections.at("\\A"), timestep)); int b = ez->expression(ez->OpOr, importSigSpec(cell->connections.at("\\B"), timestep)); std::vector y = importSigSpec(cell->connections.at("\\Y"), timestep); if (cell->type == "$logic_and") ez->SET(ez->expression(ez->OpAnd, a, b), y.at(0)); else ez->SET(ez->expression(ez->OpOr, a, b), y.at(0)); for (size_t i = 1; i < y.size(); i++) ez->SET(0, y.at(0)); return true; } if (cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" || cell->type == "$ge" || cell->type == "$gt") { bool is_signed = cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool(); std::vector a = importSigSpec(cell->connections.at("\\A"), timestep); std::vector b = importSigSpec(cell->connections.at("\\B"), timestep); std::vector y = importSigSpec(cell->connections.at("\\Y"), timestep); extendSignalWidth(a, b, cell); if (cell->type == "$lt") ez->SET(is_signed ? ez->vec_lt_signed(a, b) : ez->vec_lt_unsigned(a, b), y.at(0)); if (cell->type == "$le") ez->SET(is_signed ? ez->vec_le_signed(a, b) : ez->vec_le_unsigned(a, b), y.at(0)); if (cell->type == "$eq") ez->SET(ez->vec_eq(a, b), y.at(0)); if (cell->type == "$ne") ez->SET(ez->vec_ne(a, b), y.at(0)); if (cell->type == "$ge") ez->SET(is_signed ? ez->vec_ge_signed(a, b) : ez->vec_ge_unsigned(a, b), y.at(0)); if (cell->type == "$gt") ez->SET(is_signed ? ez->vec_gt_signed(a, b) : ez->vec_gt_unsigned(a, b), y.at(0)); for (size_t i = 1; i < y.size(); i++) ez->SET(0, y.at(0)); return true; } if (cell->type == "$shl" || cell->type == "$shr" || cell->type == "$sshl" || cell->type == "$sshr") { std::vector a = importSigSpec(cell->connections.at("\\A"), timestep); std::vector b = importSigSpec(cell->connections.at("\\B"), timestep); std::vector y = importSigSpec(cell->connections.at("\\Y"), timestep); char shift_left = cell->type == "$shl" || cell->type == "$sshl"; bool sign_extend = cell->type == "$sshr"; while (y.size() < a.size()) y.push_back(ez->literal()); std::vector tmp = a; for (size_t i = 0; i < b.size(); i++) { std::vector tmp_shifted(tmp.size()); for (size_t j = 0; j < tmp.size(); j++) { int idx = j + (1 << i) * (shift_left ? -1 : +1); tmp_shifted.at(j) = (0 <= idx && idx < int(tmp.size())) ? tmp.at(idx) : sign_extend ? tmp.back() : ez->FALSE; } tmp = ez->vec_ite(b.at(i), tmp_shifted, tmp); } ez->assume(ez->vec_eq(tmp, y)); return true; } if (timestep > 0 && (cell->type == "$dff" || cell->type == "$_DFF_N_" || cell->type == "$_DFF_P_")) { if (timestep == 1) { initial_signals.add((*sigmap)(cell->connections.at("\\Q"))); } else { std::vector d = importSigSpec(cell->connections.at("\\D"), timestep-1); std::vector q = importSigSpec(cell->connections.at("\\Q"), timestep); ez->assume(ez->vec_eq(d, q)); } return true; } // Unsupported internal cell types: $mul $div $mod $pow // .. and all sequential cells except $dff and $_DFF_[NP]_ return false; } }; #endif