/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/rtlil.h" #include "kernel/satgen.h" #include "kernel/sigtools.h" #include "kernel/modwalker.h" #include "kernel/register.h" #include "kernel/log.h" #include static bool memcells_cmp(RTLIL::Cell *a, RTLIL::Cell *b) { if (a->type == "$memrd" && b->type == "$memrd") return a->name < b->name; if (a->type == "$memrd" || b->type == "$memrd") return (a->type == "$memrd") < (b->type == "$memrd"); return a->parameters.at("\\PRIORITY").as_int() < b->parameters.at("\\PRIORITY").as_int(); } struct MemoryShareWorker { RTLIL::Design *design; RTLIL::Module *module; SigMap sigmap, sigmap_xmux; ModWalker modwalker; CellTypes cone_ct; std::map> sig_to_mux; std::map>, RTLIL::SigBit> conditions_logic_cache; // ----------------------------------------------------------------- // Converting feedbacks to async read ports to proper enable signals // ----------------------------------------------------------------- bool find_data_feedback(const std::set &async_rd_bits, RTLIL::SigBit sig, std::map &state, std::set> &conditions) { if (async_rd_bits.count(sig)) { conditions.insert(state); return true; } if (sig_to_mux.count(sig) == 0) return false; RTLIL::Cell *cell = sig_to_mux.at(sig).first; int bit_idx = sig_to_mux.at(sig).second; std::vector sig_a = sigmap(cell->get("\\A")); std::vector sig_b = sigmap(cell->get("\\B")); std::vector sig_s = sigmap(cell->get("\\S")); std::vector sig_y = sigmap(cell->get("\\Y")); log_assert(sig_y.at(bit_idx) == sig); for (int i = 0; i < int(sig_s.size()); i++) if (state.count(sig_s[i]) && state.at(sig_s[i]) == true) { if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, conditions)) { RTLIL::SigSpec new_b = cell->get("\\B"); new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx); cell->set("\\B", new_b); } return false; } for (int i = 0; i < int(sig_s.size()); i++) { if (state.count(sig_s[i]) && state.at(sig_s[i]) == false) continue; std::map new_state = state; new_state[sig_s[i]] = true; if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, conditions)) { RTLIL::SigSpec new_b = cell->get("\\B"); new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx); cell->set("\\B", new_b); } } std::map new_state = state; for (int i = 0; i < int(sig_s.size()); i++) new_state[sig_s[i]] = false; if (find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, conditions)) { RTLIL::SigSpec new_a = cell->get("\\A"); new_a.replace(bit_idx, RTLIL::State::Sx); cell->set("\\A", new_a); } return false; } RTLIL::SigBit conditions_to_logic(std::set> &conditions, int &created_conditions) { if (conditions_logic_cache.count(conditions)) return conditions_logic_cache.at(conditions); RTLIL::SigSpec terms; for (auto &cond : conditions) { RTLIL::SigSpec sig1, sig2; for (auto &it : cond) { sig1.append_bit(it.first); sig2.append_bit(it.second ? RTLIL::State::S1 : RTLIL::State::S0); } terms.append(module->Ne(NEW_ID, sig1, sig2)); created_conditions++; } if (terms.size() > 1) terms = module->ReduceAnd(NEW_ID, terms); return conditions_logic_cache[conditions] = terms; } void translate_rd_feedback_to_en(std::string memid, std::vector &rd_ports, std::vector &wr_ports) { std::map>> async_rd_bits; std::map> muxtree_upstream_map; std::set non_feedback_nets; for (auto wire_it : module->wires_) if (wire_it.second->port_output) { std::vector bits = RTLIL::SigSpec(wire_it.second); non_feedback_nets.insert(bits.begin(), bits.end()); } for (auto cell_it : module->cells_) { RTLIL::Cell *cell = cell_it.second; bool ignore_data_port = false; if (cell->type == "$mux" || cell->type == "$pmux") { std::vector sig_a = sigmap(cell->get("\\A")); std::vector sig_b = sigmap(cell->get("\\B")); std::vector sig_s = sigmap(cell->get("\\S")); std::vector sig_y = sigmap(cell->get("\\Y")); non_feedback_nets.insert(sig_s.begin(), sig_s.end()); for (int i = 0; i < int(sig_y.size()); i++) { muxtree_upstream_map[sig_y[i]].insert(sig_a[i]); for (int j = 0; j < int(sig_s.size()); j++) muxtree_upstream_map[sig_y[i]].insert(sig_b[i + j*sig_y.size()]); } continue; } if ((cell->type == "$memwr" || cell->type == "$memrd") && cell->parameters.at("\\MEMID").decode_string() == memid) ignore_data_port = true; for (auto conn : cell_it.second->connections()) { if (ignore_data_port && conn.first == "\\DATA") continue; std::vector bits = sigmap(conn.second); non_feedback_nets.insert(bits.begin(), bits.end()); } } std::set expand_non_feedback_nets = non_feedback_nets; while (!expand_non_feedback_nets.empty()) { std::set new_expand_non_feedback_nets; for (auto &bit : expand_non_feedback_nets) if (muxtree_upstream_map.count(bit)) for (auto &new_bit : muxtree_upstream_map.at(bit)) if (!non_feedback_nets.count(new_bit)) { non_feedback_nets.insert(new_bit); new_expand_non_feedback_nets.insert(new_bit); } expand_non_feedback_nets.swap(new_expand_non_feedback_nets); } for (auto cell : rd_ports) { if (cell->parameters.at("\\CLK_ENABLE").as_bool()) continue; RTLIL::SigSpec sig_addr = sigmap(cell->get("\\ADDR")); std::vector sig_data = sigmap(cell->get("\\DATA")); for (int i = 0; i < int(sig_data.size()); i++) if (non_feedback_nets.count(sig_data[i])) goto not_pure_feedback_port; async_rd_bits[sig_addr].resize(std::max(async_rd_bits.size(), sig_data.size())); for (int i = 0; i < int(sig_data.size()); i++) async_rd_bits[sig_addr][i].insert(sig_data[i]); not_pure_feedback_port:; } if (async_rd_bits.empty()) return; log("Populating enable bits on write ports of memory %s.%s with aync read feedback:\n", log_id(module), log_id(memid)); for (auto cell : wr_ports) { RTLIL::SigSpec sig_addr = sigmap_xmux(cell->get("\\ADDR")); if (!async_rd_bits.count(sig_addr)) continue; log(" Analyzing write port %s.\n", log_id(cell)); std::vector cell_data = cell->get("\\DATA"); std::vector cell_en = cell->get("\\EN"); int created_conditions = 0; for (int i = 0; i < int(cell_data.size()); i++) if (cell_en[i] != RTLIL::SigBit(RTLIL::State::S0)) { std::map state; std::set> conditions; if (cell_en[i].wire != NULL) { state[cell_en[i]] = false; conditions.insert(state); } find_data_feedback(async_rd_bits.at(sig_addr).at(i), cell_data[i], state, conditions); cell_en[i] = conditions_to_logic(conditions, created_conditions); } if (created_conditions) { log(" Added enable logic for %d different cases.\n", created_conditions); cell->set("\\EN", cell_en); } } } // ------------------------------------------------------ // Consolidate write ports that write to the same address // ------------------------------------------------------ RTLIL::SigSpec mask_en_naive(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits) { // this is the naive version of the function that does not care about grouping the EN bits. RTLIL::SigSpec inv_mask_bits = module->Not(NEW_ID, mask_bits); RTLIL::SigSpec inv_mask_bits_filtered = module->Mux(NEW_ID, RTLIL::SigSpec(RTLIL::State::S1, bits.size()), inv_mask_bits, do_mask); RTLIL::SigSpec result = module->And(NEW_ID, inv_mask_bits_filtered, bits); return result; } RTLIL::SigSpec mask_en_grouped(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits) { // this version of the function preserves the bit grouping in the EN bits. std::vector v_bits = bits; std::vector v_mask_bits = mask_bits; std::map, std::pair>> groups; RTLIL::SigSpec grouped_bits, grouped_mask_bits; for (int i = 0; i < bits.size(); i++) { std::pair key(v_bits[i], v_mask_bits[i]); if (groups.count(key) == 0) { groups[key].first = grouped_bits.size(); grouped_bits.append_bit(v_bits[i]); grouped_mask_bits.append_bit(v_mask_bits[i]); } groups[key].second.push_back(i); } std::vector grouped_result = mask_en_naive(do_mask, grouped_bits, grouped_mask_bits); RTLIL::SigSpec result; for (int i = 0; i < bits.size(); i++) { std::pair key(v_bits[i], v_mask_bits[i]); result.append_bit(grouped_result.at(groups.at(key).first)); } return result; } void merge_en_data(RTLIL::SigSpec &merged_en, RTLIL::SigSpec &merged_data, RTLIL::SigSpec next_en, RTLIL::SigSpec next_data) { std::vector v_old_en = merged_en; std::vector v_next_en = next_en; // The new merged_en signal is just the old merged_en signal and next_en OR'ed together. // But of course we need to preserve the bit grouping.. std::map, int> groups; std::vector grouped_old_en, grouped_next_en; RTLIL::SigSpec new_merged_en; for (int i = 0; i < int(v_old_en.size()); i++) { std::pair key(v_old_en[i], v_next_en[i]); if (groups.count(key) == 0) { groups[key] = grouped_old_en.size(); grouped_old_en.push_back(key.first); grouped_next_en.push_back(key.second); } } std::vector grouped_new_en = module->Or(NEW_ID, grouped_old_en, grouped_next_en); for (int i = 0; i < int(v_old_en.size()); i++) { std::pair key(v_old_en[i], v_next_en[i]); new_merged_en.append_bit(grouped_new_en.at(groups.at(key))); } // Create the new merged_data signal. RTLIL::SigSpec new_merged_data(RTLIL::State::Sx, merged_data.size()); RTLIL::SigSpec old_data_set = module->And(NEW_ID, merged_en, merged_data); RTLIL::SigSpec old_data_unset = module->And(NEW_ID, merged_en, module->Not(NEW_ID, merged_data)); RTLIL::SigSpec new_data_set = module->And(NEW_ID, next_en, next_data); RTLIL::SigSpec new_data_unset = module->And(NEW_ID, next_en, module->Not(NEW_ID, next_data)); new_merged_data = module->Or(NEW_ID, new_merged_data, old_data_set); new_merged_data = module->And(NEW_ID, new_merged_data, module->Not(NEW_ID, old_data_unset)); new_merged_data = module->Or(NEW_ID, new_merged_data, new_data_set); new_merged_data = module->And(NEW_ID, new_merged_data, module->Not(NEW_ID, new_data_unset)); // Update merged_* signals merged_en = new_merged_en; merged_data = new_merged_data; } void consolidate_wr_by_addr(std::string memid, std::vector &wr_ports) { if (wr_ports.size() <= 1) return; log("Consolidating write ports of memory %s.%s by address:\n", log_id(module), log_id(memid)); std::map last_port_by_addr; std::vector> active_bits_on_port; bool cache_clk_enable = false; bool cache_clk_polarity = false; RTLIL::SigSpec cache_clk; for (int i = 0; i < int(wr_ports.size()); i++) { RTLIL::Cell *cell = wr_ports.at(i); RTLIL::SigSpec addr = sigmap_xmux(cell->get("\\ADDR")); if (cell->parameters.at("\\CLK_ENABLE").as_bool() != cache_clk_enable || (cache_clk_enable && (sigmap(cell->get("\\CLK")) != cache_clk || cell->parameters.at("\\CLK_POLARITY").as_bool() != cache_clk_polarity))) { cache_clk_enable = cell->parameters.at("\\CLK_ENABLE").as_bool(); cache_clk_polarity = cell->parameters.at("\\CLK_POLARITY").as_bool(); cache_clk = sigmap(cell->get("\\CLK")); last_port_by_addr.clear(); if (cache_clk_enable) log(" New clock domain: %s %s\n", cache_clk_polarity ? "posedge" : "negedge", log_signal(cache_clk)); else log(" New clock domain: unclocked\n"); } log(" Port %d (%s) has addr %s.\n", i, log_id(cell), log_signal(addr)); log(" Active bits: "); std::vector en_bits = sigmap(cell->get("\\EN")); active_bits_on_port.push_back(std::vector(en_bits.size())); for (int k = int(en_bits.size())-1; k >= 0; k--) { active_bits_on_port[i][k] = en_bits[k].wire != NULL || en_bits[k].data != RTLIL::State::S0; log("%c", active_bits_on_port[i][k] ? '1' : '0'); } log("\n"); if (last_port_by_addr.count(addr)) { int last_i = last_port_by_addr.at(addr); log(" Merging port %d into this one.\n", last_i); bool found_overlapping_bits = false; for (int k = 0; k < int(en_bits.size()); k++) { if (active_bits_on_port[i][k] && active_bits_on_port[last_i][k]) found_overlapping_bits = true; active_bits_on_port[i][k] = active_bits_on_port[i][k] || active_bits_on_port[last_i][k]; } // Force this ports addr input to addr directly (skip don't care muxes) cell->set("\\ADDR", addr); // If any of the ports between `last_i' and `i' write to the same address, this // will have priority over whatever `last_i` wrote. So we need to revisit those // ports and mask the EN bits accordingly. RTLIL::SigSpec merged_en = sigmap(wr_ports[last_i]->get("\\EN")); for (int j = last_i+1; j < i; j++) { if (wr_ports[j] == NULL) continue; for (int k = 0; k < int(en_bits.size()); k++) if (active_bits_on_port[i][k] && active_bits_on_port[j][k]) goto found_overlapping_bits_i_j; if (0) { found_overlapping_bits_i_j: log(" Creating collosion-detect logic for port %d.\n", j); RTLIL::SigSpec is_same_addr = module->addWire(NEW_ID); module->addEq(NEW_ID, addr, wr_ports[j]->get("\\ADDR"), is_same_addr); merged_en = mask_en_grouped(is_same_addr, merged_en, sigmap(wr_ports[j]->get("\\EN"))); } } // Then we need to merge the (masked) EN and the DATA signals. RTLIL::SigSpec merged_data = wr_ports[last_i]->get("\\DATA"); if (found_overlapping_bits) { log(" Creating logic for merging DATA and EN ports.\n"); merge_en_data(merged_en, merged_data, sigmap(cell->get("\\EN")), sigmap(cell->get("\\DATA"))); } else { RTLIL::SigSpec cell_en = sigmap(cell->get("\\EN")); RTLIL::SigSpec cell_data = sigmap(cell->get("\\DATA")); for (int k = 0; k < int(en_bits.size()); k++) if (!active_bits_on_port[last_i][k]) { merged_en.replace(k, cell_en.extract(k, 1)); merged_data.replace(k, cell_data.extract(k, 1)); } } // Connect the new EN and DATA signals and remove the old write port. cell->set("\\EN", merged_en); cell->set("\\DATA", merged_data); module->remove(wr_ports[last_i]); wr_ports[last_i] = NULL; log(" Active bits: "); std::vector en_bits = sigmap(cell->get("\\EN")); active_bits_on_port.push_back(std::vector(en_bits.size())); for (int k = int(en_bits.size())-1; k >= 0; k--) log("%c", active_bits_on_port[i][k] ? '1' : '0'); log("\n"); } last_port_by_addr[addr] = i; } // Clean up `wr_ports': remove all NULL entries std::vector wr_ports_with_nulls; wr_ports_with_nulls.swap(wr_ports); for (auto cell : wr_ports_with_nulls) if (cell != NULL) wr_ports.push_back(cell); } // -------------------------------------------------------- // Consolidate write ports using sat-based resource sharing // -------------------------------------------------------- void consolidate_wr_using_sat(std::string memid, std::vector &wr_ports) { if (wr_ports.size() <= 1) return; ezDefaultSAT ez; SatGen satgen(&ez, &modwalker.sigmap); // find list of considered ports and port pairs std::set considered_ports; std::set considered_port_pairs; for (int i = 0; i < int(wr_ports.size()); i++) { std::vector bits = modwalker.sigmap(wr_ports[i]->get("\\EN")); for (auto bit : bits) if (bit == RTLIL::State::S1) goto port_is_always_active; if (modwalker.has_drivers(bits)) considered_ports.insert(i); port_is_always_active:; } log("Consolidating write ports of memory %s.%s using sat-based resource sharing:\n", log_id(module), log_id(memid)); bool cache_clk_enable = false; bool cache_clk_polarity = false; RTLIL::SigSpec cache_clk; for (int i = 0; i < int(wr_ports.size()); i++) { RTLIL::Cell *cell = wr_ports.at(i); if (cell->parameters.at("\\CLK_ENABLE").as_bool() != cache_clk_enable || (cache_clk_enable && (sigmap(cell->get("\\CLK")) != cache_clk || cell->parameters.at("\\CLK_POLARITY").as_bool() != cache_clk_polarity))) { cache_clk_enable = cell->parameters.at("\\CLK_ENABLE").as_bool(); cache_clk_polarity = cell->parameters.at("\\CLK_POLARITY").as_bool(); cache_clk = sigmap(cell->get("\\CLK")); } else if (i > 0 && considered_ports.count(i-1) && considered_ports.count(i)) considered_port_pairs.insert(i); if (cache_clk_enable) log(" Port %d (%s) on %s %s: %s\n", i, log_id(cell), cache_clk_polarity ? "posedge" : "negedge", log_signal(cache_clk), considered_ports.count(i) ? "considered" : "not considered"); else log(" Port %d (%s) unclocked: %s\n", i, log_id(cell), considered_ports.count(i) ? "considered" : "not considered"); } if (considered_port_pairs.size() < 1) { log(" No two subsequent ports in same clock domain considered -> nothing to consolidate.\n"); return; } // create SAT representation of common input cone of all considered EN signals std::set sat_cells; std::set bits_queue; std::map port_to_sat_variable; for (int i = 0; i < int(wr_ports.size()); i++) if (considered_port_pairs.count(i) || considered_port_pairs.count(i+1)) { RTLIL::SigSpec sig = modwalker.sigmap(wr_ports[i]->get("\\EN")); port_to_sat_variable[i] = ez.expression(ez.OpOr, satgen.importSigSpec(sig)); std::vector bits = sig; bits_queue.insert(bits.begin(), bits.end()); } while (!bits_queue.empty()) { std::set portbits; modwalker.get_drivers(portbits, bits_queue); bits_queue.clear(); for (auto &pbit : portbits) if (sat_cells.count(pbit.cell) == 0 && cone_ct.cell_known(pbit.cell->type)) { std::set &cell_inputs = modwalker.cell_inputs[pbit.cell]; bits_queue.insert(cell_inputs.begin(), cell_inputs.end()); sat_cells.insert(pbit.cell); } } log(" Common input cone for all EN signals: %d cells.\n", int(sat_cells.size())); for (auto cell : sat_cells) satgen.importCell(cell); log(" Size of unconstrained SAT problem: %d variables, %d clauses\n", ez.numCnfVariables(), ez.numCnfClauses()); // merge subsequent ports if possible for (int i = 0; i < int(wr_ports.size()); i++) { if (!considered_port_pairs.count(i)) continue; if (ez.solve(port_to_sat_variable.at(i-1), port_to_sat_variable.at(i))) { log(" According to SAT solver sharing of port %d with port %d is not possible.\n", i-1, i); continue; } log(" Merging port %d into port %d.\n", i-1, i); port_to_sat_variable.at(i) = ez.OR(port_to_sat_variable.at(i-1), port_to_sat_variable.at(i)); RTLIL::SigSpec last_addr = wr_ports[i-1]->get("\\ADDR"); RTLIL::SigSpec last_data = wr_ports[i-1]->get("\\DATA"); std::vector last_en = modwalker.sigmap(wr_ports[i-1]->get("\\EN")); RTLIL::SigSpec this_addr = wr_ports[i]->get("\\ADDR"); RTLIL::SigSpec this_data = wr_ports[i]->get("\\DATA"); std::vector this_en = modwalker.sigmap(wr_ports[i]->get("\\EN")); RTLIL::SigBit this_en_active = module->ReduceOr(NEW_ID, this_en); wr_ports[i]->set("\\ADDR", module->Mux(NEW_ID, last_addr, this_addr, this_en_active)); wr_ports[i]->set("\\DATA", module->Mux(NEW_ID, last_data, this_data, this_en_active)); std::map, int> groups_en; RTLIL::SigSpec grouped_last_en, grouped_this_en, en; RTLIL::Wire *grouped_en = module->addWire(NEW_ID, 0); for (int j = 0; j < int(this_en.size()); j++) { std::pair key(last_en[j], this_en[j]); if (!groups_en.count(key)) { grouped_last_en.append_bit(last_en[j]); grouped_this_en.append_bit(this_en[j]); groups_en[key] = grouped_en->width; grouped_en->width++; } en.append(RTLIL::SigSpec(grouped_en, groups_en[key])); } module->addMux(NEW_ID, grouped_last_en, grouped_this_en, this_en_active, grouped_en); wr_ports[i]->set("\\EN", en); module->remove(wr_ports[i-1]); wr_ports[i-1] = NULL; } // Clean up `wr_ports': remove all NULL entries std::vector wr_ports_with_nulls; wr_ports_with_nulls.swap(wr_ports); for (auto cell : wr_ports_with_nulls) if (cell != NULL) wr_ports.push_back(cell); } // ------------- // Setup and run // ------------- MemoryShareWorker(RTLIL::Design *design, RTLIL::Module *module) : design(design), module(module), sigmap(module) { std::map, std::vector>> memindex; sigmap_xmux = sigmap; for (auto &it : module->cells_) { RTLIL::Cell *cell = it.second; if (cell->type == "$memrd") memindex[cell->parameters.at("\\MEMID").decode_string()].first.push_back(cell); if (cell->type == "$memwr") memindex[cell->parameters.at("\\MEMID").decode_string()].second.push_back(cell); if (cell->type == "$mux") { RTLIL::SigSpec sig_a = sigmap_xmux(cell->get("\\A")); RTLIL::SigSpec sig_b = sigmap_xmux(cell->get("\\B")); if (sig_a.is_fully_undef()) sigmap_xmux.add(cell->get("\\Y"), sig_b); else if (sig_b.is_fully_undef()) sigmap_xmux.add(cell->get("\\Y"), sig_a); } if (cell->type == "$mux" || cell->type == "$pmux") { std::vector sig_y = sigmap(cell->get("\\Y")); for (int i = 0; i < int(sig_y.size()); i++) sig_to_mux[sig_y[i]] = std::pair(cell, i); } } for (auto &it : memindex) { std::sort(it.second.first.begin(), it.second.first.end(), memcells_cmp); std::sort(it.second.second.begin(), it.second.second.end(), memcells_cmp); translate_rd_feedback_to_en(it.first, it.second.first, it.second.second); consolidate_wr_by_addr(it.first, it.second.second); } cone_ct.setup_internals(); cone_ct.cell_types.erase("$mul"); cone_ct.cell_types.erase("$mod"); cone_ct.cell_types.erase("$div"); cone_ct.cell_types.erase("$pow"); cone_ct.cell_types.erase("$shl"); cone_ct.cell_types.erase("$shr"); cone_ct.cell_types.erase("$sshl"); cone_ct.cell_types.erase("$sshr"); modwalker.setup(design, module, &cone_ct); for (auto &it : memindex) consolidate_wr_using_sat(it.first, it.second.second); } }; struct MemorySharePass : public Pass { MemorySharePass() : Pass("memory_share", "consolidate memory ports") { } virtual void help() { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" memory_share [selection]\n"); log("\n"); log("This pass merges share-able memory ports into single memory ports.\n"); log("\n"); log("The following methods are used to consolidate the number of memory ports:\n"); log("\n"); log(" - When write ports are connected to async read ports accessing the same\n"); log(" address, then this feedback path is converted to a write port with\n"); log(" byte/part enable signals.\n"); log("\n"); log(" - When multiple write ports access the same adress then this is converted\n"); log(" to a single write port with a more complex data and/or enable logic path.\n"); log("\n"); log(" - When multiple write ports are never accessed at the same time (a SAT\n"); log(" solver is used to determine this), then the ports are merged into a single\n"); log(" write port.\n"); log("\n"); log("Note that in addition to the algorithms implemented in this pass, the $memrd\n"); log("and $memwr cells are also subject to generic resource sharing passes (and other\n"); log("optimizations) such as opt_share.\n"); log("\n"); } virtual void execute(std::vector args, RTLIL::Design *design) { log_header("Executing MEMORY_SHARE pass (consolidating $memrc/$memwr cells).\n"); extra_args(args, 1, design); for (auto &mod_it : design->modules) if (design->selected(mod_it.second)) MemoryShareWorker(design, mod_it.second); } } MemorySharePass;