/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/log.h" #include #include // defined in proc_clean.cc extern void proc_clean_case(RTLIL::CaseRule *cs, bool &did_something, int &count, int max_depth); static bool check_signal(RTLIL::Module *mod, RTLIL::SigSpec signal, RTLIL::SigSpec ref, bool &polarity) { if (signal.size() != 1) return false; if (signal == ref) return true; for (auto &cell_it : mod->cells) { RTLIL::Cell *cell = cell_it.second; if (cell->type == "$reduce_or" && cell->connections["\\Y"] == signal) return check_signal(mod, cell->connections["\\A"], ref, polarity); if (cell->type == "$reduce_bool" && cell->connections["\\Y"] == signal) return check_signal(mod, cell->connections["\\A"], ref, polarity); if (cell->type == "$logic_not" && cell->connections["\\Y"] == signal) { polarity = !polarity; return check_signal(mod, cell->connections["\\A"], ref, polarity); } if (cell->type == "$not" && cell->connections["\\Y"] == signal) { polarity = !polarity; return check_signal(mod, cell->connections["\\A"], ref, polarity); } if ((cell->type == "$eq" || cell->type == "$eqx") && cell->connections["\\Y"] == signal) { if (cell->connections["\\A"].is_fully_const()) { if (!cell->connections["\\A"].as_bool()) polarity = !polarity; return check_signal(mod, cell->connections["\\B"], ref, polarity); } if (cell->connections["\\B"].is_fully_const()) { if (!cell->connections["\\B"].as_bool()) polarity = !polarity; return check_signal(mod, cell->connections["\\A"], ref, polarity); } } if ((cell->type == "$ne" || cell->type == "$nex") && cell->connections["\\Y"] == signal) { if (cell->connections["\\A"].is_fully_const()) { if (cell->connections["\\A"].as_bool()) polarity = !polarity; return check_signal(mod, cell->connections["\\B"], ref, polarity); } if (cell->connections["\\B"].is_fully_const()) { if (cell->connections["\\B"].as_bool()) polarity = !polarity; return check_signal(mod, cell->connections["\\A"], ref, polarity); } } } return false; } static void apply_const(RTLIL::Module *mod, const RTLIL::SigSpec rspec, RTLIL::SigSpec &rval, RTLIL::CaseRule *cs, RTLIL::SigSpec const_sig, bool polarity, bool unknown) { for (auto &action : cs->actions) { if (unknown) rspec.replace(action.first, RTLIL::SigSpec(RTLIL::State::Sm, action.second.size()), &rval); else rspec.replace(action.first, action.second, &rval); } for (auto sw : cs->switches) { if (sw->signal.size() == 0) { for (auto cs2 : sw->cases) apply_const(mod, rspec, rval, cs2, const_sig, polarity, unknown); } bool this_polarity = polarity; if (check_signal(mod, sw->signal, const_sig, this_polarity)) { for (auto cs2 : sw->cases) { for (auto comp : cs2->compare) if (comp == RTLIL::SigSpec(this_polarity, 1)) goto matched_case; if (cs2->compare.size() == 0) { matched_case: apply_const(mod, rspec, rval, cs2, const_sig, polarity, false); break; } } } else { for (auto cs2 : sw->cases) apply_const(mod, rspec, rval, cs2, const_sig, polarity, true); } } } static void eliminate_const(RTLIL::Module *mod, RTLIL::CaseRule *cs, RTLIL::SigSpec const_sig, bool polarity) { for (auto sw : cs->switches) { bool this_polarity = polarity; if (check_signal(mod, sw->signal, const_sig, this_polarity)) { bool found_rem_path = false; for (size_t i = 0; i < sw->cases.size(); i++) { RTLIL::CaseRule *cs2 = sw->cases[i]; for (auto comp : cs2->compare) if (comp == RTLIL::SigSpec(this_polarity, 1)) goto matched_case; if (found_rem_path) { matched_case: sw->cases.erase(sw->cases.begin() + (i--)); delete cs2; continue; } found_rem_path = true; cs2->compare.clear(); } sw->signal = RTLIL::SigSpec(); } else { for (auto cs2 : sw->cases) eliminate_const(mod, cs2, const_sig, polarity); } } int dummy_count = 0; bool did_something = true; while (did_something) { did_something = false; proc_clean_case(cs, did_something, dummy_count, 1); } } static void proc_arst(RTLIL::Module *mod, RTLIL::Process *proc, SigMap &assign_map) { restart_proc_arst: if (proc->root_case.switches.size() != 1) return; RTLIL::SigSpec root_sig = proc->root_case.switches[0]->signal; for (auto &sync : proc->syncs) { if (sync->type == RTLIL::SyncType::STp || sync->type == RTLIL::SyncType::STn) { bool polarity = sync->type == RTLIL::SyncType::STp; if (check_signal(mod, root_sig, sync->signal, polarity)) { if (proc->syncs.size() == 1) { log("Found VHDL-style edge-trigger %s in `%s.%s'.\n", log_signal(sync->signal), mod->name.c_str(), proc->name.c_str()); } else { log("Found async reset %s in `%s.%s'.\n", log_signal(sync->signal), mod->name.c_str(), proc->name.c_str()); sync->type = sync->type == RTLIL::SyncType::STp ? RTLIL::SyncType::ST1 : RTLIL::SyncType::ST0; } for (auto &action : sync->actions) { RTLIL::SigSpec rspec = action.second; RTLIL::SigSpec rval = RTLIL::SigSpec(RTLIL::State::Sm, rspec.size()); for (int i = 0; i < SIZE(rspec); i++) if (rspec[i].wire == NULL) rval[i] = rspec[i]; RTLIL::SigSpec last_rval; for (int count = 0; rval != last_rval; count++) { last_rval = rval; apply_const(mod, rspec, rval, &proc->root_case, root_sig, polarity, false); assign_map.apply(rval); if (rval.is_fully_const()) break; if (count > 100) log_error("Async reset %s yields endless loop at value %s for signal %s.\n", log_signal(sync->signal), log_signal(rval), log_signal(action.first)); rspec = rval; } if (rval.has_marked_bits()) log_error("Async reset %s yields non-constant value %s for signal %s.\n", log_signal(sync->signal), log_signal(rval), log_signal(action.first)); action.second = rval; } eliminate_const(mod, &proc->root_case, root_sig, polarity); goto restart_proc_arst; } } } } struct ProcArstPass : public Pass { ProcArstPass() : Pass("proc_arst", "detect asynchronous resets") { } virtual void help() { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" proc_arst [-global_arst [!]] [selection]\n"); log("\n"); log("This pass identifies asynchronous resets in the processes and converts them\n"); log("to a different internal representation that is suitable for generating\n"); log("flip-flop cells with asynchronous resets.\n"); log("\n"); log(" -global_arst [!]\n"); log(" In modules that have a net with the given name, use this net as async\n"); log(" reset for registers that have been assign initial values in their\n"); log(" declaration ('reg foobar = constant_value;'). Use the '!' modifier for\n"); log(" active low reset signals. Note: the frontend stores the default value\n"); log(" in the 'init' attribute on the net.\n"); log("\n"); } virtual void execute(std::vector args, RTLIL::Design *design) { std::string global_arst; bool global_arst_neg = false; log_header("Executing PROC_ARST pass (detect async resets in processes).\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-global_arst" && argidx+1 < args.size()) { global_arst = args[++argidx]; if (!global_arst.empty() && global_arst[0] == '!') { global_arst_neg = true; global_arst = global_arst.substr(1); } global_arst = RTLIL::escape_id(global_arst); continue; } break; } extra_args(args, argidx, design); for (auto &mod_it : design->modules) if (design->selected(mod_it.second)) { SigMap assign_map(mod_it.second); for (auto &proc_it : mod_it.second->processes) { if (!design->selected(mod_it.second, proc_it.second)) continue; proc_arst(mod_it.second, proc_it.second, assign_map); if (global_arst.empty() || mod_it.second->wires.count(global_arst) == 0) continue; std::vector arst_actions; for (auto sync : proc_it.second->syncs) if (sync->type == RTLIL::SyncType::STp || sync->type == RTLIL::SyncType::STn) for (auto &act : sync->actions) { RTLIL::SigSpec arst_sig, arst_val; for (auto &chunk : act.first.chunks()) if (chunk.wire && chunk.wire->attributes.count("\\init")) { RTLIL::SigSpec value = chunk.wire->attributes.at("\\init"); value.extend(chunk.wire->width, false); arst_sig.append(chunk); arst_val.append(value.extract(chunk.offset, chunk.width)); } if (arst_sig.size()) { log("Added global reset to process %s: %s <- %s\n", proc_it.first.c_str(), log_signal(arst_sig), log_signal(arst_val)); arst_actions.push_back(RTLIL::SigSig(arst_sig, arst_val)); } } if (!arst_actions.empty()) { RTLIL::SyncRule *sync = new RTLIL::SyncRule; sync->type = global_arst_neg ? RTLIL::SyncType::ST0 : RTLIL::SyncType::ST1; sync->signal = mod_it.second->wires.at(global_arst); sync->actions = arst_actions; proc_it.second->syncs.push_back(sync); } } } } } ProcArstPass;