/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/sigtools.h" #include "kernel/celltypes.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct SimShared { bool debug = false; bool hide_internal = true; bool writeback = false; bool zinit = false; int rstlen = 1; }; void zinit(State &v) { if (v != State::S1) v = State::S0; } void zinit(Const &v) { for (auto &bit : v.bits) zinit(bit); } struct SimInstance { SimShared *shared; Module *module; Cell *instance; SimInstance *parent; dict children; SigMap sigmap; dict state_nets; dict> upd_cells; dict> upd_outports; pool dirty_bits; pool dirty_cells; pool dirty_children; struct ff_state_t { State past_clock; Const past_d; }; struct mem_state_t { Const past_wr_clk; Const past_wr_en; Const past_wr_addr; Const past_wr_data; Const data; }; dict ff_database; dict mem_database; pool formal_database; dict> vcd_database; SimInstance(SimShared *shared, Module *module, Cell *instance = nullptr, SimInstance *parent = nullptr) : shared(shared), module(module), instance(instance), parent(parent), sigmap(module) { if (parent) { log_assert(parent->children.count(instance) == 0); parent->children[instance] = this; } for (auto wire : module->wires()) { SigSpec sig = sigmap(wire); for (int i = 0; i < GetSize(sig); i++) { if (state_nets.count(sig[i]) == 0) state_nets[sig[i]] = State::Sx; if (wire->port_output) { upd_outports[sig[i]].insert(wire); dirty_bits.insert(sig[i]); } } if (wire->attributes.count("\\init")) { Const initval = wire->attributes.at("\\init"); for (int i = 0; i < GetSize(sig) && i < GetSize(initval); i++) if (initval[i] == State::S0 || initval[i] == State::S1) { state_nets[sig[i]] = initval[i]; dirty_bits.insert(sig[i]); } } } for (auto cell : module->cells()) { Module *mod = module->design->module(cell->type); if (mod != nullptr) { dirty_children.insert(new SimInstance(shared, mod, cell, this)); } for (auto &port : cell->connections()) { if (cell->input(port.first)) for (auto bit : sigmap(port.second)) upd_cells[bit].insert(cell); } if (cell->type.in("$dff")) { ff_state_t ff; ff.past_clock = State::Sx; ff.past_d = Const(State::Sx, cell->getParam("\\WIDTH").as_int()); ff_database[cell] = ff; } if (cell->type == "$mem") { mem_state_t mem; mem.past_wr_clk = Const(State::Sx, GetSize(cell->getPort("\\WR_CLK"))); mem.past_wr_en = Const(State::Sx, GetSize(cell->getPort("\\WR_EN"))); mem.past_wr_addr = Const(State::Sx, GetSize(cell->getPort("\\WR_ADDR"))); mem.past_wr_data = Const(State::Sx, GetSize(cell->getPort("\\WR_DATA"))); mem.data = cell->getParam("\\INIT"); int sz = cell->getParam("\\SIZE").as_int() * cell->getParam("\\WIDTH").as_int(); if (GetSize(mem.data) > sz) mem.data.bits.resize(sz); while (GetSize(mem.data) < sz) mem.data.bits.push_back(State::Sx); mem_database[cell] = mem; } if (cell->type.in("$assert", "$cover", "$assume")) { formal_database.insert(cell); } } if (shared->zinit) { for (auto &it : ff_database) { Cell *cell = it.first; ff_state_t &ff = it.second; zinit(ff.past_d); SigSpec qsig = cell->getPort("\\Q"); Const qdata = get_state(qsig); zinit(qdata); set_state(qsig, qdata); } for (auto &it : mem_database) { mem_state_t &mem = it.second; zinit(mem.past_wr_en); zinit(mem.data); } } } ~SimInstance() { for (auto child : children) delete child.second; } IdString name() const { if (instance != nullptr) return instance->name; return module->name; } std::string hiername() const { if (instance != nullptr) return parent->hiername() + "." + log_id(instance->name); return log_id(module->name); } Const get_state(SigSpec sig) { Const value; for (auto bit : sigmap(sig)) if (bit.wire == nullptr) value.bits.push_back(bit.data); else if (state_nets.count(bit)) value.bits.push_back(state_nets.at(bit)); else value.bits.push_back(State::Sz); if (shared->debug) log("[%s] get %s: %s\n", hiername().c_str(), log_signal(sig), log_signal(value)); return value; } bool set_state(SigSpec sig, Const value) { bool did_something = false; sig = sigmap(sig); log_assert(GetSize(sig) == GetSize(value)); for (int i = 0; i < GetSize(sig); i++) if (state_nets.at(sig[i]) != value[i]) { state_nets.at(sig[i]) = value[i]; dirty_bits.insert(sig[i]); did_something = true; } if (shared->debug) log("[%s] set %s: %s\n", hiername().c_str(), log_signal(sig), log_signal(value)); return did_something; } void update_cell(Cell *cell) { if (ff_database.count(cell)) return; if (formal_database.count(cell)) return; if (mem_database.count(cell)) { mem_state_t &mem = mem_database.at(cell); int num_rd_ports = cell->getParam("\\RD_PORTS").as_int(); int size = cell->getParam("\\SIZE").as_int(); int offset = cell->getParam("\\OFFSET").as_int(); int abits = cell->getParam("\\ABITS").as_int(); int width = cell->getParam("\\WIDTH").as_int(); if (cell->getParam("\\RD_CLK_ENABLE").as_bool()) log_error("Memory %s.%s has clocked read ports. Run 'memory' with -nordff.\n", log_id(module), log_id(cell)); SigSpec rd_addr_sig = cell->getPort("\\RD_ADDR"); SigSpec rd_data_sig = cell->getPort("\\RD_DATA"); for (int port_idx = 0; port_idx < num_rd_ports; port_idx++) { Const addr = get_state(rd_addr_sig.extract(port_idx*abits, abits)); Const data = Const(State::Sx, width); if (addr.is_fully_def()) { int index = addr.as_int() - offset; if (index >= 0 && index < size) data = mem.data.extract(index*width, width); } set_state(rd_data_sig.extract(port_idx*width, width), data); } return; } if (children.count(cell)) { auto child = children.at(cell); for (auto &conn: cell->connections()) if (cell->input(conn.first)) { Const value = get_state(conn.second); child->set_state(child->module->wire(conn.first), value); } dirty_children.insert(child); return; } if (yosys_celltypes.cell_evaluable(cell->type)) { RTLIL::SigSpec sig_a, sig_b, sig_c, sig_d, sig_s, sig_y; bool has_a, has_b, has_c, has_d, has_s, has_y; has_a = cell->hasPort("\\A"); has_b = cell->hasPort("\\B"); has_c = cell->hasPort("\\C"); has_d = cell->hasPort("\\D"); has_s = cell->hasPort("\\S"); has_y = cell->hasPort("\\Y"); if (has_a) sig_a = cell->getPort("\\A"); if (has_b) sig_b = cell->getPort("\\B"); if (has_c) sig_c = cell->getPort("\\C"); if (has_d) sig_d = cell->getPort("\\D"); if (has_s) sig_s = cell->getPort("\\S"); if (has_y) sig_y = cell->getPort("\\Y"); if (shared->debug) log("[%s] eval %s (%s)\n", hiername().c_str(), log_id(cell), log_id(cell->type)); // Simple (A -> Y) and (A,B -> Y) cells if (has_a && !has_c && !has_d && !has_s && has_y) { set_state(sig_y, CellTypes::eval(cell, get_state(sig_a), get_state(sig_b))); return; } // (A,B,C -> Y) cells if (has_a && has_b && has_c && !has_d && !has_s && has_y) { set_state(sig_y, CellTypes::eval(cell, get_state(sig_a), get_state(sig_b), get_state(sig_c))); return; } // (A,B,S -> Y) cells if (has_a && has_b && !has_c && !has_d && has_s && has_y) { set_state(sig_y, CellTypes::eval(cell, get_state(sig_a), get_state(sig_b), get_state(sig_s))); return; } log_warning("Unsupported evaluable cell type: %s (%s.%s)\n", log_id(cell->type), log_id(module), log_id(cell)); return; } log_error("Unsupported cell type: %s (%s.%s)\n", log_id(cell->type), log_id(module), log_id(cell)); } void update_ph1() { pool queue_cells; pool queue_outports; queue_cells.swap(dirty_cells); while (1) { for (auto bit : dirty_bits) { if (upd_cells.count(bit)) for (auto cell : upd_cells.at(bit)) queue_cells.insert(cell); if (upd_outports.count(bit) && parent != nullptr) for (auto wire : upd_outports.at(bit)) queue_outports.insert(wire); } dirty_bits.clear(); if (!queue_cells.empty()) { for (auto cell : queue_cells) update_cell(cell); queue_cells.clear(); continue; } for (auto wire : queue_outports) if (instance->hasPort(wire->name)) { Const value = get_state(wire); parent->set_state(instance->getPort(wire->name), value); } queue_outports.clear(); for (auto child : dirty_children) child->update_ph1(); dirty_children.clear(); if (dirty_bits.empty()) break; } } bool update_ph2() { bool did_something = false; for (auto &it : ff_database) { Cell *cell = it.first; ff_state_t &ff = it.second; if (cell->type.in("$dff")) { bool clkpol = cell->getParam("\\CLK_POLARITY").as_bool(); State current_clock = get_state(cell->getPort("\\CLK"))[0]; if (clkpol ? (ff.past_clock == State::S1 || current_clock != State::S1) : (ff.past_clock == State::S0 || current_clock != State::S0)) continue; if (set_state(cell->getPort("\\Q"), ff.past_d)) did_something = true; } } for (auto &it : mem_database) { Cell *cell = it.first; mem_state_t &mem = it.second; int num_wr_ports = cell->getParam("\\WR_PORTS").as_int(); int size = cell->getParam("\\SIZE").as_int(); int offset = cell->getParam("\\OFFSET").as_int(); int abits = cell->getParam("\\ABITS").as_int(); int width = cell->getParam("\\WIDTH").as_int(); Const wr_clk_enable = cell->getParam("\\WR_CLK_ENABLE"); Const wr_clk_polarity = cell->getParam("\\WR_CLK_POLARITY"); Const current_wr_clk = get_state(cell->getPort("\\WR_CLK")); for (int port_idx = 0; port_idx < num_wr_ports; port_idx++) { Const addr, data, enable; if (wr_clk_enable[port_idx] == State::S0) { addr = get_state(cell->getPort("\\WR_ADDR").extract(port_idx*abits, abits)); data = get_state(cell->getPort("\\WR_DATA").extract(port_idx*width, width)); enable = get_state(cell->getPort("\\WR_EN").extract(port_idx*width, width)); } else { if (wr_clk_polarity[port_idx] == State::S1 ? (mem.past_wr_clk[port_idx] == State::S1 || current_wr_clk[port_idx] != State::S1) : (mem.past_wr_clk[port_idx] == State::S0 || current_wr_clk[port_idx] != State::S0)) continue; addr = mem.past_wr_addr.extract(port_idx*abits, abits); data = mem.past_wr_data.extract(port_idx*width, width); enable = mem.past_wr_en.extract(port_idx*width, width); } if (addr.is_fully_def()) { int index = addr.as_int() - offset; if (index >= 0 && index < size) for (int i = 0; i < width; i++) if (enable[i] == State::S1 && mem.data.bits.at(index*width+i) != data[i]) { mem.data.bits.at(index*width+i) = data[i]; dirty_cells.insert(cell); did_something = true; } } } } for (auto it : children) if (it.second->update_ph2()) { dirty_children.insert(it.second); did_something = true; } return did_something; } void update_ph3() { for (auto &it : ff_database) { Cell *cell = it.first; ff_state_t &ff = it.second; if (cell->type.in("$dff")) { ff.past_clock = get_state(cell->getPort("\\CLK"))[0]; ff.past_d = get_state(cell->getPort("\\D")); } } for (auto &it : mem_database) { Cell *cell = it.first; mem_state_t &mem = it.second; mem.past_wr_clk = get_state(cell->getPort("\\WR_CLK")); mem.past_wr_en = get_state(cell->getPort("\\WR_EN")); mem.past_wr_addr = get_state(cell->getPort("\\WR_ADDR")); mem.past_wr_data = get_state(cell->getPort("\\WR_DATA")); } for (auto cell : formal_database) { string label = log_id(cell); if (cell->attributes.count("\\src")) label = cell->attributes.at("\\src").decode_string(); State a = get_state(cell->getPort("\\A"))[0]; State en = get_state(cell->getPort("\\EN"))[0]; if (cell->type == "$cover" && en == State::S1 && a != State::S1) log("Cover %s.%s (%s) reached.\n", hiername().c_str(), log_id(cell), label.c_str()); if (cell->type == "$assume" && en == State::S1 && a != State::S1) log("Assumption %s.%s (%s) failed.\n", hiername().c_str(), log_id(cell), label.c_str()); if (cell->type == "$assert" && en == State::S1 && a != State::S1) log_warning("Assert %s.%s (%s) failed.\n", hiername().c_str(), log_id(cell), label.c_str()); } for (auto it : children) it.second->update_ph3(); } void writeback(pool &wbmods) { if (wbmods.count(module)) log_error("Instance %s of module %s is not unique: Writeback not possible. (Fix by running 'uniquify'.)\n", hiername().c_str(), log_id(module)); wbmods.insert(module); for (auto wire : module->wires()) wire->attributes.erase("\\init"); for (auto &it : ff_database) { Cell *cell = it.first; SigSpec sig_q = cell->getPort("\\Q"); Const initval = get_state(sig_q); for (int i = 0; i < GetSize(sig_q); i++) { Wire *w = sig_q[i].wire; if (w->attributes.count("\\init") == 0) w->attributes["\\init"] = Const(State::Sx, GetSize(w)); w->attributes["\\init"][sig_q[i].offset] = initval[i]; } } for (auto &it : mem_database) { Cell *cell = it.first; mem_state_t &mem = it.second; Const initval = mem.data; while (GetSize(initval) >= 2) { if (initval[GetSize(initval)-1] != State::Sx) break; if (initval[GetSize(initval)-2] != State::Sx) break; initval.bits.pop_back(); } cell->setParam("\\INIT", initval); } for (auto it : children) it.second->writeback(wbmods); } void write_vcd_header(std::ofstream &f, int &id) { f << stringf("$scope module %s $end\n", log_id(name())); for (auto wire : module->wires()) { if (shared->hide_internal && wire->name[0] == '$') continue; f << stringf("$var wire %d n%d %s%s $end\n", GetSize(wire), id, wire->name[0] == '$' ? "\\" : "", log_id(wire)); vcd_database[wire] = make_pair(id++, Const()); } for (auto child : children) child.second->write_vcd_header(f, id); f << stringf("$upscope $end\n"); } void write_vcd_step(std::ofstream &f) { for (auto &it : vcd_database) { Wire *wire = it.first; Const value = get_state(wire); int id = it.second.first; if (it.second.second == value) continue; it.second.second = value; f << "b"; for (int i = GetSize(value)-1; i >= 0; i--) { switch (value[i]) { case State::S0: f << "0"; break; case State::S1: f << "1"; break; case State::Sx: f << "x"; break; default: f << "z"; } } f << stringf(" n%d\n", id); } for (auto child : children) child.second->write_vcd_step(f); } }; struct SimWorker : SimShared { SimInstance *top = nullptr; std::ofstream vcdfile; pool clock, clockn, reset, resetn; ~SimWorker() { delete top; } void write_vcd_header() { if (!vcdfile.is_open()) return; int id = 1; top->write_vcd_header(vcdfile, id); vcdfile << stringf("$enddefinitions $end\n"); } void write_vcd_step(int t) { if (!vcdfile.is_open()) return; vcdfile << stringf("#%d\n", t); top->write_vcd_step(vcdfile); } void update() { while (1) { if (debug) log("\n-- ph1 --\n"); top->update_ph1(); if (debug) log("\n-- ph2 --\n"); if (!top->update_ph2()) break; } if (debug) log("\n-- ph3 --\n"); top->update_ph3(); } void set_inports(pool ports, State value) { for (auto portname : ports) { Wire *w = top->module->wire(portname); if (w == nullptr) log_error("Can't find port %s on module %s.\n", log_id(portname), log_id(top->module)); top->set_state(w, value); } } void run(Module *topmod, int numcycles) { log_assert(top == nullptr); top = new SimInstance(this, topmod); if (debug) log("\n===== 0 =====\n"); else log("Simulating cycle 0.\n"); set_inports(reset, State::S1); set_inports(resetn, State::S0); set_inports(clock, State::Sx); set_inports(clockn, State::Sx); update(); write_vcd_header(); write_vcd_step(0); for (int cycle = 0; cycle < numcycles; cycle++) { if (debug) log("\n===== %d =====\n", 10*cycle + 5); set_inports(clock, State::S0); set_inports(clockn, State::S1); update(); write_vcd_step(10*cycle + 5); if (debug) log("\n===== %d =====\n", 10*cycle + 10); else log("Simulating cycle %d.\n", cycle+1); set_inports(clock, State::S1); set_inports(clockn, State::S0); if (cycle+1 == rstlen) { set_inports(reset, State::S0); set_inports(resetn, State::S1); } update(); write_vcd_step(10*cycle + 10); } write_vcd_step(10*numcycles + 2); if (writeback) { pool wbmods; top->writeback(wbmods); } } }; struct SimPass : public Pass { SimPass() : Pass("sim", "simulate the circuit") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" sim [options] [top-level]\n"); log("\n"); log("This command simulates the circuit using the given top-level module.\n"); log("\n"); log(" -vcd \n"); log(" write the simulation results to the given VCD file\n"); log("\n"); log(" -clock \n"); log(" name of top-level clock input\n"); log("\n"); log(" -clockn \n"); log(" name of top-level clock input (inverse polarity)\n"); log("\n"); log(" -reset \n"); log(" name of top-level reset input (active high)\n"); log("\n"); log(" -resetn \n"); log(" name of top-level inverted reset input (active low)\n"); log("\n"); log(" -rstlen \n"); log(" number of cycles reset should stay active (default: 1)\n"); log("\n"); log(" -zinit\n"); log(" zero-initialize all uninitialized regs and memories\n"); log("\n"); log(" -n \n"); log(" number of cycles to simulate (default: 20)\n"); log("\n"); log(" -a\n"); log(" include all nets in VCD output, not just those with public names\n"); log("\n"); log(" -w\n"); log(" writeback mode: use final simulation state as new init state\n"); log("\n"); log(" -d\n"); log(" enable debug output\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) YS_OVERRIDE { SimWorker worker; int numcycles = 20; log_header(design, "Executing SIM pass (simulate the circuit).\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-vcd" && argidx+1 < args.size()) { worker.vcdfile.open(args[++argidx].c_str()); continue; } if (args[argidx] == "-n" && argidx+1 < args.size()) { numcycles = atoi(args[++argidx].c_str()); continue; } if (args[argidx] == "-rstlen" && argidx+1 < args.size()) { worker.rstlen = atoi(args[++argidx].c_str()); continue; } if (args[argidx] == "-clock" && argidx+1 < args.size()) { worker.clock.insert(RTLIL::escape_id(args[++argidx])); continue; } if (args[argidx] == "-clockn" && argidx+1 < args.size()) { worker.clockn.insert(RTLIL::escape_id(args[++argidx])); continue; } if (args[argidx] == "-reset" && argidx+1 < args.size()) { worker.reset.insert(RTLIL::escape_id(args[++argidx])); continue; } if (args[argidx] == "-resetn" && argidx+1 < args.size()) { worker.resetn.insert(RTLIL::escape_id(args[++argidx])); continue; } if (args[argidx] == "-a") { worker.hide_internal = false; continue; } if (args[argidx] == "-d") { worker.debug = true; continue; } if (args[argidx] == "-w") { worker.writeback = true; continue; } if (args[argidx] == "-zinit") { worker.zinit = true; continue; } break; } extra_args(args, argidx, design); Module *top_mod = nullptr; if (design->full_selection()) { top_mod = design->top_module(); } else { auto mods = design->selected_whole_modules(); if (GetSize(mods) != 1) log_cmd_error("Only one top module must be selected.\n"); top_mod = mods.front(); } worker.run(top_mod, numcycles); } } SimPass; PRIVATE_NAMESPACE_END