summaryrefslogtreecommitdiff
path: root/libs/ezsat/puzzle3d.cc
blob: 56d293260b81fa86926e794eddcb075b83d0b512 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/*
 *  ezSAT -- A simple and easy to use CNF generator for SAT solvers
 *
 *  Copyright (C) 2013  Clifford Wolf <clifford@clifford.at>
 *  
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *  
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "ezminisat.h"
#include <stdio.h>
#include <assert.h>

#define DIM_X 5
#define DIM_Y 5
#define DIM_Z 5

#define NUM_124 6
#define NUM_223 6

ezMiniSAT ez;
int blockidx = 0;
std::map<int, std::string> blockinfo;
std::vector<int> grid[DIM_X][DIM_Y][DIM_Z];

struct blockgeom_t
{
	int center_x, center_y, center_z;
	int size_x, size_y, size_z;
	int var;

	void mirror_x() { center_x *= -1; }
	void mirror_y() { center_y *= -1; }
	void mirror_z() { center_z *= -1; }

	void rotate_x() { int tmp[4] = { center_y, center_z, size_y, size_z }; center_y = tmp[1]; center_z = -tmp[0]; size_y = tmp[3]; size_z = tmp[2]; }
	void rotate_y() { int tmp[4] = { center_x, center_z, size_x, size_z }; center_x = tmp[1]; center_z = -tmp[0]; size_x = tmp[3]; size_z = tmp[2]; }
	void rotate_z() { int tmp[4] = { center_x, center_y, size_x, size_y }; center_x = tmp[1]; center_y = -tmp[0]; size_x = tmp[3]; size_y = tmp[2]; }

	bool operator< (const blockgeom_t &other) const {
		if (center_x != other.center_x) return center_x < other.center_x;
		if (center_y != other.center_y) return center_y < other.center_y;
		if (center_z != other.center_z) return center_z < other.center_z;
		if (size_x != other.size_x) return size_x < other.size_x;
		if (size_y != other.size_y) return size_y < other.size_y;
		if (size_z != other.size_z) return size_z < other.size_z;
		if (var != other.var) return var < other.var;
		return false;
	}
};

// geometry data for spatial symmetry constraints
std::set<blockgeom_t> blockgeom;

int add_block(int pos_x, int pos_y, int pos_z, int size_x, int size_y, int size_z, int blockidx)
{
	char buffer[1024];
	snprintf(buffer, 1024, "block(%d,%d,%d,%d,%d,%d,%d);", size_x, size_y, size_z, pos_x, pos_y, pos_z, blockidx);

	int var = ez.literal();
	blockinfo[var] = buffer;

	for (int ix = pos_x; ix < pos_x+size_x; ix++)
	for (int iy = pos_y; iy < pos_y+size_y; iy++)
	for (int iz = pos_z; iz < pos_z+size_z; iz++)
		grid[ix][iy][iz].push_back(var);

	blockgeom_t bg;
	bg.size_x = 2*size_x;
	bg.size_y = 2*size_y;
	bg.size_z = 2*size_z;
	bg.center_x = (2*pos_x + size_x) - DIM_X;
	bg.center_y = (2*pos_y + size_y) - DIM_Y;
	bg.center_z = (2*pos_z + size_z) - DIM_Z;
	bg.var = var;

	assert(blockgeom.count(bg) == 0);
	blockgeom.insert(bg);

	return var;
}

void add_block_positions_124(std::vector<int> &block_positions_124)
{
	block_positions_124.clear();
	for (int size_x = 1; size_x <= 4; size_x *= 2)
	for (int size_y = 1; size_y <= 4; size_y *= 2)
	for (int size_z = 1; size_z <= 4; size_z *= 2) {
		if (size_x == size_y || size_y == size_z || size_z == size_x)
			continue;
		for (int ix = 0; ix <= DIM_X-size_x; ix++)
		for (int iy = 0; iy <= DIM_Y-size_y; iy++)
		for (int iz = 0; iz <= DIM_Z-size_z; iz++)
			block_positions_124.push_back(add_block(ix, iy, iz, size_x, size_y, size_z, blockidx++));
	}
}

void add_block_positions_223(std::vector<int> &block_positions_223)
{
	block_positions_223.clear();
	for (int orientation = 0; orientation < 3; orientation++) {
		int size_x = orientation == 0 ? 3 : 2;
		int size_y = orientation == 1 ? 3 : 2;
		int size_z = orientation == 2 ? 3 : 2;
		for (int ix = 0; ix <= DIM_X-size_x; ix++)
		for (int iy = 0; iy <= DIM_Y-size_y; iy++)
		for (int iz = 0; iz <= DIM_Z-size_z; iz++)
			block_positions_223.push_back(add_block(ix, iy, iz, size_x, size_y, size_z, blockidx++));
	}
}

// use simple built-in random number generator to
// ensure determinism of the program across platforms
uint32_t xorshift32() {
	static uint32_t x = 314159265;
	x ^= x << 13;
	x ^= x >> 17;
	x ^= x << 5;
	return x;
}

void condense_exclusives(std::vector<int> &vars)
{
	std::map<int, std::set<int>> exclusive;

	for (int ix = 0; ix < DIM_X; ix++)
	for (int iy = 0; iy < DIM_Y; iy++)
	for (int iz = 0; iz < DIM_Z; iz++) {
		for (int a : grid[ix][iy][iz])
		for (int b : grid[ix][iy][iz])
			if (a != b)
				exclusive[a].insert(b);
	}

	std::vector<std::vector<int>> pools;

	for (int a : vars)
	{
		std::vector<int> candidate_pools;
		for (size_t i = 0; i < pools.size(); i++)
		{
			for (int b : pools[i])
				if (exclusive[a].count(b) == 0)
					goto no_candidate_pool;
			candidate_pools.push_back(i);
		no_candidate_pool:;
		}

		if (candidate_pools.size() > 0) {
			int p = candidate_pools[xorshift32() % candidate_pools.size()];
			pools[p].push_back(a);
		} else {
			pools.push_back(std::vector<int>());
			pools.back().push_back(a);
		}
	}

	std::vector<int> new_vars;
	for (auto &pool : pools)
	{
		std::vector<int> formula;
		int var = ez.literal();

		for (int a : pool)
			formula.push_back(ez.OR(ez.NOT(a), var));
		formula.push_back(ez.OR(ez.expression(ezSAT::OpOr, pool), ez.NOT(var)));

		ez.assume(ez.onehot(pool, true));
		ez.assume(ez.expression(ezSAT::OpAnd, formula));
		new_vars.push_back(var);
	}

	printf("Condensed %d variables into %d one-hot pools.\n", int(vars.size()), int(new_vars.size()));
	vars.swap(new_vars);
}

int main()
{
	printf("\nCreating SAT encoding..\n");

	// add 1x2x4 blocks
	std::vector<int> block_positions_124;
	add_block_positions_124(block_positions_124);
	condense_exclusives(block_positions_124);
	ez.assume(ez.manyhot(block_positions_124, NUM_124));

	// add 2x2x3 blocks
	std::vector<int> block_positions_223;
	add_block_positions_223(block_positions_223);
	condense_exclusives(block_positions_223);
	ez.assume(ez.manyhot(block_positions_223, NUM_223));

	// add constraint for max one block per grid element
	for (int ix = 0; ix < DIM_X; ix++)
	for (int iy = 0; iy < DIM_Y; iy++)
	for (int iz = 0; iz < DIM_Z; iz++) {
		assert(grid[ix][iy][iz].size() > 0);
		ez.assume(ez.onehot(grid[ix][iy][iz], true));
	}

	printf("Found %d possible block positions.\n", int(blockgeom.size()));

	// look for spatial symmetries
	std::set<std::set<blockgeom_t>> symmetries;
	symmetries.insert(blockgeom);
	bool keep_running = true;
	while (keep_running) {
		keep_running = false;
		std::set<std::set<blockgeom_t>> old_sym;
		old_sym.swap(symmetries);
		for (auto &old_sym_set : old_sym)
		{
			std::set<blockgeom_t> mx, my, mz;
			std::set<blockgeom_t> rx, ry, rz;
			for (auto &bg : old_sym_set) {
				blockgeom_t bg_mx = bg, bg_my = bg, bg_mz = bg;
				blockgeom_t bg_rx = bg, bg_ry = bg, bg_rz = bg;
				bg_mx.mirror_x(), bg_my.mirror_y(), bg_mz.mirror_z();
				bg_rx.rotate_x(), bg_ry.rotate_y(), bg_rz.rotate_z();
				mx.insert(bg_mx), my.insert(bg_my), mz.insert(bg_mz);
				rx.insert(bg_rx), ry.insert(bg_ry), rz.insert(bg_rz);
			}
			if (!old_sym.count(mx) || !old_sym.count(my) || !old_sym.count(mz) ||
					!old_sym.count(rx) || !old_sym.count(ry) || !old_sym.count(rz))
				keep_running = true;
			symmetries.insert(old_sym_set);
			symmetries.insert(mx);
			symmetries.insert(my);
			symmetries.insert(mz);
			symmetries.insert(rx);
			symmetries.insert(ry);
			symmetries.insert(rz);
		}
	}

	// add constraints to eliminate all the spatial symmetries
	std::vector<std::vector<int>> vecvec;
	for (auto &sym : symmetries) {
		std::vector<int> vec;
		for (auto &bg : sym)
			vec.push_back(bg.var);
		vecvec.push_back(vec);
	}
	for (size_t i = 1; i < vecvec.size(); i++)
		ez.assume(ez.ordered(vecvec[0], vecvec[1]));
	
	printf("Found and eliminated %d spatial symmetries.\n", int(symmetries.size()));
	printf("Generated %d clauses over %d variables.\n", ez.numCnfClauses(), ez.numCnfVariables());

	std::vector<int> modelExpressions;
	std::vector<bool> modelValues;

	for (auto &it : blockinfo)
		modelExpressions.push_back(it.first);

	int solution_counter = 0;
	while (1)
	{
		printf("\nSolving puzzle..\n");
		bool ok = ez.solve(modelExpressions, modelValues);

		if (!ok) {
			printf("No more solutions found!\n");
			break;
		}

		printf("Puzzle solution:\n");
		std::vector<int> constraint;
		for (size_t i = 0; i < modelExpressions.size(); i++)
			if (modelValues[i]) {
				constraint.push_back(ez.NOT(modelExpressions[i]));
				printf("%s\n", blockinfo.at(modelExpressions[i]).c_str());
			}
		ez.assume(ez.expression(ezSAT::OpOr, constraint));
		solution_counter++;
	}

	printf("\nFound %d distinct solutions.\n", solution_counter);
	printf("Have a nice day.\n\n");

	return 0;
}