summaryrefslogtreecommitdiff
path: root/libs/minisat/SimpSolver.h
blob: 76d5aca1f01237ef3cdd8167c176bf03138ee87e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
/************************************************************************************[SimpSolver.h]
Copyright (c) 2006,      Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/

#ifndef Minisat_SimpSolver_h
#define Minisat_SimpSolver_h

#include "Queue.h"
#include "Solver.h"


namespace Minisat {

//=================================================================================================


class SimpSolver : public Solver {
 public:
    // Constructor/Destructor:
    //
    SimpSolver();
    ~SimpSolver();

    // Problem specification:
    //
    Var     newVar    (lbool upol = l_Undef, bool dvar = true);
    void    releaseVar(Lit l);
    bool    addClause (const vec<Lit>& ps);
    bool    addEmptyClause();                // Add the empty clause to the solver.
    bool    addClause (Lit p);               // Add a unit clause to the solver.
    bool    addClause (Lit p, Lit q);        // Add a binary clause to the solver.
    bool    addClause (Lit p, Lit q, Lit r); // Add a ternary clause to the solver.
    bool    addClause (Lit p, Lit q, Lit r, Lit s); // Add a quaternary clause to the solver. 
    bool    addClause_(      vec<Lit>& ps);
    bool    substitute(Var v, Lit x);  // Replace all occurences of v with x (may cause a contradiction).

    // Variable mode:
    // 
    void    setFrozen (Var v, bool b); // If a variable is frozen it will not be eliminated.
    bool    isEliminated(Var v) const;

    // Alternative freeze interface (may replace 'setFrozen()'):
    void    freezeVar (Var v);         // Freeze one variable so it will not be eliminated.
    void    thaw      ();              // Thaw all frozen variables.


    // Solving:
    //
    bool    solve       (const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false);
    lbool   solveLimited(const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false);
    bool    solve       (                     bool do_simp = true, bool turn_off_simp = false);
    bool    solve       (Lit p       ,        bool do_simp = true, bool turn_off_simp = false);       
    bool    solve       (Lit p, Lit q,        bool do_simp = true, bool turn_off_simp = false);
    bool    solve       (Lit p, Lit q, Lit r, bool do_simp = true, bool turn_off_simp = false);
    bool    eliminate   (bool turn_off_elim = false);  // Perform variable elimination based simplification. 

    // Memory managment:
    //
    virtual void garbageCollect();


    // Generate a (possibly simplified) DIMACS file:
    //
#if 0
    void    toDimacs  (const char* file, const vec<Lit>& assumps);
    void    toDimacs  (const char* file);
    void    toDimacs  (const char* file, Lit p);
    void    toDimacs  (const char* file, Lit p, Lit q);
    void    toDimacs  (const char* file, Lit p, Lit q, Lit r);
#endif

    // Mode of operation:
    //
    int     grow;              // Allow a variable elimination step to grow by a number of clauses (default to zero).
    int     clause_lim;        // Variables are not eliminated if it produces a resolvent with a length above this limit.
                               // -1 means no limit.
    int     subsumption_lim;   // Do not check if subsumption against a clause larger than this. -1 means no limit.
    double  simp_garbage_frac; // A different limit for when to issue a GC during simplification (Also see 'garbage_frac').

    bool    use_asymm;         // Shrink clauses by asymmetric branching.
    bool    use_rcheck;        // Check if a clause is already implied. Prett costly, and subsumes subsumptions :)
    bool    use_elim;          // Perform variable elimination.
    bool    extend_model;      // Flag to indicate whether the user needs to look at the full model.

    // Statistics:
    //
    int     merges;
    int     asymm_lits;
    int     eliminated_vars;

 protected:

    // Helper structures:
    //
    struct ElimLt {
        const LMap<int>& n_occ;
        explicit ElimLt(const LMap<int>& no) : n_occ(no) {}

        // TODO: are 64-bit operations here noticably bad on 32-bit platforms? Could use a saturating
        // 32-bit implementation instead then, but this will have to do for now.
        uint64_t cost  (Var x)        const { return (uint64_t)n_occ[mkLit(x)] * (uint64_t)n_occ[~mkLit(x)]; }
        bool operator()(Var x, Var y) const { return cost(x) < cost(y); }
        
        // TODO: investigate this order alternative more.
        // bool operator()(Var x, Var y) const { 
        //     int c_x = cost(x);
        //     int c_y = cost(y);
        //     return c_x < c_y || c_x == c_y && x < y; }
    };

    struct ClauseDeleted {
        const ClauseAllocator& ca;
        explicit ClauseDeleted(const ClauseAllocator& _ca) : ca(_ca) {}
        bool operator()(const CRef& cr) const { return ca[cr].mark() == 1; } };

    // Solver state:
    //
    int                 elimorder;
    bool                use_simplification;
    Var                 max_simp_var;        // Max variable at the point simplification was turned off.
    vec<uint32_t>       elimclauses;
    VMap<char>          touched;
    OccLists<Var, vec<CRef>, ClauseDeleted>
                        occurs;
    LMap<int>           n_occ;
    Heap<Var,ElimLt>    elim_heap;
    Queue<CRef>         subsumption_queue;
    VMap<char>          frozen;
    vec<Var>            frozen_vars;
    VMap<char>          eliminated;
    int                 bwdsub_assigns;
    int                 n_touched;

    // Temporaries:
    //
    CRef                bwdsub_tmpunit;

    // Main internal methods:
    //
    lbool         solve_                   (bool do_simp = true, bool turn_off_simp = false);
    bool          asymm                    (Var v, CRef cr);
    bool          asymmVar                 (Var v);
    void          updateElimHeap           (Var v);
    void          gatherTouchedClauses     ();
    bool          merge                    (const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause);
    bool          merge                    (const Clause& _ps, const Clause& _qs, Var v, int& size);
    bool          backwardSubsumptionCheck (bool verbose = false);
    bool          eliminateVar             (Var v);
    void          extendModel              ();

    void          removeClause             (CRef cr);
    bool          strengthenClause         (CRef cr, Lit l);
    bool          implied                  (const vec<Lit>& c);
    void          relocAll                 (ClauseAllocator& to);
};


//=================================================================================================
// Implementation of inline methods:


inline bool SimpSolver::isEliminated (Var v) const { return eliminated[v]; }
inline void SimpSolver::updateElimHeap(Var v) {
    assert(use_simplification);
    // if (!frozen[v] && !isEliminated(v) && value(v) == l_Undef)
    if (elim_heap.inHeap(v) || (!frozen[v] && !isEliminated(v) && value(v) == l_Undef))
        elim_heap.update(v); }


inline bool SimpSolver::addClause    (const vec<Lit>& ps)    { ps.copyTo(add_tmp); return addClause_(add_tmp); }
inline bool SimpSolver::addEmptyClause()                     { add_tmp.clear(); return addClause_(add_tmp); }
inline bool SimpSolver::addClause    (Lit p)                 { add_tmp.clear(); add_tmp.push(p); return addClause_(add_tmp); }
inline bool SimpSolver::addClause    (Lit p, Lit q)          { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); return addClause_(add_tmp); }
inline bool SimpSolver::addClause    (Lit p, Lit q, Lit r)   { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); return addClause_(add_tmp); }
inline bool SimpSolver::addClause    (Lit p, Lit q, Lit r, Lit s){ add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); add_tmp.push(s); return addClause_(add_tmp); }
inline void SimpSolver::setFrozen    (Var v, bool b) { frozen[v] = (char)b; if (use_simplification && !b) { updateElimHeap(v); } }

inline void SimpSolver::freezeVar(Var v){
    if (!frozen[v]){
        frozen[v] = 1;
        frozen_vars.push(v); 
    } }

inline void SimpSolver::thaw(){
    for (int i = 0; i < frozen_vars.size(); i++){
        Var v = frozen_vars[i];
        frozen[v] = 0;
        if (use_simplification)
            updateElimHeap(v);
    }
    frozen_vars.clear(); }

inline bool SimpSolver::solve        (                     bool do_simp, bool turn_off_simp)  { budgetOff(); assumptions.clear(); return solve_(do_simp, turn_off_simp) == l_True; }
inline bool SimpSolver::solve        (Lit p       ,        bool do_simp, bool turn_off_simp)  { budgetOff(); assumptions.clear(); assumptions.push(p); return solve_(do_simp, turn_off_simp) == l_True; }
inline bool SimpSolver::solve        (Lit p, Lit q,        bool do_simp, bool turn_off_simp)  { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); return solve_(do_simp, turn_off_simp) == l_True; }
inline bool SimpSolver::solve        (Lit p, Lit q, Lit r, bool do_simp, bool turn_off_simp)  { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); assumptions.push(r); return solve_(do_simp, turn_off_simp) == l_True; }
inline bool SimpSolver::solve        (const vec<Lit>& assumps, bool do_simp, bool turn_off_simp){ 
    budgetOff(); assumps.copyTo(assumptions); return solve_(do_simp, turn_off_simp) == l_True; }

inline lbool SimpSolver::solveLimited (const vec<Lit>& assumps, bool do_simp, bool turn_off_simp){ 
    assumps.copyTo(assumptions); return solve_(do_simp, turn_off_simp); }

//=================================================================================================
}

#endif