summaryrefslogtreecommitdiff
path: root/libs/minisat/Solver.cc
blob: ab476853a227cd5175f6c79793cc12688bd24ee2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
#define __STDC_FORMAT_MACROS
#define __STDC_LIMIT_MACROS
/***************************************************************************************[Solver.cc]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/

#include <math.h>

#include "Alg.h"
#include "Sort.h"
#include "System.h"
#include "Solver.h"

using namespace Minisat;

//=================================================================================================
// Options:


static const char* _cat = "CORE";

static DoubleOption  opt_var_decay         (_cat, "var-decay",   "The variable activity decay factor",            0.95,     DoubleRange(0, false, 1, false));
static DoubleOption  opt_clause_decay      (_cat, "cla-decay",   "The clause activity decay factor",              0.999,    DoubleRange(0, false, 1, false));
static DoubleOption  opt_random_var_freq   (_cat, "rnd-freq",    "The frequency with which the decision heuristic tries to choose a random variable", 0, DoubleRange(0, true, 1, true));
static DoubleOption  opt_random_seed       (_cat, "rnd-seed",    "Used by the random variable selection",         91648253, DoubleRange(0, false, HUGE_VAL, false));
static IntOption     opt_ccmin_mode        (_cat, "ccmin-mode",  "Controls conflict clause minimization (0=none, 1=basic, 2=deep)", 2, IntRange(0, 2));
static IntOption     opt_phase_saving      (_cat, "phase-saving", "Controls the level of phase saving (0=none, 1=limited, 2=full)", 2, IntRange(0, 2));
static BoolOption    opt_rnd_init_act      (_cat, "rnd-init",    "Randomize the initial activity", false);
static BoolOption    opt_luby_restart      (_cat, "luby",        "Use the Luby restart sequence", true);
static IntOption     opt_restart_first     (_cat, "rfirst",      "The base restart interval", 100, IntRange(1, INT32_MAX));
static DoubleOption  opt_restart_inc       (_cat, "rinc",        "Restart interval increase factor", 2, DoubleRange(1, false, HUGE_VAL, false));
static DoubleOption  opt_garbage_frac      (_cat, "gc-frac",     "The fraction of wasted memory allowed before a garbage collection is triggered",  0.20, DoubleRange(0, false, HUGE_VAL, false));
static IntOption     opt_min_learnts_lim   (_cat, "min-learnts", "Minimum learnt clause limit",  0, IntRange(0, INT32_MAX));


//=================================================================================================
// Constructor/Destructor:


Solver::Solver() :

    // Parameters (user settable):
    //
    verbosity        (0)
  , var_decay        (opt_var_decay)
  , clause_decay     (opt_clause_decay)
  , random_var_freq  (opt_random_var_freq)
  , random_seed      (opt_random_seed)
  , luby_restart     (opt_luby_restart)
  , ccmin_mode       (opt_ccmin_mode)
  , phase_saving     (opt_phase_saving)
  , rnd_pol          (false)
  , rnd_init_act     (opt_rnd_init_act)
  , garbage_frac     (opt_garbage_frac)
  , min_learnts_lim  (opt_min_learnts_lim)
  , restart_first    (opt_restart_first)
  , restart_inc      (opt_restart_inc)

    // Parameters (the rest):
    //
  , learntsize_factor((double)1/(double)3), learntsize_inc(1.1)

    // Parameters (experimental):
    //
  , learntsize_adjust_start_confl (100)
  , learntsize_adjust_inc         (1.5)

    // Statistics: (formerly in 'SolverStats')
    //
  , solves(0), starts(0), decisions(0), rnd_decisions(0), propagations(0), conflicts(0)
  , dec_vars(0), num_clauses(0), num_learnts(0), clauses_literals(0), learnts_literals(0), max_literals(0), tot_literals(0)

  , watches            (WatcherDeleted(ca))
  , order_heap         (VarOrderLt(activity))
  , ok                 (true)
  , cla_inc            (1)
  , var_inc            (1)
  , qhead              (0)
  , simpDB_assigns     (-1)
  , simpDB_props       (0)
  , progress_estimate  (0)
  , remove_satisfied   (true)
  , next_var           (0)

    // Resource constraints:
    //
  , conflict_budget    (-1)
  , propagation_budget (-1)
  , asynch_interrupt   (false)
{}


Solver::~Solver()
{
}


//=================================================================================================
// Minor methods:


// Creates a new SAT variable in the solver. If 'decision' is cleared, variable will not be
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
//
Var Solver::newVar(lbool upol, bool dvar)
{
    Var v;
    if (free_vars.size() > 0){
        v = free_vars.last();
        free_vars.pop();
    }else
        v = next_var++;

    watches  .init(mkLit(v, false));
    watches  .init(mkLit(v, true ));
    assigns  .insert(v, l_Undef);
    vardata  .insert(v, mkVarData(CRef_Undef, 0));
    activity .insert(v, rnd_init_act ? drand(random_seed) * 0.00001 : 0);
    seen     .insert(v, 0);
    polarity .insert(v, true);
    user_pol .insert(v, upol);
    decision .reserve(v);
    trail    .capacity(v+1);
    setDecisionVar(v, dvar);
    return v;
}


// Note: at the moment, only unassigned variable will be released (this is to avoid duplicate
// releases of the same variable).
void Solver::releaseVar(Lit l)
{
    if (value(l) == l_Undef){
        addClause(l);
        released_vars.push(var(l));
    }
}


bool Solver::addClause_(vec<Lit>& ps)
{
    assert(decisionLevel() == 0);
    if (!ok) return false;

    // Check if clause is satisfied and remove false/duplicate literals:
    sort(ps);
    Lit p; int i, j;
    for (i = j = 0, p = lit_Undef; i < ps.size(); i++)
        if (value(ps[i]) == l_True || ps[i] == ~p)
            return true;
        else if (value(ps[i]) != l_False && ps[i] != p)
            ps[j++] = p = ps[i];
    ps.shrink(i - j);

    if (ps.size() == 0)
        return ok = false;
    else if (ps.size() == 1){
        uncheckedEnqueue(ps[0]);
        return ok = (propagate() == CRef_Undef);
    }else{
        CRef cr = ca.alloc(ps, false);
        clauses.push(cr);
        attachClause(cr);
    }

    return true;
}


void Solver::attachClause(CRef cr){
    const Clause& c = ca[cr];
    assert(c.size() > 1);
    watches[~c[0]].push(Watcher(cr, c[1]));
    watches[~c[1]].push(Watcher(cr, c[0]));
    if (c.learnt()) num_learnts++, learnts_literals += c.size();
    else            num_clauses++, clauses_literals += c.size();
}


void Solver::detachClause(CRef cr, bool strict){
    const Clause& c = ca[cr];
    assert(c.size() > 1);
    
    // Strict or lazy detaching:
    if (strict){
        remove(watches[~c[0]], Watcher(cr, c[1]));
        remove(watches[~c[1]], Watcher(cr, c[0]));
    }else{
        watches.smudge(~c[0]);
        watches.smudge(~c[1]);
    }

    if (c.learnt()) num_learnts--, learnts_literals -= c.size();
    else            num_clauses--, clauses_literals -= c.size();
}


void Solver::removeClause(CRef cr) {
    Clause& c = ca[cr];
    detachClause(cr);
    // Don't leave pointers to free'd memory!
    if (locked(c)) vardata[var(c[0])].reason = CRef_Undef;
    c.mark(1); 
    ca.free(cr);
}


bool Solver::satisfied(const Clause& c) const {
    for (int i = 0; i < c.size(); i++)
        if (value(c[i]) == l_True)
            return true;
    return false; }


// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
//
void Solver::cancelUntil(int level) {
    if (decisionLevel() > level){
        for (int c = trail.size()-1; c >= trail_lim[level]; c--){
            Var      x  = var(trail[c]);
            assigns [x] = l_Undef;
            if (phase_saving > 1 || (phase_saving == 1 && c > trail_lim.last()))
                polarity[x] = sign(trail[c]);
            insertVarOrder(x); }
        qhead = trail_lim[level];
        trail.shrink(trail.size() - trail_lim[level]);
        trail_lim.shrink(trail_lim.size() - level);
    } }


//=================================================================================================
// Major methods:


Lit Solver::pickBranchLit()
{
    Var next = var_Undef;

    // Random decision:
    if (drand(random_seed) < random_var_freq && !order_heap.empty()){
        next = order_heap[irand(random_seed,order_heap.size())];
        if (value(next) == l_Undef && decision[next])
            rnd_decisions++; }

    // Activity based decision:
    while (next == var_Undef || value(next) != l_Undef || !decision[next])
        if (order_heap.empty()){
            next = var_Undef;
            break;
        }else
            next = order_heap.removeMin();

    // Choose polarity based on different polarity modes (global or per-variable):
    if (next == var_Undef)
        return lit_Undef;
    else if (user_pol[next] != l_Undef)
        return mkLit(next, user_pol[next] == l_True);
    else if (rnd_pol)
        return mkLit(next, drand(random_seed) < 0.5);
    else
        return mkLit(next, polarity[next]);
}


/*_________________________________________________________________________________________________
|
|  analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&)  ->  [void]
|  
|  Description:
|    Analyze conflict and produce a reason clause.
|  
|    Pre-conditions:
|      * 'out_learnt' is assumed to be cleared.
|      * Current decision level must be greater than root level.
|  
|    Post-conditions:
|      * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
|      * If out_learnt.size() > 1 then 'out_learnt[1]' has the greatest decision level of the 
|        rest of literals. There may be others from the same level though.
|  
|________________________________________________________________________________________________@*/
void Solver::analyze(CRef confl, vec<Lit>& out_learnt, int& out_btlevel)
{
    int pathC = 0;
    Lit p     = lit_Undef;

    // Generate conflict clause:
    //
    out_learnt.push();      // (leave room for the asserting literal)
    int index   = trail.size() - 1;

    do{
        assert(confl != CRef_Undef); // (otherwise should be UIP)
        Clause& c = ca[confl];

        if (c.learnt())
            claBumpActivity(c);

        for (int j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++){
            Lit q = c[j];

            if (!seen[var(q)] && level(var(q)) > 0){
                varBumpActivity(var(q));
                seen[var(q)] = 1;
                if (level(var(q)) >= decisionLevel())
                    pathC++;
                else
                    out_learnt.push(q);
            }
        }
        
        // Select next clause to look at:
        while (!seen[var(trail[index--])]);
        p     = trail[index+1];
        confl = reason(var(p));
        seen[var(p)] = 0;
        pathC--;

    }while (pathC > 0);
    out_learnt[0] = ~p;

    // Simplify conflict clause:
    //
    int i, j;
    out_learnt.copyTo(analyze_toclear);
    if (ccmin_mode == 2){
        for (i = j = 1; i < out_learnt.size(); i++)
            if (reason(var(out_learnt[i])) == CRef_Undef || !litRedundant(out_learnt[i]))
                out_learnt[j++] = out_learnt[i];
        
    }else if (ccmin_mode == 1){
        for (i = j = 1; i < out_learnt.size(); i++){
            Var x = var(out_learnt[i]);

            if (reason(x) == CRef_Undef)
                out_learnt[j++] = out_learnt[i];
            else{
                Clause& c = ca[reason(var(out_learnt[i]))];
                for (int k = 1; k < c.size(); k++)
                    if (!seen[var(c[k])] && level(var(c[k])) > 0){
                        out_learnt[j++] = out_learnt[i];
                        break; }
            }
        }
    }else
        i = j = out_learnt.size();

    max_literals += out_learnt.size();
    out_learnt.shrink(i - j);
    tot_literals += out_learnt.size();

    // Find correct backtrack level:
    //
    if (out_learnt.size() == 1)
        out_btlevel = 0;
    else{
        int max_i = 1;
        // Find the first literal assigned at the next-highest level:
        for (int i = 2; i < out_learnt.size(); i++)
            if (level(var(out_learnt[i])) > level(var(out_learnt[max_i])))
                max_i = i;
        // Swap-in this literal at index 1:
        Lit p             = out_learnt[max_i];
        out_learnt[max_i] = out_learnt[1];
        out_learnt[1]     = p;
        out_btlevel       = level(var(p));
    }

    for (int j = 0; j < analyze_toclear.size(); j++) seen[var(analyze_toclear[j])] = 0;    // ('seen[]' is now cleared)
}


// Check if 'p' can be removed from a conflict clause.
bool Solver::litRedundant(Lit p)
{
    enum { seen_undef = 0, seen_source = 1, seen_removable = 2, seen_failed = 3 };
    assert(seen[var(p)] == seen_undef || seen[var(p)] == seen_source);
    assert(reason(var(p)) != CRef_Undef);

    Clause*               c     = &ca[reason(var(p))];
    vec<ShrinkStackElem>& stack = analyze_stack;
    stack.clear();

    for (uint32_t i = 1; ; i++){
        if (i < (uint32_t)c->size()){
            // Checking 'p'-parents 'l':
            Lit l = (*c)[i];
            
            // Variable at level 0 or previously removable:
            if (level(var(l)) == 0 || seen[var(l)] == seen_source || seen[var(l)] == seen_removable){
                continue; }
            
            // Check variable can not be removed for some local reason:
            if (reason(var(l)) == CRef_Undef || seen[var(l)] == seen_failed){
                stack.push(ShrinkStackElem(0, p));
                for (int i = 0; i < stack.size(); i++)
                    if (seen[var(stack[i].l)] == seen_undef){
                        seen[var(stack[i].l)] = seen_failed;
                        analyze_toclear.push(stack[i].l);
                    }
                    
                return false;
            }

            // Recursively check 'l':
            stack.push(ShrinkStackElem(i, p));
            i  = 0;
            p  = l;
            c  = &ca[reason(var(p))];
        }else{
            // Finished with current element 'p' and reason 'c':
            if (seen[var(p)] == seen_undef){
                seen[var(p)] = seen_removable;
                analyze_toclear.push(p);
            }

            // Terminate with success if stack is empty:
            if (stack.size() == 0) break;
            
            // Continue with top element on stack:
            i  = stack.last().i;
            p  = stack.last().l;
            c  = &ca[reason(var(p))];

            stack.pop();
        }
    }

    return true;
}


/*_________________________________________________________________________________________________
|
|  analyzeFinal : (p : Lit)  ->  [void]
|  
|  Description:
|    Specialized analysis procedure to express the final conflict in terms of assumptions.
|    Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
|    stores the result in 'out_conflict'.
|________________________________________________________________________________________________@*/
void Solver::analyzeFinal(Lit p, LSet& out_conflict)
{
    out_conflict.clear();
    out_conflict.insert(p);

    if (decisionLevel() == 0)
        return;

    seen[var(p)] = 1;

    for (int i = trail.size()-1; i >= trail_lim[0]; i--){
        Var x = var(trail[i]);
        if (seen[x]){
            if (reason(x) == CRef_Undef){
                assert(level(x) > 0);
                out_conflict.insert(~trail[i]);
            }else{
                Clause& c = ca[reason(x)];
                for (int j = 1; j < c.size(); j++)
                    if (level(var(c[j])) > 0)
                        seen[var(c[j])] = 1;
            }
            seen[x] = 0;
        }
    }

    seen[var(p)] = 0;
}


void Solver::uncheckedEnqueue(Lit p, CRef from)
{
    assert(value(p) == l_Undef);
    assigns[var(p)] = lbool(!sign(p));
    vardata[var(p)] = mkVarData(from, decisionLevel());
    trail.push_(p);
}


/*_________________________________________________________________________________________________
|
|  propagate : [void]  ->  [Clause*]
|  
|  Description:
|    Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
|    otherwise CRef_Undef.
|  
|    Post-conditions:
|      * the propagation queue is empty, even if there was a conflict.
|________________________________________________________________________________________________@*/
CRef Solver::propagate()
{
    CRef    confl     = CRef_Undef;
    int     num_props = 0;

    while (qhead < trail.size()){
        Lit            p   = trail[qhead++];     // 'p' is enqueued fact to propagate.
        vec<Watcher>&  ws  = watches.lookup(p);
        Watcher        *i, *j, *end;
        num_props++;

        for (i = j = (Watcher*)ws, end = i + ws.size();  i != end;){
            // Try to avoid inspecting the clause:
            Lit blocker = i->blocker;
            if (value(blocker) == l_True){
                *j++ = *i++; continue; }

            // Make sure the false literal is data[1]:
            CRef     cr        = i->cref;
            Clause&  c         = ca[cr];
            Lit      false_lit = ~p;
            if (c[0] == false_lit)
                c[0] = c[1], c[1] = false_lit;
            assert(c[1] == false_lit);
            i++;

            // If 0th watch is true, then clause is already satisfied.
            Lit     first = c[0];
            Watcher w     = Watcher(cr, first);
            if (first != blocker && value(first) == l_True){
                *j++ = w; continue; }

            // Look for new watch:
            for (int k = 2; k < c.size(); k++)
                if (value(c[k]) != l_False){
                    c[1] = c[k]; c[k] = false_lit;
                    watches[~c[1]].push(w);
                    goto NextClause; }

            // Did not find watch -- clause is unit under assignment:
            *j++ = w;
            if (value(first) == l_False){
                confl = cr;
                qhead = trail.size();
                // Copy the remaining watches:
                while (i < end)
                    *j++ = *i++;
            }else
                uncheckedEnqueue(first, cr);

        NextClause:;
        }
        ws.shrink(i - j);
    }
    propagations += num_props;
    simpDB_props -= num_props;

    return confl;
}


/*_________________________________________________________________________________________________
|
|  reduceDB : ()  ->  [void]
|  
|  Description:
|    Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
|    clauses are clauses that are reason to some assignment. Binary clauses are never removed.
|________________________________________________________________________________________________@*/
struct reduceDB_lt { 
    ClauseAllocator& ca;
    reduceDB_lt(ClauseAllocator& ca_) : ca(ca_) {}
    bool operator () (CRef x, CRef y) { 
        return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); } 
};
void Solver::reduceDB()
{
    int     i, j;
    double  extra_lim = cla_inc / learnts.size();    // Remove any clause below this activity

    sort(learnts, reduceDB_lt(ca));
    // Don't delete binary or locked clauses. From the rest, delete clauses from the first half
    // and clauses with activity smaller than 'extra_lim':
    for (i = j = 0; i < learnts.size(); i++){
        Clause& c = ca[learnts[i]];
        if (c.size() > 2 && !locked(c) && (i < learnts.size() / 2 || c.activity() < extra_lim))
            removeClause(learnts[i]);
        else
            learnts[j++] = learnts[i];
    }
    learnts.shrink(i - j);
    checkGarbage();
}


void Solver::removeSatisfied(vec<CRef>& cs)
{
    int i, j;
    for (i = j = 0; i < cs.size(); i++){
        Clause& c = ca[cs[i]];
        if (satisfied(c))
            removeClause(cs[i]);
        else{
            // Trim clause:
            assert(value(c[0]) == l_Undef && value(c[1]) == l_Undef);
            for (int k = 2; k < c.size(); k++)
                if (value(c[k]) == l_False){
                    c[k--] = c[c.size()-1];
                    c.pop();
                }
            cs[j++] = cs[i];
        }
    }
    cs.shrink(i - j);
}


void Solver::rebuildOrderHeap()
{
    vec<Var> vs;
    for (Var v = 0; v < nVars(); v++)
        if (decision[v] && value(v) == l_Undef)
            vs.push(v);
    order_heap.build(vs);
}


/*_________________________________________________________________________________________________
|
|  simplify : [void]  ->  [bool]
|  
|  Description:
|    Simplify the clause database according to the current top-level assigment. Currently, the only
|    thing done here is the removal of satisfied clauses, but more things can be put here.
|________________________________________________________________________________________________@*/
bool Solver::simplify()
{
    assert(decisionLevel() == 0);

    if (!ok || propagate() != CRef_Undef)
        return ok = false;

    if (nAssigns() == simpDB_assigns || (simpDB_props > 0))
        return true;

    // Remove satisfied clauses:
    removeSatisfied(learnts);
    if (remove_satisfied){       // Can be turned off.
        removeSatisfied(clauses);

        // TODO: what todo in if 'remove_satisfied' is false?

        // Remove all released variables from the trail:
        for (int i = 0; i < released_vars.size(); i++){
            assert(seen[released_vars[i]] == 0);
            seen[released_vars[i]] = 1;
        }

        int i, j;
        for (i = j = 0; i < trail.size(); i++)
            if (seen[var(trail[i])] == 0)
                trail[j++] = trail[i];
        trail.shrink(i - j);
        //printf("trail.size()= %d, qhead = %d\n", trail.size(), qhead);
        qhead = trail.size();

        for (int i = 0; i < released_vars.size(); i++)
            seen[released_vars[i]] = 0;

        // Released variables are now ready to be reused:
        append(released_vars, free_vars);
        released_vars.clear();
    }
    checkGarbage();
    rebuildOrderHeap();

    simpDB_assigns = nAssigns();
    simpDB_props   = clauses_literals + learnts_literals;   // (shouldn't depend on stats really, but it will do for now)

    return true;
}


/*_________________________________________________________________________________________________
|
|  search : (nof_conflicts : int) (params : const SearchParams&)  ->  [lbool]
|  
|  Description:
|    Search for a model the specified number of conflicts. 
|    NOTE! Use negative value for 'nof_conflicts' indicate infinity.
|  
|  Output:
|    'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
|    all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
|    if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
|________________________________________________________________________________________________@*/
lbool Solver::search(int nof_conflicts)
{
    assert(ok);
    int         backtrack_level;
    int         conflictC = 0;
    vec<Lit>    learnt_clause;
    starts++;

    for (;;){
        CRef confl = propagate();
        if (confl != CRef_Undef){
            // CONFLICT
            conflicts++; conflictC++;
            if (decisionLevel() == 0) return l_False;

            learnt_clause.clear();
            analyze(confl, learnt_clause, backtrack_level);
            cancelUntil(backtrack_level);

            if (learnt_clause.size() == 1){
                uncheckedEnqueue(learnt_clause[0]);
            }else{
                CRef cr = ca.alloc(learnt_clause, true);
                learnts.push(cr);
                attachClause(cr);
                claBumpActivity(ca[cr]);
                uncheckedEnqueue(learnt_clause[0], cr);
            }

            varDecayActivity();
            claDecayActivity();

            if (--learntsize_adjust_cnt == 0){
                learntsize_adjust_confl *= learntsize_adjust_inc;
                learntsize_adjust_cnt    = (int)learntsize_adjust_confl;
                max_learnts             *= learntsize_inc;

                if (verbosity >= 1)
                    printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n", 
                           (int)conflicts, 
                           (int)dec_vars - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]), nClauses(), (int)clauses_literals, 
                           (int)max_learnts, nLearnts(), (double)learnts_literals/nLearnts(), progressEstimate()*100);
            }

        }else{
            // NO CONFLICT
            if ((nof_conflicts >= 0 && conflictC >= nof_conflicts) || !withinBudget()){
                // Reached bound on number of conflicts:
                progress_estimate = progressEstimate();
                cancelUntil(0);
                return l_Undef; }

            // Simplify the set of problem clauses:
            if (decisionLevel() == 0 && !simplify())
                return l_False;

            if (learnts.size()-nAssigns() >= max_learnts)
                // Reduce the set of learnt clauses:
                reduceDB();

            Lit next = lit_Undef;
            while (decisionLevel() < assumptions.size()){
                // Perform user provided assumption:
                Lit p = assumptions[decisionLevel()];
                if (value(p) == l_True){
                    // Dummy decision level:
                    newDecisionLevel();
                }else if (value(p) == l_False){
                    analyzeFinal(~p, conflict);
                    return l_False;
                }else{
                    next = p;
                    break;
                }
            }

            if (next == lit_Undef){
                // New variable decision:
                decisions++;
                next = pickBranchLit();

                if (next == lit_Undef)
                    // Model found:
                    return l_True;
            }

            // Increase decision level and enqueue 'next'
            newDecisionLevel();
            uncheckedEnqueue(next);
        }
    }
}


double Solver::progressEstimate() const
{
    double  progress = 0;
    double  F = 1.0 / nVars();

    for (int i = 0; i <= decisionLevel(); i++){
        int beg = i == 0 ? 0 : trail_lim[i - 1];
        int end = i == decisionLevel() ? trail.size() : trail_lim[i];
        progress += pow(F, i) * (end - beg);
    }

    return progress / nVars();
}

/*
  Finite subsequences of the Luby-sequence:

  0: 1
  1: 1 1 2
  2: 1 1 2 1 1 2 4
  3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8
  ...


 */

static double luby(double y, int x){

    // Find the finite subsequence that contains index 'x', and the
    // size of that subsequence:
    int size, seq;
    for (size = 1, seq = 0; size < x+1; seq++, size = 2*size+1);

    while (size-1 != x){
        size = (size-1)>>1;
        seq--;
        x = x % size;
    }

    return pow(y, seq);
}

// NOTE: assumptions passed in member-variable 'assumptions'.
lbool Solver::solve_()
{
    model.clear();
    conflict.clear();
    if (!ok) return l_False;

    solves++;

    max_learnts = nClauses() * learntsize_factor;
    if (max_learnts < min_learnts_lim)
        max_learnts = min_learnts_lim;

    learntsize_adjust_confl   = learntsize_adjust_start_confl;
    learntsize_adjust_cnt     = (int)learntsize_adjust_confl;
    lbool   status            = l_Undef;

    if (verbosity >= 1){
        printf("============================[ Search Statistics ]==============================\n");
        printf("| Conflicts |          ORIGINAL         |          LEARNT          | Progress |\n");
        printf("|           |    Vars  Clauses Literals |    Limit  Clauses Lit/Cl |          |\n");
        printf("===============================================================================\n");
    }

    // Search:
    int curr_restarts = 0;
    while (status == l_Undef){
        double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts);
        status = search(rest_base * restart_first);
        if (!withinBudget()) break;
        curr_restarts++;
    }

    if (verbosity >= 1)
        printf("===============================================================================\n");


    if (status == l_True){
        // Extend & copy model:
        model.growTo(nVars());
        for (int i = 0; i < nVars(); i++) model[i] = value(i);
    }else if (status == l_False && conflict.size() == 0)
        ok = false;

    cancelUntil(0);
    return status;
}


bool Solver::implies(const vec<Lit>& assumps, vec<Lit>& out)
{
    trail_lim.push(trail.size());
    for (int i = 0; i < assumps.size(); i++){
        Lit a = assumps[i];

        if (value(a) == l_False){
            cancelUntil(0);
            return false;
        }else if (value(a) == l_Undef)
            uncheckedEnqueue(a);
    }

    unsigned trail_before = trail.size();
    bool     ret          = true;
    if (propagate() == CRef_Undef){
        out.clear();
        for (int j = trail_before; j < trail.size(); j++)
            out.push(trail[j]);
    }else
        ret = false;
    
    cancelUntil(0);
    return ret;
}

//=================================================================================================
// Writing CNF to DIMACS:
// 
// FIXME: this needs to be rewritten completely.

static Var mapVar(Var x, vec<Var>& map, Var& max)
{
    if (map.size() <= x || map[x] == -1){
        map.growTo(x+1, -1);
        map[x] = max++;
    }
    return map[x];
}


void Solver::toDimacs(FILE* f, Clause& c, vec<Var>& map, Var& max)
{
    if (satisfied(c)) return;

    for (int i = 0; i < c.size(); i++)
        if (value(c[i]) != l_False)
            fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", mapVar(var(c[i]), map, max)+1);
    fprintf(f, "0\n");
}


void Solver::toDimacs(const char *file, const vec<Lit>& assumps)
{
    FILE* f = fopen(file, "wr");
    if (f == NULL)
        fprintf(stderr, "could not open file %s\n", file), exit(1);
    toDimacs(f, assumps);
    fclose(f);
}


void Solver::toDimacs(FILE* f, const vec<Lit>& assumps)
{
    // Handle case when solver is in contradictory state:
    if (!ok){
        fprintf(f, "p cnf 1 2\n1 0\n-1 0\n");
        return; }

    vec<Var> map; Var max = 0;

    // Cannot use removeClauses here because it is not safe
    // to deallocate them at this point. Could be improved.
    int cnt = 0;
    for (int i = 0; i < clauses.size(); i++)
        if (!satisfied(ca[clauses[i]]))
            cnt++;
        
    for (int i = 0; i < clauses.size(); i++)
        if (!satisfied(ca[clauses[i]])){
            Clause& c = ca[clauses[i]];
            for (int j = 0; j < c.size(); j++)
                if (value(c[j]) != l_False)
                    mapVar(var(c[j]), map, max);
        }

    // Assumptions are added as unit clauses:
    cnt += assumps.size();

    fprintf(f, "p cnf %d %d\n", max, cnt);

    for (int i = 0; i < assumps.size(); i++){
        assert(value(assumps[i]) != l_False);
        fprintf(f, "%s%d 0\n", sign(assumps[i]) ? "-" : "", mapVar(var(assumps[i]), map, max)+1);
    }

    for (int i = 0; i < clauses.size(); i++)
        toDimacs(f, ca[clauses[i]], map, max);

    if (verbosity > 0)
        printf("Wrote DIMACS with %d variables and %d clauses.\n", max, cnt);
}


void Solver::printStats() const
{
    double cpu_time = cpuTime();
    double mem_used = memUsedPeak();
    printf("restarts              : %" PRIu64 "\n", starts);
    printf("conflicts             : %-12" PRIu64 "   (%.0f /sec)\n", conflicts   , conflicts   /cpu_time);
    printf("decisions             : %-12" PRIu64 "   (%4.2f %% random) (%.0f /sec)\n", decisions, (float)rnd_decisions*100 / (float)decisions, decisions   /cpu_time);
    printf("propagations          : %-12" PRIu64 "   (%.0f /sec)\n", propagations, propagations/cpu_time);
    printf("conflict literals     : %-12" PRIu64 "   (%4.2f %% deleted)\n", tot_literals, (max_literals - tot_literals)*100 / (double)max_literals);
    if (mem_used != 0) printf("Memory used           : %.2f MB\n", mem_used);
    printf("CPU time              : %g s\n", cpu_time);
}


//=================================================================================================
// Garbage Collection methods:

void Solver::relocAll(ClauseAllocator& to)
{
    // All watchers:
    //
    watches.cleanAll();
    for (int v = 0; v < nVars(); v++)
        for (int s = 0; s < 2; s++){
            Lit p = mkLit(v, s);
            vec<Watcher>& ws = watches[p];
            for (int j = 0; j < ws.size(); j++)
                ca.reloc(ws[j].cref, to);
        }

    // All reasons:
    //
    for (int i = 0; i < trail.size(); i++){
        Var v = var(trail[i]);

        // Note: it is not safe to call 'locked()' on a relocated clause. This is why we keep
        // 'dangling' reasons here. It is safe and does not hurt.
        if (reason(v) != CRef_Undef && (ca[reason(v)].reloced() || locked(ca[reason(v)]))){
            assert(!isRemoved(reason(v)));
            ca.reloc(vardata[v].reason, to);
        }
    }

    // All learnt:
    //
    int i, j;
    for (i = j = 0; i < learnts.size(); i++)
        if (!isRemoved(learnts[i])){
            ca.reloc(learnts[i], to);
            learnts[j++] = learnts[i];
        }
    learnts.shrink(i - j);

    // All original:
    //
    for (i = j = 0; i < clauses.size(); i++)
        if (!isRemoved(clauses[i])){
            ca.reloc(clauses[i], to);
            clauses[j++] = clauses[i];
        }
    clauses.shrink(i - j);
}


void Solver::garbageCollect()
{
    // Initialize the next region to a size corresponding to the estimated utilization degree. This
    // is not precise but should avoid some unnecessary reallocations for the new region:
    ClauseAllocator to(ca.size() - ca.wasted()); 

    relocAll(to);
    if (verbosity >= 2)
        printf("|  Garbage collection:   %12d bytes => %12d bytes             |\n", 
               ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
    to.moveTo(ca);
}