summaryrefslogtreecommitdiff
path: root/passes/equiv/equiv_induct.cc
blob: c5b4eda72d8a34934fee25428f09b7ac1680704e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *  
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *  
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/yosys.h"
#include "kernel/satgen.h"
#include "kernel/sigtools.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

struct EquivInductWorker
{
	Module *module;
	SigMap sigmap;

	vector<Cell*> cells;
	pool<Cell*> workset;

	ezDefaultSAT ez;
	SatGen satgen;

	int max_seq;
	int success_counter;

	dict<int, int> ez_step_is_consistent;
	pool<Cell*> cell_warn_cache;
	SigPool undriven_signals;

	EquivInductWorker(Module *module, const pool<Cell*> &unproven_equiv_cells, bool model_undef, int max_seq) : module(module), sigmap(module),
			cells(module->selected_cells()), workset(unproven_equiv_cells), satgen(&ez, &sigmap), max_seq(max_seq), success_counter(0)
	{
		satgen.model_undef = model_undef;
	}

	void create_timestep(int step)
	{
		vector<int> ez_equal_terms;

		for (auto cell : cells) {
			if (!satgen.importCell(cell, step) && !cell_warn_cache.count(cell)) {
				log_warning("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type));
				cell_warn_cache.insert(cell);
			}
			if (cell->type == "$equiv") {
				SigBit bit_a = sigmap(cell->getPort("\\A")).to_single_sigbit();
				SigBit bit_b = sigmap(cell->getPort("\\B")).to_single_sigbit();
				if (bit_a != bit_b) {
					int ez_a = satgen.importSigBit(bit_a, step);
					int ez_b = satgen.importSigBit(bit_b, step);
					int cond = ez.IFF(ez_a, ez_b);
					if (satgen.model_undef)
						cond = ez.OR(cond, satgen.importUndefSigBit(bit_a, step));
					ez_equal_terms.push_back(cond);
				}
			}
		}

		if (satgen.model_undef) {
			for (auto bit : undriven_signals.export_all())
				ez.assume(ez.NOT(satgen.importUndefSigBit(bit, step)));
		}

		log_assert(!ez_step_is_consistent.count(step));
		ez_step_is_consistent[step] = ez.expression(ez.OpAnd, ez_equal_terms);
	}

	void run()
	{
		log("Found %d unproven $equiv cells in module %s:\n", GetSize(workset), log_id(module));

		if (satgen.model_undef) {
			for (auto cell : cells)
				if (yosys_celltypes.cell_known(cell->type))
					for (auto &conn : cell->connections())
						if (yosys_celltypes.cell_input(cell->type, conn.first))
							undriven_signals.add(sigmap(conn.second));
			for (auto cell : cells)
				if (yosys_celltypes.cell_known(cell->type))
					for (auto &conn : cell->connections())
						if (yosys_celltypes.cell_output(cell->type, conn.first))
							undriven_signals.del(sigmap(conn.second));
		}

		create_timestep(1);

		if (satgen.model_undef) {
			for (auto bit : satgen.initial_state.export_all())
				ez.assume(ez.NOT(satgen.importUndefSigBit(bit, 1)));
			log("  Undef modelling: force def on %d initial reg values and %d inputs.\n",
				GetSize(satgen.initial_state), GetSize(undriven_signals));
		}

		for (int step = 1; step <= max_seq; step++)
		{
			ez.assume(ez_step_is_consistent[step]);

			log("  Proving existence of base case for step %d. (%d clauses over %d variables)\n", step, ez.numCnfClauses(), ez.numCnfVariables());
			if (!ez.solve()) {
				log("  Proof for base case failed. Circuit inherently diverges!\n");
				return;
			}

			create_timestep(step+1);
			int new_step_not_consistent = ez.NOT(ez_step_is_consistent[step+1]);
			ez.bind(new_step_not_consistent);

			log("  Proving induction step %d. (%d clauses over %d variables)\n", step, ez.numCnfClauses(), ez.numCnfVariables());
			if (!ez.solve(new_step_not_consistent)) {
				log("  Proof for induction step holds. Entire workset of %d cells proven!\n", GetSize(workset));
				for (auto cell : workset)
					cell->setPort("\\B", cell->getPort("\\A"));
				success_counter += GetSize(workset);
				return;
			}

			log("  Proof for induction step failed. %s\n", step != max_seq ? "Extending to next time step." : "Trying to prove individual $equiv from workset.");
		}

		workset.sort();

		for (auto cell : workset)
		{
			SigBit bit_a = sigmap(cell->getPort("\\A")).to_single_sigbit();
			SigBit bit_b = sigmap(cell->getPort("\\B")).to_single_sigbit();

			log("  Trying to prove $equiv for %s:", log_signal(sigmap(cell->getPort("\\Y"))));

			int ez_a = satgen.importSigBit(bit_a, max_seq+1);
			int ez_b = satgen.importSigBit(bit_b, max_seq+1);
			int cond = ez.XOR(ez_a, ez_b);

			if (satgen.model_undef)
				cond = ez.AND(cond, ez.NOT(satgen.importUndefSigBit(bit_a, max_seq+1)));

			if (!ez.solve(cond)) {
				log(" success!\n");
				cell->setPort("\\B", cell->getPort("\\A"));
				success_counter++;
			} else {
				log(" failed.\n");
			}
		}
	}
};

struct EquivInductPass : public Pass {
	EquivInductPass() : Pass("equiv_induct", "proving $equiv cells using temporal induction") { }
	virtual void help()
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    equiv_induct [options] [selection]\n");
		log("\n");
		log("Uses a version of temporal induction to prove $equiv cells.\n");
		log("\n");
		log("Only selected $equiv cells are proven and only selected cells are used to\n");
		log("perform the proof.\n");
		log("\n");
		log("    -undef\n");
		log("        enable modelling of undef states\n");
		log("\n");
		log("    -seq <N>\n");
		log("        the max. number of time steps to be considered (default = 4)\n");
		log("\n");
		log("This command is very effective in proving complex sequential circuits, when\n");
		log("the internal state of the circuit quickly propagates to $equiv cells.\n");
		log("\n");
		log("However, this command uses a weak definition of 'equivalence': This command\n");
		log("proves that the two circuits will not diverge after they produce equal\n");
		log("outputs (observable points via $equiv) for at least <N> cycles (the <N>\n");
		log("specified via -seq).\n");
		log("\n");
		log("Combined with simulation this is very powerful because simulation can give\n");
		log("you confidence that the circuits start out synced for at least <N> cycles\n");
		log("after reset.\n");
		log("\n");
	}
	virtual void execute(std::vector<std::string> args, Design *design)
	{
		int success_counter = 0;
		bool model_undef = false;
		int max_seq = 4;

		log_header("Executing EQUIV_INDUCT pass.\n");

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++) {
			if (args[argidx] == "-undef") {
				model_undef = true;
				continue;
			}
			if (args[argidx] == "-seq" && argidx+1 < args.size()) {
				max_seq = atoi(args[++argidx].c_str());
				continue;
			}
			break;
		}
		extra_args(args, argidx, design);

		for (auto module : design->selected_modules())
		{
			pool<Cell*> unproven_equiv_cells;

			for (auto cell : module->selected_cells())
				if (cell->type == "$equiv") {
					if (cell->getPort("\\A") != cell->getPort("\\B"))
						unproven_equiv_cells.insert(cell);
				}

			if (unproven_equiv_cells.empty()) {
				log("No selected unproven $equiv cells found in %s.\n", log_id(module));
				continue;
			}

			EquivInductWorker worker(module, unproven_equiv_cells, model_undef, max_seq);
			worker.run();
			success_counter += worker.success_counter;
		}

		log("Proved %d previously unproven $equiv cells.\n", success_counter);
	}
} EquivInductPass;

PRIVATE_NAMESPACE_END