summaryrefslogtreecommitdiff
path: root/passes/sat/sat.cc
blob: 3000c54a025a4d5017b6313d780572ed856e1415 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *  
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *  
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

// [[CITE]] Temporal Induction by Incremental SAT Solving
// Niklas Een and Niklas Sörensson (2003)
// http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.8161

#include "kernel/register.h"
#include "kernel/celltypes.h"
#include "kernel/consteval.h"
#include "kernel/sigtools.h"
#include "kernel/log.h"
#include "kernel/satgen.h"
#include <stdlib.h>
#include <stdio.h>
#include <algorithm>

namespace {

struct SatHelper
{
	RTLIL::Design *design;
	RTLIL::Module *module;

	ezDefaultSAT ez;
	SigMap sigmap;
	CellTypes ct;
	SatGen satgen;

	// additional constraints
	std::vector<std::pair<std::string, std::string>> sets, prove;
	std::map<int, std::vector<std::pair<std::string, std::string>>> sets_at;
	std::map<int, std::vector<std::string>> unsets_at;

	// model variables
	std::vector<std::string> shows;
	SigPool show_signal_pool;
	SigSet<RTLIL::Cell*> show_drivers;
	int max_timestep;

	SatHelper(RTLIL::Design *design, RTLIL::Module *module) :
		design(design), module(module), sigmap(module), ct(design), satgen(&ez, design, &sigmap)
	{
		max_timestep = -1;
	}

	void setup(int timestep = -1)
	{
		if (timestep > 0)
			log ("\nSetting up time step %d:\n", timestep);
		else
			log ("\nSetting up SAT problem:\n");

		if (timestep > max_timestep)
			max_timestep = timestep;

		RTLIL::SigSpec big_lhs, big_rhs;

		for (auto &s : sets)
		{
			RTLIL::SigSpec lhs, rhs;

			if (!RTLIL::SigSpec::parse(lhs, module, s.first))
				log_cmd_error("Failed to parse lhs set expression `%s'.\n", s.first.c_str());
			if (!RTLIL::SigSpec::parse(rhs, module, s.second))
				log_cmd_error("Failed to parse rhs set expression `%s'.\n", s.second.c_str());
			show_signal_pool.add(sigmap(lhs));
			show_signal_pool.add(sigmap(rhs));

			if (lhs.width != rhs.width)
				log_cmd_error("Set expression with different lhs and rhs sizes: %s (%s, %d bits) vs. %s (%s, %d bits)\n",
					s.first.c_str(), log_signal(lhs), lhs.width, s.second.c_str(), log_signal(rhs), rhs.width);

			log("Import set-constraint: %s = %s\n", log_signal(lhs), log_signal(rhs));
			big_lhs.remove2(lhs, &big_rhs);
			big_lhs.append(lhs);
			big_rhs.append(rhs);
		}

		for (auto &s : sets_at[timestep])
		{
			RTLIL::SigSpec lhs, rhs;

			if (!RTLIL::SigSpec::parse(lhs, module, s.first))
				log_cmd_error("Failed to parse lhs set expression `%s'.\n", s.first.c_str());
			if (!RTLIL::SigSpec::parse(rhs, module, s.second))
				log_cmd_error("Failed to parse rhs set expression `%s'.\n", s.second.c_str());
			show_signal_pool.add(sigmap(lhs));
			show_signal_pool.add(sigmap(rhs));

			if (lhs.width != rhs.width)
				log_cmd_error("Set expression with different lhs and rhs sizes: %s (%s, %d bits) vs. %s (%s, %d bits)\n",
					s.first.c_str(), log_signal(lhs), lhs.width, s.second.c_str(), log_signal(rhs), rhs.width);

			log("Import set-constraint for timestep: %s = %s\n", log_signal(lhs), log_signal(rhs));
			big_lhs.remove2(lhs, &big_rhs);
			big_lhs.append(lhs);
			big_rhs.append(rhs);
		}

		for (auto &s : unsets_at[timestep])
		{
			RTLIL::SigSpec lhs;

			if (!RTLIL::SigSpec::parse(lhs, module, s))
				log_cmd_error("Failed to parse lhs set expression `%s'.\n", s.c_str());
			show_signal_pool.add(sigmap(lhs));

			log("Import unset-constraint for timestep: %s\n", log_signal(lhs));
			big_lhs.remove2(lhs, &big_rhs);
		}

		log("Final constraint equation: %s = %s\n", log_signal(big_lhs), log_signal(big_rhs));

		std::vector<int> lhs_vec = satgen.importSigSpec(big_lhs, timestep);
		std::vector<int> rhs_vec = satgen.importSigSpec(big_rhs, timestep);
		ez.assume(ez.vec_eq(lhs_vec, rhs_vec));

		int import_cell_counter = 0;
		for (auto &c : module->cells)
			if (design->selected(module, c.second)) {
				// log("Import cell: %s\n", RTLIL::id2cstr(c.first));
				if (satgen.importCell(c.second, timestep)) {
					for (auto &p : c.second->connections)
						if (ct.cell_output(c.second->type, p.first))
							show_drivers.insert(sigmap(p.second), c.second);
					import_cell_counter++;
				} else
					log("Warning: failed to import cell %s (type %s) to SAT database.\n", RTLIL::id2cstr(c.first), RTLIL::id2cstr(c.second->type));
		}
		log("Imported %d cells to SAT database.\n", import_cell_counter);
	}

	int setup_proof(int timestep = -1)
	{
		assert(prove.size() > 0);

		RTLIL::SigSpec big_lhs, big_rhs;

		for (auto &s : prove)
		{
			RTLIL::SigSpec lhs, rhs;

			if (!RTLIL::SigSpec::parse(lhs, module, s.first))
				log_cmd_error("Failed to parse lhs proof expression `%s'.\n", s.first.c_str());
			if (!RTLIL::SigSpec::parse(rhs, module, s.second))
				log_cmd_error("Failed to parse rhs proof expression `%s'.\n", s.second.c_str());
			show_signal_pool.add(sigmap(lhs));
			show_signal_pool.add(sigmap(rhs));

			if (lhs.width != rhs.width)
				log_cmd_error("Proof expression with different lhs and rhs sizes: %s (%s, %d bits) vs. %s (%s, %d bits)\n",
					s.first.c_str(), log_signal(lhs), lhs.width, s.second.c_str(), log_signal(rhs), rhs.width);

			log("Import proof-constraint: %s = %s\n", log_signal(lhs), log_signal(rhs));
			big_lhs.remove2(lhs, &big_rhs);
			big_lhs.append(lhs);
			big_rhs.append(rhs);
		}

		log("Final proof equation: %s = %s\n", log_signal(big_lhs), log_signal(big_rhs));

		std::vector<int> lhs_vec = satgen.importSigSpec(big_lhs, timestep);
		std::vector<int> rhs_vec = satgen.importSigSpec(big_rhs, timestep);
		return ez.vec_eq(lhs_vec, rhs_vec);
	}

	void force_unique_state(int timestep_from, int timestep_to)
	{
		RTLIL::SigSpec state_signals = satgen.initial_state.export_all();
		for (int i = timestep_from; i < timestep_to; i++)
			ez.assume(ez.vec_ne(satgen.importSigSpec(state_signals, i), satgen.importSigSpec(state_signals, timestep_to)));
	}

	bool solve(const std::vector<int> &assumptions)
	{
		return ez.solve(modelExpressions, modelValues, assumptions);
	}

	bool solve(int a = 0, int b = 0, int c = 0, int d = 0, int e = 0, int f = 0)
	{
		return ez.solve(modelExpressions, modelValues, a, b, c, d, e, f);
	}

	struct ModelBlockInfo {
		int timestep, offset, width;
		std::string description;
		bool operator < (const ModelBlockInfo &other) const {
			if (timestep != other.timestep)
				return timestep < other.timestep;
			if (description != other.description)
				return description < other.description;
			if (offset != other.offset)
				return offset < other.offset;
			if (width != other.width)
				return width < other.width;
			return false;
		}
	};

	std::vector<int> modelExpressions;
	std::vector<bool> modelValues;
	std::set<ModelBlockInfo> modelInfo;

	void generate_model()
	{
		RTLIL::SigSpec modelSig;
		modelExpressions.clear();
		modelInfo.clear();

		// Add "show" signals or alternatively the leaves on the input cone on all set and prove signals

		if (shows.size() == 0)
		{
			SigPool queued_signals, handled_signals, final_signals;
			queued_signals = show_signal_pool;
			while (queued_signals.size() > 0) {
				RTLIL::SigSpec sig = queued_signals.export_one();
				queued_signals.del(sig);
				handled_signals.add(sig);
				std::set<RTLIL::Cell*> drivers = show_drivers.find(sig);
				if (drivers.size() == 0) {
					final_signals.add(sig);
				} else {
					for (auto &d : drivers)
					for (auto &p : d->connections) {
						if (d->type == "$dff" && p.first == "\\CLK")
							continue;
						if (d->type.substr(0, 6) == "$_DFF_" && p.first == "\\C")
							continue;
						queued_signals.add(handled_signals.remove(sigmap(p.second)));
					}
				}
			}
			modelSig = final_signals.export_all();

			// additionally add all set and prove signals directly
			// (it improves user confidence if we write the constraints back ;-)
			modelSig.append(show_signal_pool.export_all());
		}
		else
		{
			for (auto &s : shows) {
				RTLIL::SigSpec sig;
				if (!RTLIL::SigSpec::parse(sig, module, s))
					log_cmd_error("Failed to parse show expression `%s'.\n", s.c_str());
				log("Import show expression: %s\n", log_signal(sig));
				modelSig.append(sig);
			}
		}

		modelSig.sort_and_unify();
		// log("Model signals: %s\n", log_signal(modelSig));

		for (auto &c : modelSig.chunks)
			if (c.wire != NULL) {
				ModelBlockInfo info;
				RTLIL::SigSpec chunksig = c;
				info.width = chunksig.width;
				info.description = log_signal(chunksig);

				for (int timestep = -1; timestep <= max_timestep; timestep++) {
					if ((timestep == -1 && max_timestep > 0) || timestep == 0)
						continue;
					std::vector<int> vec = satgen.importSigSpec(chunksig, timestep);
					info.timestep = timestep;
					info.offset = modelExpressions.size();
					modelExpressions.insert(modelExpressions.end(), vec.begin(), vec.end());
					modelInfo.insert(info);
				}
			}

		// Add zero step signals as collected by satgen

		modelSig = satgen.initial_state.export_all();
		for (auto &c : modelSig.chunks)
			if (c.wire != NULL) {
				ModelBlockInfo info;
				RTLIL::SigSpec chunksig = c;
				info.timestep = 0;
				info.offset = modelExpressions.size();
				info.width = chunksig.width;
				info.description = log_signal(chunksig);
				std::vector<int> vec = satgen.importSigSpec(chunksig, 1);
				modelExpressions.insert(modelExpressions.end(), vec.begin(), vec.end());
				modelInfo.insert(info);
			}
	}

	void print_model()
	{
		int maxModelName = 10;
		int maxModelWidth = 10;

		for (auto &info : modelInfo) {
			maxModelName = std::max(maxModelName, int(info.description.size()));
			maxModelWidth = std::max(maxModelWidth, info.width);
		}

		log("\n");

		int last_timestep = -2;
		for (auto &info : modelInfo)
		{
			RTLIL::Const value;
			for (int i = 0; i < info.width; i++) {
				value.bits.push_back(modelValues.at(info.offset+i) ? RTLIL::State::S1 : RTLIL::State::S0);
				if (modelValues.size() == 2*modelExpressions.size() && modelValues.at(modelExpressions.size()+info.offset+i))
					value.bits.back() = RTLIL::State::Sx;
			}

			if (info.timestep != last_timestep) {
				const char *hline = "---------------------------------------------------------------------------------------------------"
						    "---------------------------------------------------------------------------------------------------"
						    "---------------------------------------------------------------------------------------------------";
				if (last_timestep == -2) {
					log(max_timestep > 0 ? "  Time " : "  ");
					log("%-*s %10s %10s %*s\n", maxModelName+10, "Signal Name", "Dec", "Hex", maxModelWidth+5, "Bin");
				}
				log(max_timestep > 0 ? "  ---- " : "  ");
				log("%*.*s %10.10s %10.10s %*.*s\n", maxModelName+10, maxModelName+10,
						hline, hline, hline, maxModelWidth+5, maxModelWidth+5, hline);
				last_timestep = info.timestep;
			}

			if (max_timestep > 0) {
				if (info.timestep > 0)
					log("  %4d ", info.timestep);
				else
					log("  init ");
			} else
				log("  ");

			if (info.width <= 32)
				log("%-*s %10d %10x %*s\n", maxModelName+10, info.description.c_str(), value.as_int(), value.as_int(), maxModelWidth+5, value.as_string().c_str());
			else
				log("%-*s %10s %10s %*s\n", maxModelName+10, info.description.c_str(), "--", "--", maxModelWidth+5, value.as_string().c_str());
		}

		if (last_timestep == -2)
			log("  no model variables selected for display.\n");
	}

	void invalidate_model()
	{
		std::vector<int> clause;
		for (size_t i = 0; i < modelExpressions.size(); i++)
			clause.push_back(modelValues.at(i) ? ez.NOT(modelExpressions.at(i)) : modelExpressions.at(i));
		ez.assume(ez.expression(ezSAT::OpOr, clause));
	}
};

} /* namespace */

static void print_proof_failed()
{
	log("\n");
	log("   ______                   ___       ___       _ _            _ _ \n");
	log("  (_____ \\                 / __)     / __)     (_) |          | | |\n");
	log("   _____) )___ ___   ___ _| |__    _| |__ _____ _| | _____  __| | |\n");
	log("  |  ____/ ___) _ \\ / _ (_   __)  (_   __|____ | | || ___ |/ _  |_|\n");
	log("  | |   | |  | |_| | |_| || |       | |  / ___ | | || ____( (_| |_ \n");
	log("  |_|   |_|   \\___/ \\___/ |_|       |_|  \\_____|_|\\_)_____)\\____|_|\n");
	log("\n");
}

static void print_qed()
{
	log("\n");
	log("                  /$$$$$$      /$$$$$$$$     /$$$$$$$    \n");
	log("                 /$$__  $$    | $$_____/    | $$__  $$   \n");
	log("                | $$  \\ $$    | $$          | $$  \\ $$   \n");
	log("                | $$  | $$    | $$$$$       | $$  | $$   \n");
	log("                | $$  | $$    | $$__/       | $$  | $$   \n");
	log("                | $$/$$ $$    | $$          | $$  | $$   \n");
	log("                |  $$$$$$/ /$$| $$$$$$$$ /$$| $$$$$$$//$$\n");
	log("                 \\____ $$$|__/|________/|__/|_______/|__/\n");
	log("                       \\__/                              \n");
	log("\n");
}

struct SatPass : public Pass {
	SatPass() : Pass("sat", "solve a SAT problem in the circuit") { }
	virtual void help()
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    sat [options] [selection]\n");
		log("\n");
		log("This command solves a SAT problem defined over the currently selected circuit\n");
		log("and additional constraints passed as parameters.\n");
		log("\n");
		log("    -all\n");
		log("        show all solutions to the problem (this can grow exponentially, use\n");
		log("        -max <N> instead to get <N> solutions)\n");
		log("\n");
		log("    -max <N>\n");
		log("        like -all, but limit number of solutions to <N>\n");
		log("\n");
		log("    -set <signal> <value>\n");
		log("        set the specified signal to the specified value.\n");
		log("\n");
		log("    -show <signal>\n");
		log("        show the model for the specified signal. if no -show option is\n");
		log("        passed then a set of signals to be shown is automatically selected.\n");
		log("\n");
		log("The following options can be used to set up a sequential problem:\n");
		log("\n");
		log("    -seq <N>\n");
		log("        set up a sequential problem with <N> time steps. The steps will\n");
		log("        be numbered from 1 to N.\n");
		log("\n");
		log("    -set-at <N> <signal> <value>\n");
		log("    -unset-at <N> <signal>\n");
		log("        set or unset the specified signal to the specified value in the\n");
		log("        given timestep. this has priority over a -set for the same signal.\n");
		log("\n");
		log("The following additional options can be used to set up a proof. If also -seq\n");
		log("is passed, a temporal induction proof is performed.\n");
		log("\n");
		log("    -prove <signal> <value>\n");
		log("        Attempt to proof that <signal> is always <value>. In a temporal\n");
		log("        induction proof it is proven that the condition holds forever after\n");
		log("        the number of time steps passed using -seq.\n");
		log("\n");
		log("    -maxsteps <N>\n");
		log("        Set a maximum length for the induction.\n");
		log("\n");
		log("    -verify\n");
		log("        Return an error and stop the synthesis script if the proof fails.\n");
		log("\n");
	}
	virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
	{
		std::vector<std::pair<std::string, std::string>> sets, prove;
		std::map<int, std::vector<std::pair<std::string, std::string>>> sets_at;
		std::map<int, std::vector<std::string>> unsets_at;
		std::vector<std::string> shows;
		int loopcount = 0, seq_len = 0, maxsteps = 0;
		bool verify = false;

		log_header("Executing SAT pass (solving SAT problems in the circuit).\n");

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++) {
			if (args[argidx] == "-all") {
				loopcount = -1;
				continue;
			}
			if (args[argidx] == "-verify") {
				verify = true;
				continue;
			}
			if (args[argidx] == "-max" && argidx+1 < args.size()) {
				loopcount = atoi(args[++argidx].c_str());
				continue;
			}
			if (args[argidx] == "-maxsteps" && argidx+1 < args.size()) {
				maxsteps = atoi(args[++argidx].c_str());
				continue;
			}
			if (args[argidx] == "-set" && argidx+2 < args.size()) {
				std::string lhs = args[++argidx].c_str();
				std::string rhs = args[++argidx].c_str();
				sets.push_back(std::pair<std::string, std::string>(lhs, rhs));
				continue;
			}
			if (args[argidx] == "-prove" && argidx+2 < args.size()) {
				std::string lhs = args[++argidx].c_str();
				std::string rhs = args[++argidx].c_str();
				prove.push_back(std::pair<std::string, std::string>(lhs, rhs));
				continue;
			}
			if (args[argidx] == "-seq" && argidx+1 < args.size()) {
				seq_len = atoi(args[++argidx].c_str());
				continue;
			}
			if (args[argidx] == "-set-at" && argidx+3 < args.size()) {
				int timestep = atoi(args[++argidx].c_str());
				std::string lhs = args[++argidx].c_str();
				std::string rhs = args[++argidx].c_str();
				sets_at[timestep].push_back(std::pair<std::string, std::string>(lhs, rhs));
				continue;
			}
			if (args[argidx] == "-unset-at" && argidx+2 < args.size()) {
				int timestep = atoi(args[++argidx].c_str());
				std::string lhs = args[++argidx].c_str();
				unsets_at[timestep].push_back(lhs);
				continue;
			}
			if (args[argidx] == "-show" && argidx+1 < args.size()) {
				shows.push_back(args[++argidx]);
				continue;
			}
			break;
		}
		extra_args(args, argidx, design);

		RTLIL::Module *module = NULL;
		for (auto &mod_it : design->modules)
			if (design->selected(mod_it.second)) {
				if (module)
					log_cmd_error("Only one module must be selected for the SAT pass! (selected: %s and %s)\n",
							RTLIL::id2cstr(module->name), RTLIL::id2cstr(mod_it.first));
				module = mod_it.second;
			}
		if (module == NULL) 
			log_cmd_error("Can't perform SAT on an empty selection!\n");

		if (prove.size() == 0 && verify)
			log_cmd_error("Got -verify but nothing to prove!\n");

		if (prove.size() > 0 && seq_len > 0)
		{
			if (loopcount > 0)
				log_cmd_error("The options -max and -all are not supported for temporal induction proofs!\n");

			SatHelper basecase(design, module);
			SatHelper inductstep(design, module);

			basecase.sets = sets;
			basecase.prove = prove;
			basecase.sets_at = sets_at;
			basecase.unsets_at = unsets_at;
			basecase.shows = shows;

			for (int timestep = 1; timestep <= seq_len; timestep++)
				basecase.setup(timestep);

			inductstep.sets = sets;
			inductstep.prove = prove;
			inductstep.shows = shows;

			inductstep.setup(1);
			inductstep.ez.assume(inductstep.setup_proof(1));

			for (int inductlen = 1; inductlen <= maxsteps || maxsteps == 0; inductlen++)
			{
				log("\n** Trying induction with length %d **\n", inductlen);

				// phase 1: proving base case

				basecase.setup(seq_len + inductlen);
				int property = basecase.setup_proof(seq_len + inductlen);
				basecase.generate_model();

				if (inductlen > 1)
					basecase.force_unique_state(seq_len + 1, seq_len + inductlen);

				log("\n[base case] Solving problem with %d variables and %d clauses..\n",
						basecase.ez.numCnfVariables(), basecase.ez.numCnfClauses());

				if (basecase.solve(basecase.ez.NOT(property))) {
					log("SAT temporal induction proof finished - model found for base case: FAIL!\n");
					print_proof_failed();
					basecase.print_model();
					goto tip_failed;
				}

				log("Base case for induction length %d proven.\n", inductlen);
				basecase.ez.assume(property);

				// phase 2: proving induction step

				inductstep.setup(inductlen + 1);
				property = inductstep.setup_proof(inductlen + 1);
				inductstep.generate_model();

				if (inductlen > 1)
					inductstep.force_unique_state(1, inductlen + 1);

				log("\n[induction step] Solving problem with %d variables and %d clauses..\n",
						inductstep.ez.numCnfVariables(), inductstep.ez.numCnfClauses());

				if (!inductstep.solve(inductstep.ez.NOT(property))) {
					log("Induction step proven: SUCCESS!\n");
					print_qed();
					goto tip_success;
				}

				log("Induction step failed. Incrementing induction length.\n");
				inductstep.ez.assume(property);

				inductstep.print_model();
			}

			log("\nReached maximum number of time steps -> proof failed.\n");
			print_proof_failed();

		tip_failed:
			if (verify) {
				log("\n");
				log_error("Called with -verify and proof did fail!\n");
			}

		tip_success:;
		}
		else
		{
			if (loopcount > 0)
				log_cmd_error("The options -maxsteps is only supported for temporal induction proofs!\n");

			SatHelper sathelper(design, module);
			sathelper.sets = sets;
			sathelper.prove = prove;
			sathelper.sets_at = sets_at;
			sathelper.unsets_at = unsets_at;
			sathelper.shows = shows;

			if (seq_len == 0) {
				sathelper.setup();
				if (sathelper.prove.size() > 0)
					sathelper.ez.assume(sathelper.ez.NOT(sathelper.setup_proof()));
			} else {
				for (int timestep = 1; timestep <= seq_len; timestep++)
					sathelper.setup(timestep);
			}
			sathelper.generate_model();

#if 0
			// print CNF for debugging
			sathelper.ez.printDIMACS(stdout, true);
#endif

			bool did_rerun = false;

		rerun_solver:
			log("\nSolving problem with %d variables and %d clauses..\n",
					sathelper.ez.numCnfVariables(), sathelper.ez.numCnfClauses());

			if (sathelper.solve())
			{
				if (prove.size() == 0) {
					log("SAT solving finished - model found:\n");
				} else {
					log("SAT proof finished - model found: FAIL!\n");
					print_proof_failed();
				}

				sathelper.print_model();

				if (verify) {
					log("\n");
					log_error("Called with -verify and proof did fail!\n");
				}

				if (loopcount != 0) {
					loopcount--, did_rerun = true;
					sathelper.invalidate_model();
					goto rerun_solver;
				}
			}
			else
			{
				if (did_rerun)
					log("SAT solving finished - no more models found.\n");
				else if (prove.size() == 0)
					log("SAT solving finished - no model found.\n");
				else {
					log("SAT proof finished - no model found: SUCCESS!\n");
					print_qed();
				}
			}
		}
	}
} SatPass;