summaryrefslogtreecommitdiff
path: root/techlibs/xilinx/cells_sim.v
blob: 138a6470fe5684beba06ebd2b083d381e36723ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
// See Xilinx UG953 and UG474 for a description of the cell types below.
// http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
// http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug953-vivado-7series-libraries.pdf

module VCC(output P);
  assign P = 1;
endmodule

module GND(output G);
  assign G = 0;
endmodule

module IBUF(output O, input I);
  assign O = I;
endmodule

module OBUF(output O, input I);
  assign O = I;
endmodule

module BUFGP(output O, input I);
  assign O = I;
endmodule

module OBUFT(output O, input I, T);
  assign O = T ? 1'bz : I;
endmodule

module INV(output O, input I);
  assign O = !I;
endmodule

module LUT1(output O, input I0);
  parameter [1:0] INIT = 0;
  assign O = I0 ? INIT[1] : INIT[0];
endmodule

module LUT2(output O, input I0, I1);
  parameter [3:0] INIT = 0;
  wire [ 1: 0] s1 = I1 ? INIT[ 3: 2] : INIT[ 1: 0];
  assign O = I0 ? s1[1] : s1[0];
endmodule

module LUT3(output O, input I0, I1, I2);
  parameter [7:0] INIT = 0;
  wire [ 3: 0] s2 = I2 ? INIT[ 7: 4] : INIT[ 3: 0];
  wire [ 1: 0] s1 = I1 ?   s2[ 3: 2] :   s2[ 1: 0];
  assign O = I0 ? s1[1] : s1[0];
endmodule

module LUT4(output O, input I0, I1, I2, I3);
  parameter [15:0] INIT = 0;
  wire [ 7: 0] s3 = I3 ? INIT[15: 8] : INIT[ 7: 0];
  wire [ 3: 0] s2 = I2 ?   s3[ 7: 4] :   s3[ 3: 0];
  wire [ 1: 0] s1 = I1 ?   s2[ 3: 2] :   s2[ 1: 0];
  assign O = I0 ? s1[1] : s1[0];
endmodule

module LUT5(output O, input I0, I1, I2, I3, I4);
  parameter [31:0] INIT = 0;
  wire [15: 0] s4 = I4 ? INIT[31:16] : INIT[15: 0];
  wire [ 7: 0] s3 = I3 ?   s4[15: 8] :   s4[ 7: 0];
  wire [ 3: 0] s2 = I2 ?   s3[ 7: 4] :   s3[ 3: 0];
  wire [ 1: 0] s1 = I1 ?   s2[ 3: 2] :   s2[ 1: 0];
  assign O = I0 ? s1[1] : s1[0];
endmodule

module LUT6(output O, input I0, I1, I2, I3, I4, I5);
  parameter [63:0] INIT = 0;
  wire [31: 0] s5 = I5 ? INIT[63:32] : INIT[31: 0];
  wire [15: 0] s4 = I4 ?   s5[31:16] :   s5[15: 0];
  wire [ 7: 0] s3 = I3 ?   s4[15: 8] :   s4[ 7: 0];
  wire [ 3: 0] s2 = I2 ?   s3[ 7: 4] :   s3[ 3: 0];
  wire [ 1: 0] s1 = I1 ?   s2[ 3: 2] :   s2[ 1: 0];
  assign O = I0 ? s1[1] : s1[0];
endmodule

module MUXCY(output O, input CI, DI, S);
  assign O = S ? CI : DI;
endmodule

module MUXF7(output O, input I0, I1, S);
  assign O = S ? I1 : I0;
endmodule

module MUXF8(output O, input I0, I1, S);
  assign O = S ? I1 : I0;
endmodule

module XORCY(output O, input CI, LI);
  assign O = CI ^ LI;
endmodule

module CARRY4(output [3:0] CO, O, input CI, CYINIT, input [3:0] DI, S);
  assign O = S ^ {CO[2:0], CI | CYINIT};
  assign CO[0] = S[0] ? CI | CYINIT : DI[0];
  assign CO[1] = S[1] ? CO[0] : DI[1];
  assign CO[2] = S[2] ? CO[1] : DI[2];
  assign CO[3] = S[3] ? CO[2] : DI[3];
endmodule

module FDRE (output reg Q, input C, CE, D, R);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_R_INVERTED = 1'b0;
  initial Q <= INIT;
  generate case (|IS_C_INVERTED)
    1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
    1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
  endcase endgenerate
endmodule

module FDSE (output reg Q, input C, CE, D, S);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_S_INVERTED = 1'b0;
  initial Q <= INIT;
  generate case (|IS_C_INVERTED)
    1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
    1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
  endcase endgenerate
endmodule

module FDCE (output reg Q, input C, CE, D, CLR);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_CLR_INVERTED = 1'b0;
  initial Q <= INIT;
  generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
    2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
  endcase endgenerate
endmodule

module FDPE (output reg Q, input C, CE, D, PRE);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_PRE_INVERTED = 1'b0;
  initial Q <= INIT;
  generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
    2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
    2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
  endcase endgenerate
endmodule