summaryrefslogtreecommitdiff
path: root/q2_sample_classifier/utilities.py
blob: 06d7778b8f6012cae97aec23d3feeb6ef7658e6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
# ----------------------------------------------------------------------------
# Copyright (c) 2017-2023, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------

import warnings
from os.path import join

from sklearn.model_selection import (
    train_test_split, RandomizedSearchCV, KFold, StratifiedKFold)
from sklearn.metrics import accuracy_score
from sklearn.feature_selection import RFECV
from sklearn.feature_extraction import DictVectorizer
from sklearn.ensemble import (RandomForestRegressor, RandomForestClassifier,
                              ExtraTreesClassifier, ExtraTreesRegressor,
                              AdaBoostClassifier, GradientBoostingClassifier,
                              AdaBoostRegressor, GradientBoostingRegressor)
from sklearn.svm import SVR, SVC
from sklearn.linear_model import Ridge, Lasso, ElasticNet
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.tree import (
    DecisionTreeClassifier, DecisionTreeRegressor,
    ExtraTreeClassifier, ExtraTreeRegressor
)
from sklearn.pipeline import Pipeline

import q2templates
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import pkg_resources
from scipy.sparse import issparse
from scipy.stats import randint
import biom
import re

from .visuals import (_linear_regress, _plot_confusion_matrix, _plot_RFE,
                      _regplot_from_dataframe, _generate_roc_plots)

_classifiers = ['RandomForestClassifier', 'ExtraTreesClassifier',
                'GradientBoostingClassifier', 'AdaBoostClassifier',
                'KNeighborsClassifier', 'LinearSVC', 'SVC']

parameters = {
    'ensemble': {"max_depth": [4, 8, 16, None],
                 "max_features": [None, 'sqrt', 'log2', 0.1],
                 "min_samples_split": [0.001, 0.01, 0.1],
                 "min_weight_fraction_leaf": [0.0001, 0.001, 0.01]},
    'bootstrap': {"bootstrap": [True, False]},
    'criterion': {"criterion": ["gini", "entropy"]},
    'svm': {"C": [1, 0.5, 0.1, 0.9, 0.8],
            "tol": [0.00001, 0.0001, 0.001, 0.01],
            "shrinking": [True, False]},
    'kneighbors': {"n_neighbors": randint(2, 15),
                   "weights": ['uniform', 'distance'],
                   "leaf_size": randint(15, 100)},
    'linear': {"alpha": [0.0001, 0.01, 1.0, 10.0, 1000.0],
               "tol": [0.00001, 0.0001, 0.001, 0.01]}
}


TEMPLATES = pkg_resources.resource_filename('q2_sample_classifier', 'assets')


def _extract_features(feature_data):
    ids = feature_data.ids('observation')
    features = np.empty(feature_data.shape[1], dtype=dict)
    for i, row in enumerate(feature_data.matrix_data.T):
        features[i] = {ids[ix]: d for ix, d in zip(row.indices, row.data)}
    return features


def _load_data(feature_data, targets_metadata, missing_samples, extract=True):
    '''Load data and generate training and test sets.

    feature_data: pd.DataFrame
        feature X sample values.
    targets_metadata: qiime2.Metadata
        target (columns) X sample (rows) values.
    '''
    # Load metadata, attempt to convert to numeric
    targets = targets_metadata.to_dataframe()

    if missing_samples == 'error':
        _validate_metadata_is_superset(targets, feature_data)

    # filter features and targest so samples match
    index = set(targets.index)
    index = [ix for ix in feature_data.ids() if ix in index]
    targets = targets.loc[index]
    feature_data = feature_data.filter(index, inplace=False)
    if extract:
        feature_data = _extract_features(feature_data)

    return feature_data, targets


def _validate_metadata_is_superset(metadata, table):
    metadata_ids = set(metadata.index.tolist())
    table_ids = set(table.ids())
    missing_ids = table_ids.difference(metadata_ids)
    if len(missing_ids) > 0:
        raise ValueError('Missing samples in metadata: %r' % missing_ids)


def _extract_important_features(index, top):
    '''Find top features, match names to indices, sort.
    index: ndarray
        Feature names
    top: array
        Feature importance scores, coef_ scores, or ranking of scores.
    '''
    # is top a 1-d or multi-d array?
    # coef_ is a multidimensional array of shape = [n_class-1, n_features]
    if any(isinstance(i, list) for i in top) or top.ndim > 1:
        if issparse(top):
            top = top.todense()
        imp = pd.DataFrame(
            top, index=["importance{0}".format(n) for n in range(len(top))]).T
    # ensemble estimators and RFECV return 1-d arrays
    else:
        imp = pd.DataFrame(top, columns=["importance"])
    imp.index = index
    imp.index.name = 'feature'
    imp = sort_importances(imp, ascending=False)
    return imp


def _split_training_data(feature_data, targets, column, test_size=0.2,
                         stratify=None, random_state=None, drop_na=True):
    '''Split data sets into training and test sets.

    feature_data: biom.Table
        feature X sample values.
    targets: pandas.DataFrame
        target (columns) X sample (rows) values.
    column: str
        Target column contained in targets.
    test_size: float
        Fraction of data to be reserved as test data.
    stratify: array-like
        Stratify data using this as class labels. E.g., set to df
        column by setting stratify=df[column]
    random_state: int or None
        Int to use for seeding random state. Random if None.
    '''
    # Define target / predictor data
    targets = targets[column]

    if drop_na:
        targets = targets.dropna()

    if test_size > 0.0:
        try:
            y_train, y_test = train_test_split(
                targets, test_size=test_size, stratify=stratify,
                random_state=random_state)
        except ValueError:
            _stratification_error()
    else:
        warning_msg = _warn_zero_test_split()
        warnings.warn(warning_msg, UserWarning)

        X_train, X_test, y_train, y_test = (
            feature_data, feature_data, targets, targets)

    tri = y_train.index
    # filter and sort biom tables to match split/filtered metadata ids
    # skip filtering if no splitting/dropna was performed
    # if test_size > 0.0 is implicit, so don't need to worry about initializing
    # X_train and X_test in an else statement.
    if list(tri) != list(feature_data.ids()):
        tei = y_test.index
        X_train = feature_data.filter(tri, inplace=False).sort_order(tri)
        X_test = feature_data.filter(tei, inplace=False).sort_order(tei)

    return X_train, X_test, y_train, y_test


def _stratification_error():
    raise ValueError((
        'You have chosen to predict a metadata column that contains '
        'one or more values that match only one sample. For proper '
        'stratification of data into training and test sets, each '
        'class (value) must contain at least two samples. This is a '
        'requirement for classification problems, but stratification '
        'can be disabled for regression by setting stratify=False. '
        'Alternatively, remove all samples that bear a unique class '
        'label for your chosen metadata column. Note that disabling '
        'stratification can negatively impact predictive accuracy for '
        'small data sets.'))


def _rfecv_feature_selection(feature_data, targets, estimator,
                             cv=5, step=1, scoring=None, n_jobs=1):
    '''Optimize feature depth by testing model accuracy at
    multiple feature depths with cross-validated recursive
    feature elimination.
    __________
    Parameters
    __________
    feature_data: list of dicts
        Training set feature data x samples.
    targets: pandas.DataFrame
        Training set target value data x samples.
    cv: int
        Number of k-fold cross-validations to perform.
    step: float or int
        If float, reduce this fraction of features at each step.
        If int, reduce this number of features at each step.
    estimator: sklearn classifier
        estimator to use, with parameters set. If none, default
        to random forests.
    n_jobs: int
        Number of parallel jobs to run.

    For other params, see sklearn.ensemble.RandomForestRegressor.

    __________
    Returns
    __________
    rfecv: sklearn estimator
        Can be used to predict target values for test data.
    importance: pandas.DataFrame
        List of top features.
    '''

    rfecv = Pipeline(
        [('dv', estimator.named_steps.dv),
         ('est', RFECV(estimator=estimator.named_steps.est, step=step, cv=cv,
                       scoring=scoring, n_jobs=n_jobs))])

    rfecv.fit(feature_data, targets.values.ravel())

    # Describe top features
    n_opt = rfecv.named_steps.est.n_features_
    importance = _extract_important_features(
        rfecv.named_steps.dv.get_feature_names(),
        rfecv.named_steps.est.ranking_)
    importance = sort_importances(importance, ascending=True)[:n_opt]

    rfe_scores = _extract_rfe_scores(rfecv.named_steps.est)

    return importance, rfe_scores


def _extract_rfe_scores(rfecv):
    n_features = len(rfecv.ranking_)
    # If using fractional step, step = integer of fraction * n_features
    if rfecv.step < 1:
        rfecv.step = int(rfecv.step * n_features)
    # Need to manually calculate x-axis, as rfecv.grid_scores_ are a 1-d array
    x = [n_features - (n * rfecv.step)
         for n in range(len(rfecv.grid_scores_)-1, -1, -1)]
    if x[0] < 1:
        x[0] = 1
    return pd.Series(rfecv.cv_results_['mean_test_score'], index=x, name='Accuracy')


def nested_cross_validation(table, metadata, cv, random_state, n_jobs,
                            n_estimators, estimator, stratify,
                            parameter_tuning, classification, scoring,
                            missing_samples='error'):
    # extract column name from NumericMetadataColumn
    column = metadata.name

    # load feature data, metadata targets
    X_train, y_train = _load_data(
        table, metadata, missing_samples=missing_samples)

    # disable feature selection for unsupported estimators
    optimize_feature_selection, calc_feature_importance = \
        _disable_feature_selection(estimator, False)

    # specify parameters and distributions to sample from for parameter tuning
    estimator, param_dist, parameter_tuning = _set_parameters_and_estimator(
        estimator, table, y_train[column], column, n_estimators, n_jobs, cv,
        random_state, parameter_tuning, classification)

    # predict values for all samples via (nested) CV
    scores, predictions, importances, tops, probabilities = \
        _fit_and_predict_cv(
            X_train, y_train[column], estimator, param_dist, n_jobs, scoring,
            random_state, cv, stratify, calc_feature_importance,
            parameter_tuning)

    # Print accuracy score to stdout
    print("Estimator Accuracy: {0} ± {1}".format(
        np.mean(scores), np.std(scores)))

    # TODO: save down estimator with tops parameters (currently the estimator
    # would be untrained, and tops parameters are not reported)

    return predictions['prediction'], importances, probabilities


def _fit_estimator(features, targets, estimator, n_estimators=100, step=0.05,
                   cv=5, random_state=None, n_jobs=1,
                   optimize_feature_selection=False, parameter_tuning=False,
                   missing_samples='error', classification=True):
    # extract column name from CategoricalMetadataColumn
    column = targets.to_series().name

    # load data
    X_train, y_train = _load_data(
        features, targets, missing_samples=missing_samples)

    # disable feature selection for unsupported estimators
    optimize_feature_selection, calc_feature_importance = \
        _disable_feature_selection(estimator, optimize_feature_selection)

    # specify parameters and distributions to sample from for parameter tuning
    estimator, param_dist, parameter_tuning = _set_parameters_and_estimator(
        estimator, features, targets, column, n_estimators, n_jobs, cv,
        random_state, parameter_tuning, classification=classification)

    # optimize training feature count
    if optimize_feature_selection:
        X_train, importances, rfe_scores = _optimize_feature_selection(
            X_train=X_train, y_train=y_train,
            estimator=estimator, cv=cv, step=step, n_jobs=n_jobs)
    else:
        importances = None

    # optimize tuning parameters on your training set
    if parameter_tuning:
        # tune parameters
        estimator = _tune_parameters(
            X_train, y_train, estimator, param_dist, n_iter_search=20,
            n_jobs=n_jobs, cv=cv, random_state=random_state).best_estimator_

    # fit estimator
    estimator.fit(X_train, y_train.values.ravel())

    importances = _attempt_to_calculate_feature_importances(
        estimator, calc_feature_importance,
        optimize_feature_selection, importances)

    if optimize_feature_selection:
        estimator.rfe_scores = rfe_scores

    # TODO: drop this when we get around to supporting optional outputs
    # methods cannot output an empty importances artifact; only KNN has no
    # feature importance, but just warn and output all features as
    # importance = 1
    if importances is None:
        _warn_feature_selection()
        importances = pd.DataFrame(index=features.ids('observation'))
        importances["importance"] = np.nan
        importances.index.name = 'feature'

    return estimator, importances


def _attempt_to_calculate_feature_importances(
        estimator, calc_feature_importance,
        optimize_feature_selection, importances=None):
    # calculate feature importances, if appropriate for the estimator
    if calc_feature_importance:
        importances = _calculate_feature_importances(estimator)
    # otherwise, if optimizing feature selection, just return ranking from RFE
    elif optimize_feature_selection:
        pass
    # otherwise, we have no weights nor selection, so features==n_features
    else:
        importances = None
    return importances


def _prepare_training_data(features, targets, column, test_size,
                           random_state, load_data=True, stratify=True,
                           missing_samples='error'):
    # load data
    if load_data:
        features, targets = _load_data(
            features, targets, missing_samples=missing_samples, extract=False)

    # split into training and test sets
    if stratify:
        strata = targets[column]
    else:
        strata = None

    X_train, X_test, y_train, y_test = _split_training_data(
        features, targets, column, test_size, strata, random_state)

    return X_train, X_test, y_train, y_test


def _optimize_feature_selection(X_train, y_train, estimator, cv, step, n_jobs):
    importance, rfe_scores = _rfecv_feature_selection(
        X_train, y_train, estimator=estimator, cv=cv, step=step, n_jobs=n_jobs)

    index = set(importance.index)
    X_train = [{k: r[k] for k in r.keys() & index} for r in X_train]
    return X_train, importance, rfe_scores


def _calculate_feature_importances(estimator):
    # only set calc_feature_importance=True if estimator has attributes
    # feature_importances_ or coef_ to report feature importance/weights
    try:
        importances = _extract_important_features(
            estimator.named_steps.dv.get_feature_names(),
            estimator.named_steps.est.feature_importances_)
    # is there a better way to determine whether estimator has coef_ ?
    except AttributeError:
        importances = _extract_important_features(
            estimator.named_steps.dv.get_feature_names(),
            estimator.named_steps.est.coef_)
    return importances


def _predict_and_plot(output_dir, y_test, y_pred, vmin=None, vmax=None,
                      classification=True, palette='sirocco'):
    if classification:
        x_classes = set(y_test.unique())
        y_classes = set(y_pred.unique())
        # validate: if classes are exclusive, accuracy is zero; user probably
        # input the wrong data!
        if len(x_classes.intersection(y_classes)) < 1:
            raise _class_overlap_error()
        else:
            classes = sorted(list(x_classes.union(y_classes)))
        predictions, predict_plot = _plot_confusion_matrix(
            y_test, y_pred, classes, normalize=True, palette=palette,
            vmin=vmin, vmax=vmax)
    else:
        predictions = _linear_regress(y_test, y_pred)
        predict_plot = _regplot_from_dataframe(y_test, y_pred)

    if output_dir is not None:
        predict_plot.get_figure().savefig(
            join(output_dir, 'predictions.png'), bbox_inches='tight')
        predict_plot.get_figure().savefig(
            join(output_dir, 'predictions.pdf'), bbox_inches='tight')

    plt.close('all')
    return predictions, predict_plot


def _class_overlap_error():
    raise ValueError(
        'Predicted and true metadata values do not overlap. Check your '
        'inputs to ensure that you are using the correct data. Is the '
        'correct metadata column being compared to these predictions? Was '
        'your model trained on the correct type of data? Prediction '
        'sample classes (metadata values) should match or be a subset of '
        'training sample classes. If you are attempting to calculate '
        'accuracy scores on predictions from a sample regressor, use '
        'scatterplot instead.')


def _match_series_or_die(predictions, truth, missing_samples='error'):
    # validate input metadata and predictions, output intersection.
    # truth must be a superset of predictions
    truth_ids = set(truth.index)
    predictions_ids = set(predictions.index)
    missing_ids = predictions_ids - truth_ids
    if missing_samples == 'error' and len(missing_ids) > 0:
        raise ValueError('Missing samples in metadata: %r' % missing_ids)

    # match metadata / prediction IDs
    predictions, truth = predictions.align(truth, axis=0, join='inner')

    return predictions, truth


def _plot_accuracy(output_dir, predictions, truth, probabilities,
                   missing_samples, classification, palette, plot_title,
                   vmin=None, vmax=None):
    '''Plot accuracy results and send to visualizer on either categorical
    or numeric data inside two pd.Series
    '''
    truth = truth.to_series()

    # check if test_size == 0.0 and all predictions are complete dataset
    if (missing_samples == 'ignore') & (
            predictions.shape[0] == truth.shape[0]):
        warning_msg = _warn_zero_test_split()
    else:
        warning_msg = None

    predictions, truth = _match_series_or_die(
        predictions, truth, missing_samples)

    # calculate prediction accuracy and plot results
    predictions, predict_plot = _predict_and_plot(
        output_dir, truth, predictions, vmin=vmin, vmax=vmax,
        classification=classification, palette=palette)

    # optionally generate ROC curves for classification results
    if probabilities is not None:
        probabilities, truth = _match_series_or_die(
            probabilities, truth, missing_samples)
        roc = _generate_roc_plots(truth, probabilities, palette)
        roc.savefig(join(output_dir, 'roc_plot.png'), bbox_inches='tight')
        roc.savefig(join(output_dir, 'roc_plot.pdf'), bbox_inches='tight')

    # output to viz
    _visualize(output_dir=output_dir, estimator=None, cm=predictions,
               roc=probabilities, optimize_feature_selection=False,
               title=plot_title, warning_msg=warning_msg)


def sort_importances(importances, ascending=False):
    return importances.sort_values(
        by=importances.columns[0], ascending=ascending)


def _extract_estimator_parameters(estimator):
    # summarize model accuracy and params
    # (drop pipeline params and individual base estimators)
    estimator_params = {k: v for k, v in estimator.get_params().items() if
                        k.startswith('est__') and k != 'est__base_estimator'}
    return pd.Series(list(estimator_params), name='Parameter setting')


def _summarize_estimator(output_dir, sample_estimator):
    try:
        rfep = _plot_RFE(
            x=sample_estimator.rfe_scores.index, y=np.stack(sample_estimator.rfe_scores.values))
        rfep.savefig(join(output_dir, 'rfe_plot.png'))
        rfep.savefig(join(output_dir, 'rfe_plot.pdf'))
        plt.close('all')
        optimize_feature_selection = True
        # generate rfe scores file
        df = pd.DataFrame(data={'rfe_score': sample_estimator.rfe_scores},
                          index=sample_estimator.rfe_scores.index)
        df.index.name = 'feature_count'
        df.to_csv(join(output_dir, 'rfe_scores.tsv'), sep='\t', index=True)
    # if the rfe_scores attribute does not exist, do nothing
    except AttributeError:
        optimize_feature_selection = False

    _visualize(output_dir=output_dir, estimator=sample_estimator, cm=None,
               roc=None, optimize_feature_selection=optimize_feature_selection,
               title='Estimator Summary')


def _visualize(output_dir, estimator, cm, roc,
               optimize_feature_selection=True, title='results',
               warning_msg=None):

    pd.set_option('display.max_colwidth', None)

    # summarize model accuracy and params
    if estimator is not None:
        result = _extract_estimator_parameters(estimator)
        result = q2templates.df_to_html(result.to_frame())
    else:
        result = False

    if cm is not None:
        cm.to_csv(join(
            output_dir, 'predictive_accuracy.tsv'), sep='\t', index=True)
        cm = q2templates.df_to_html(cm)

    if roc is not None:
        roc = True

    index = join(TEMPLATES, 'index.html')
    q2templates.render(index, output_dir, context={
        'title': title,
        'result': result,
        'predictions': cm,
        'roc': roc,
        'optimize_feature_selection': optimize_feature_selection,
        'warning_msg': warning_msg})


def _visualize_knn(output_dir, params: pd.Series):
    result = q2templates.df_to_html(params.to_frame())
    index = join(TEMPLATES, 'index.html')
    q2templates.render(index, output_dir, context={
        'title': 'Estimator Summary',
        'result': result,
        'predictions': None,
        'importances': None,
        'classification': True,
        'optimize_feature_selection': False})


def _map_params_to_pipeline(param_dist):
    return {'est__' + param: dist for param, dist in param_dist.items()}


def _tune_parameters(X_train, y_train, estimator, param_dist, n_iter_search=20,
                     n_jobs=1, cv=None, random_state=None):
    # run randomized search
    random_search = RandomizedSearchCV(
        estimator, param_distributions=param_dist, n_iter=n_iter_search,
        n_jobs=n_jobs, cv=cv, random_state=random_state)
    random_search.fit(X_train, y_train.values.ravel())
    return random_search


def _fit_and_predict_cv(table, metadata, estimator, param_dist, n_jobs,
                        scoring=accuracy_score, random_state=None, cv=10,
                        stratify=True, calc_feature_importance=False,
                        parameter_tuning=False):
    '''train and test estimators via cross-validation.
    scoring: str
        use accuracy_score for classification, mean_squared_error for
        regression.
    '''
    # Set CV method
    if stratify:
        _cv = StratifiedKFold(
            n_splits=cv, shuffle=True, random_state=random_state)
    else:
        _cv = KFold(n_splits=cv, shuffle=True, random_state=random_state)

    predictions = pd.DataFrame()
    probabilities = pd.DataFrame()
    scores = []
    top_params = []
    importances = []
    if isinstance(table, biom.Table):
        features = _extract_features(table)
    else:
        features = table
    for train_index, test_index in _cv.split(features, metadata):
        X_train = features[train_index]
        y_train = metadata.iloc[train_index]
        # perform parameter tuning in inner loop
        if parameter_tuning:
            estimator = _tune_parameters(
                X_train, y_train, estimator, param_dist,
                n_iter_search=20, n_jobs=n_jobs, cv=cv,
                random_state=random_state).best_estimator_
        else:
            # fit estimator on inner outer training set
            estimator.fit(X_train, y_train.values.ravel())
        # predict values for outer loop test set
        test_set = features[test_index]
        index = metadata.iloc[test_index]
        pred = pd.DataFrame(estimator.predict(test_set), index=index.index)

        # log predictions results
        predictions = pd.concat([predictions, pred])

        # log prediction probabilities (classifiers only)
        if estimator.named_steps.est.__class__.__name__ in _classifiers:
            probs = predict_probabilities(estimator, test_set, index.index)
            probabilities = pd.concat([probabilities, probs])

        # log accuracy on that fold
        scores += [scoring(pred, index)]
        # log feature importances
        if calc_feature_importance:
            imp = _calculate_feature_importances(estimator)
            importances += [imp]
        # log top parameters
        # for now we will cast as a str (instead of dict) so that we can count
        # frequency of unique elements below
        top_params += [str(estimator.named_steps.est.get_params())]

    # Report most frequent best params
    # convert top_params to a set, order by count (hence str conversion above)
    # max will be the most frequent... then we convert back to a dict via eval
    # which should be safe since this is always a dict of param values reported
    # by sklearn.
    tops = max(set(top_params), key=top_params.count)
    tops = eval(tops)

    # calculate mean feature importances
    if calc_feature_importance:
        importances = _mean_feature_importance(importances)
    else:
        importances = _null_feature_importance(table)

    predictions.columns = ['prediction']
    predictions.index.name = 'SampleID'
    probabilities.index.name = 'SampleID'

    return scores, predictions, importances, tops, probabilities


def predict_probabilities(estimator, test_set, index):
    '''
    Predict class probabilities for a set of test samples.

    estimator: sklearn trained classifier
    test_set: array-like of y_values (features) for test set samples that will
              have their class probabilities predicted.
    index: array-like of sample names
    '''
    # all used classifiers have a predict_proba attribute
    # (approximated for SVCs)
    probs = pd.DataFrame(estimator.predict_proba(test_set),
                         index=index, columns=estimator.classes_)

    return probs


def _mean_feature_importance(importances):
    '''Calculate mean feature importance across a list of pd.dataframes
    containing importance scores of the same features from multiple models
    (e.g., CV importance scores).
    '''
    imp = pd.concat(importances, axis=1, sort=True)
    # groupby column name instead of taking column mean to support 2d arrays
    imp = imp.groupby(imp.columns, axis=1).mean()
    return imp.sort_values(imp.columns[0], ascending=False)


def _null_feature_importance(table):
    feature_extractor = DictVectorizer()
    feature_extractor.fit(table)
    imp = pd.DataFrame(index=feature_extractor.get_feature_names())
    imp.index.name = "feature"
    imp["importance"] = 1
    return imp


def _select_estimator(estimator, n_jobs, n_estimators, random_state=None):
    '''Select estimator and parameters from argument name.'''
    # Regressors
    if estimator == 'RandomForestRegressor':
        param_dist = {**parameters['ensemble'], **parameters['bootstrap']}
        estimator = RandomForestRegressor(
            n_jobs=n_jobs, n_estimators=n_estimators,
            random_state=random_state)
    elif estimator == 'ExtraTreesRegressor':
        param_dist = {**parameters['ensemble'], **parameters['bootstrap']}
        estimator = ExtraTreesRegressor(
            n_jobs=n_jobs, n_estimators=n_estimators,
            random_state=random_state)
    elif estimator == 'GradientBoostingRegressor':
        param_dist = parameters['ensemble']
        estimator = GradientBoostingRegressor(
            n_estimators=n_estimators, random_state=random_state)
    elif estimator == 'SVR':
        param_dist = {**parameters['svm'], 'epsilon': [0.0, 0.1]}
        estimator = SVR(kernel='rbf', gamma='scale')
    elif estimator == 'LinearSVR':
        param_dist = {**parameters['svm'], 'epsilon': [0.0, 0.1]}
        estimator = SVR(kernel='linear')
    elif estimator == 'Ridge':
        param_dist = parameters['linear']
        estimator = Ridge(solver='auto', random_state=random_state)
    elif estimator == 'Lasso':
        param_dist = parameters['linear']
        estimator = Lasso(random_state=random_state)
    elif estimator == 'ElasticNet':
        param_dist = parameters['linear']
        estimator = ElasticNet(random_state=random_state)
    elif estimator == 'KNeighborsRegressor':
        param_dist = parameters['kneighbors']
        estimator = KNeighborsRegressor(algorithm='auto')

    # Classifiers
    elif estimator == 'RandomForestClassifier':
        param_dist = {**parameters['ensemble'], **parameters['bootstrap'],
                      **parameters['criterion']}
        estimator = RandomForestClassifier(
            n_jobs=n_jobs, n_estimators=n_estimators,
            random_state=random_state)
    elif estimator == 'ExtraTreesClassifier':
        param_dist = {**parameters['ensemble'], **parameters['bootstrap'],
                      **parameters['criterion']}
        estimator = ExtraTreesClassifier(
            n_jobs=n_jobs, n_estimators=n_estimators,
            random_state=random_state)
    elif estimator == 'GradientBoostingClassifier':
        param_dist = parameters['ensemble']
        estimator = GradientBoostingClassifier(
            n_estimators=n_estimators, random_state=random_state)
    elif estimator == 'LinearSVC':
        param_dist = parameters['svm']
        estimator = SVC(kernel='linear', random_state=random_state,
                        gamma='scale', probability=True)
    elif estimator == 'SVC':
        param_dist = parameters['svm']
        estimator = SVC(kernel='rbf', random_state=random_state,
                        gamma='scale', probability=True)
    elif estimator == 'KNeighborsClassifier':
        param_dist = parameters['kneighbors']
        estimator = KNeighborsClassifier(algorithm='auto')

    return param_dist, estimator


def _train_adaboost_base_estimator(table, metadata, column, base_estimator,
                                   n_estimators, n_jobs, cv, random_state=None,
                                   parameter_tuning=False,
                                   classification=True,
                                   missing_samples='error'):
    param_dist = parameters['ensemble']

    if classification:
        base_est = {
                    'DecisionTree': DecisionTreeClassifier(),
                    'ExtraTrees': ExtraTreeClassifier()
                    }
        pipe_base_estimator = base_est[base_estimator]
        adaboost_estimator = AdaBoostClassifier
    else:
        base_est = {
                    'DecisionTree': DecisionTreeRegressor(),
                    'ExtraTrees': ExtraTreeRegressor()
                    }
        pipe_base_estimator = base_est[base_estimator]
        adaboost_estimator = AdaBoostRegressor

    estimator = Pipeline(
        [('dv', DictVectorizer()), ('est', pipe_base_estimator)])

    if parameter_tuning:
        features, targets = _load_data(
            table, metadata, missing_samples=missing_samples)
        param_dist = _map_params_to_pipeline(param_dist)
        base_estimator = _tune_parameters(
            features, targets[column], estimator, param_dist,
            n_jobs=n_jobs, cv=cv, random_state=random_state).best_estimator_

    return Pipeline(
        [('dv', estimator.named_steps.dv),
         ('est', adaboost_estimator(estimator.named_steps.est,
                                    n_estimators=n_estimators, random_state=random_state))])


def _disable_feature_selection(estimator, optimize_feature_selection):
    '''disable feature selection for unsupported classifiers.'''

    unsupported = ['KNeighborsClassifier', 'SVC', 'KNeighborsRegressor', 'SVR']

    if estimator in unsupported:
        optimize_feature_selection = False
        calc_feature_importance = False
        _warn_feature_selection()
    else:
        calc_feature_importance = True

    return optimize_feature_selection, calc_feature_importance


def _set_parameters_and_estimator(estimator, table, metadata, column,
                                  n_estimators, n_jobs, cv, random_state,
                                  parameter_tuning, classification=True,
                                  missing_samples='error'):
    # specify parameters and distributions to sample from for parameter tuning
    if estimator.startswith("AdaBoost"):
        base_estimator = re.search(r"\[([A-Za-z]+)\]", estimator).group(1)
        estimator = _train_adaboost_base_estimator(
            table, metadata, column, base_estimator, n_estimators, n_jobs, cv,
            random_state, parameter_tuning, classification=classification,
            missing_samples=missing_samples)
        parameter_tuning = False
        param_dist = None
    else:
        param_dist, estimator = _select_estimator(
            estimator, n_jobs, n_estimators, random_state)
        estimator = Pipeline([('dv', DictVectorizer()), ('est', estimator)])
        param_dist = _map_params_to_pipeline(param_dist)
    return estimator, param_dist, parameter_tuning


def _warn_feature_selection():
    warning = (
        ('This estimator does not support recursive feature extraction with '
         'the parameter settings requested. See documentation or try a '
         'different estimator model.'))
    warnings.warn(warning, UserWarning)


def _warn_zero_test_split():
    return 'Using test_size = 0.0, you are using your complete dataset for ' \
        'fitting the estimator. Hence, any returned model evaluations are ' \
        'based on that same training dataset and are not representative of ' \
        'your model\'s performance on a previously unseen dataset. Please ' \
        'consider evaluating this model on a separate dataset.'