summaryrefslogtreecommitdiff
path: root/books/workshops/2004/cowles-gamboa/support/tail-rec.lisp
blob: 0ab70c6358b365190932b89941a7d7d5e904c3ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
; The Tail Recursion Book
; Copyright (C) 2004 John R. Cowles, University of Wyoming

; This program is free software; you can redistribute it and/or
; modify it under the terms of the GNU General Public License as
; published by the Free Software Foundation; either version 2 of
; the License, or (at your option) any later version.

; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
; GNU General Public License for more details.

; You should have received a copy of the GNU General Public
; License along with this program; if not, write to the Free
; Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139,
; USA.

; Written by:
; John Cowles
; Department of Computer Science
; University of Wyoming
; Laramie, WY 82071 U.S.A.

#|
(defpkg "TAIL-REC"
        (union-eq *acl2-exports*
		  *common-lisp-symbols-from-main-lisp-package*))

(certify-book "tail-rec" 1)
|#

(in-package "TAIL-REC")

;; This is the Defpun book by Manolios and Moore.

(include-book "../../../../misc/defpun")

;; Defpun is in the ACL2 package, so it is added by macro to the
;; TAIL-REC package.

(defmacro defpun (g args &rest tail)
  `(acl2::defpun ,g ,args ,@tail))
;;=====================================================================
;; Let test, base, and step be unary functions.
;; A total ACL2 function f is said to satisfy the defining tail recursion
;; axiom for the proposed definition

;; (defun
;;   f (x)
;;   (if (test x)
;;       (base x)
;;       (f (step x))))

;; provided the following is true

;; ((FORALL x)(EQUAL (f x)
;;                   (if (test x)
;;                       (base x)
;;                       (f (step x)))))

;; J and Pete's DEFPUN paper shows that there is always at least one total ACL2
;; function that satisfies the defining tail recursion axiom for any such proposed
;; tail recursive definition.
;; --------------------------------------------------------------------------
;; Let rel be a well-founded binary relation on the set of objects
;; recognized by the predicate mp.

;; That is, there is a rel-order-preserving function fn that embeds
;; objects recognized by mp into ACL2's ordinals:

;; (AND (IMPLIES (mp x) (O-P (fn x)))              ; Property 1
;;      (IMPLIES (AND (mp x)                       ; Property 2
;;                    (mp y)
;;                    (rel x y))
;;               (O< (fn x) (fn y)))).

;; Let test1, base1, and step1 be unary functions.
;; The tail recursion in the proposed definition

;; (defun
;;   f1 (x)
;;   (if (test1 x)
;;       (base1 x)
;;       (f1 (step1 x))))

;; is said to satisfy the mp-meaure conjecture for measure m provided the
;; following goals are true.

;; (AND (mp (m x))                                  ; Defun-goal-1
;;      (IMPLIES (NOT (test1 x))                    ; Defun-goal-2
;;               (rel (m (step1 x))
;;                    (m x))).

;; THEOREM 1. If the tail recursion satisfies the mp-measure conjecture for
;;            measure m, then there is exactly one total function satisfying
;;            the defining tail recursion axiom.

;;            That is, (IMPLIES ((FORALL x)(AND (IMPLIES (mp x)
;;                                                       (O-P (fn x)))
;;                                              ((FORALL y)(IMPLIES
;;                                                            (AND (mp x)
;;                                                                 (mp y)
;;                                                                 (rel x y))
;;                                                            (O< (fn x)(fn y))))
;;                                              (mp (m x))
;;                                              (IMPLIES (NOT (test1 x))
;;                                                       (rel (m (step1 x))
;;                                                            (m x)))))
;;                               ((EXISTS UNIQUE FUNCTION f1)
;;                                ((FORALL x)(EQUAL (f1 x)
;;                                                  (if (test1 x)
;;                                                      (base1 x)
;;                                                      (f1 (step1 x)))))))

;; The conclusion of THEOREM 1,

;;       ((EXISTS UNIQUE FUNCTION f1)
;;        ((FORALL x)(EQUAL (f1 x)
;;                          (if (test1 x)
;;                              (base1 x)
;;                              (f1 (step1 x)))),

;; expands to this equivalent formulation:

;;       (AND ((EXISTS FUNCTION f1)
;;             ((FORALL x)(EQUAL (f1 x)
;;                               (if (test1 x)
;;                                   (base1 x)
;;                                   (f1 (step1 x))))))
;;            ((FORALL FUNCTIONS g1 and h1)
;;             (IMPLIES (AND ((FORALL x)(EQUAL (g1 x)
;;                                             (if (test1 x)
;;                                                 (base1 x)
;;                                                 (g1 (step1 x)))))
;;                           ((FORALL x)(EQUAL (h1 x)
;;                                             (if (test1 x)
;;                                                 (base1 x)
;;                                                 (h1 (step1 x))))))
;;                      ((FORALL x)(EQUAL (g1 x)
;;                                        (h1 x))))))
;; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;; PROOF OF THEOREM 1.

;; Assume the hypothesis of THEOREM 1.
;; That is, assume

;;      (IMPLIES ((FORALL x)(AND (IMPLIES (mp x)
;;                                        (O-P (fn x)))
;;                               ((FORALL y)(IMPLIES
;;                                           (AND (mp x)
;;                                                (mp y)
;;                                                (rel x y))
;;                                           (O< (fn x)(fn y))))
;;                               (mp (m x))
;;                               (IMPLIES (NOT (test1 x))
;;                                        (rel (m (step1 x))
;;                                             (m x)))))

;; Let rel, mp, fn, m, test1, and step1 be functions satisfying the
;; given hypothesis.

(encapsulate
 (((rel * *) => *)
  ((mp *)    => *)
  ((fn *)    => *)
  ((m *)     => *)
  ((test1 *) => *)
  ((step1 *) => *))

 (local (defun rel (x y)
	  (O< x y)))

 (local (defun mp (x)
	  (O-p x)))

 (local (defun fn (x)
	  x))

 (local (defun m (x)
	  (acl2-count x)))

 (local (defun test1 (x)
	  (zp x)))

 (local (defun step1 (x)
	  (- x 1)))

 (defthm
   rel-is-well-founded-relation
   (and (implies (mp x)(O-P (fn x)))
	(implies (and (mp x)
		      (mp y)
		      (rel x y))
		 (O< (fn x)(fn y))))
   :rule-classes :well-founded-relation)

 (defthm
   measure-conjecture
   (and (mp (m x))
	(implies (not (test1 x))
		 (rel (m (step1 x))
		      (m x)))))
 ) ;; end encapsulate

;; Let base1 be an arbitrary unary function.

(defstub
  base1 (*) => *)

;; Prove the conclusion of THEOREM 1.
;; That is, prove each of the two conjuncts of the conclusion.

;; Conjunct 1..

;;        ((EXISTS FUNCTION f1)
;;         ((FORALL x)(EQUAL (f1 x)
;;                           (if (test1 x)
;;                               (base1 x)
;;                               (f1 (step1 x))))))

;; Show a function, called f1, exists with the desired property.

(defun
  f1 (x)
  (declare (xargs :measure (m x)
		  :well-founded-relation rel))
  (if (test1 x)
      (base1 x)
      (f1 (step1 x))))

;; Explicitly verify that f1 has the desired property.

(defthm
  f1-def
  (equal (f1 x)
	 (if (test1 x)
	     (base1 x)
	     (f1 (step1 x))))
  :rule-classes nil)

;; Conjunct 2.

;;           ((FORALL FUNCTIONS g1 and h1)
;;            (IMPLIES (AND ((FORALL x)(EQUAL (g1 x)
;;                                            (if (test1 x)
;;                                                (base1 x)
;;                                                (g1 (step1 x)))))
;;                          ((FORALL x)(EQUAL (h1 x)
;;                                            (if (test1 x)
;;                                                (base1 x)
;;                                                (h1 (step1 x))))))
;;                     ((FORALL x)(EQUAL (g1 x)
;;                                       (h1 x)))))

;; Let g1 and h1 be arbitrary functions satisfying the hypothesis of
;; Conjunct 2.

(encapsulate
 (((g1 *) => *)
  ((h1 *) => *))

 (local (defun g1 (x)
	  (f1 x)))

 (local (defun h1 (x)
	  (f1 x)))

 (defthm
   g1-def
   (equal (g1 x)
	  (if (test1 x)
	      (base1 x)
	      (g1 (step1 x))))
  :rule-classes :definition)

 (defthm
   h1-def
   (equal (h1 x)
	  (if (test1 x)
	      (base1 x)
	      (h1 (step1 x))))
   :rule-classes :definition)
 ) ;; end encapsulate

;; Prove the conclusion of Conjunct 2.

(defthm
  g1=h1
  (equal (g1 x)
	 (h1 x))
  :rule-classes nil
  :hints (("Goal"
	   :induct (f1 x))))

;; This concludes the proof of THEOREM 1.
;; -------------------------------------------------------------------------
#|
;; Let test2, base2, and step2 be unary functions.

;; Let (step2n x n) be the result of applying step2 n times with initial input x.
;; That is,

;; (defun
;;   step2n (x n)
;;   (if (zp n)
;;       x
;;       (step2n (step2 x)(- n 1))))

;; The tail recursion in the proposed definition

;; (defun
;;   f2 (x)
;;   (if (test2 x)
;;       (base2 x)
;;       (f2 (step2 x))))

;; is said to always terminate provided the following holds.

;; For all inputs x, there is an n such that (test2 (step2n x n)) is not NIL.

;; THEOREM 2. If there is exactly one total function satisfying the defining
;;            tail recursion axiom, then the recursion always terminates.

;;            That is, (IMPLIES ((EXISTS UNIQUE FUNCTION f2)
;;                               ((FORALL x)(EQUAL (f2 x)
;;                                                 (if (test2 x)
;;                                                     (base2 x)
;;                                                     (f2 (step2 x))))))
;;                               ((FORALL x)((EXISTS n)(test2 (step2n x n)))))

;; The hypothesis of THEOREM 2,

;;       ((EXISTS UNIQUE FUNCTION f2)
;;        ((FORALL x)(EQUAL (f2 x)
;;                          (if (test2 x)
;;                              (base2 x)
;;                              (f2 (step2 x)))),

;; expands to this equivalent formulation:

;;       (AND ((EXISTS FUNCTION f2)
;;             ((FORALL x)(EQUAL (f2 x)
;;                               (if (test2 x)
;;                                   (base2 x)
;;                                   (f2 (step2 x))))))
;;            ((FORALL FUNCTIONS g2 and h2)
;;             (IMPLIES (AND ((FORALL x)(EQUAL (g2 x)
;;                                             (if (test2 x)
;;                                                 (base2 x)
;;                                                 (g2 (step2 x)))))
;;                           ((FORALL x)(EQUAL (h2 x)
;;                                             (if (test2 x)
;;                                                 (base2 x)
;;                                                 (h2 (step2 x))))))
;;                      ((FORALL x)(EQUAL (g2 x)
;;                                        (h2 x))))))
;; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;; PROOF OF THEOREM 2.

;; Assume the hypothesis of THEOREM 2.
;; That is, assume each of the two conjuncts of the hypothesis.

;; Conjunct 1.
;; Assume there is a function, called f2, with the desired property.

(encapsulate
 (((test2 *) => *)
  ((base2 *) => *)
  ((step2 *) => *)
  ((f2 *)    => *))

 (local (defun test2 (x)
	  (zp x)))

 (local (defun base2 (x)
	  (declare (ignore x))
	  0))

 (local (defun step2 (x)
	  (- x 1)))

 (local (defun f2 (x)
	  (if (test2 x)
	      (base2 x)
	      (f2 (step2 x)))))

 (defthm
   f2-def
   (equal (f2 x)
	  (if (test2 x)
	      (base2 x)
	      (f2 (step2 x))))
   :rule-classes :definition)
 ) ;; end encapsulate

;; Conjunct 2
;; Assume
;;            ((FORALL FUNCTIONS g2 and h2)
;;             (IMPLIES (AND ((FORALL x)(EQUAL (g2 x)
;;                                             (if (test2 x)
;;                                                 (base2 x)
;;                                                 (g2 (step2 x)))))
;;                           ((FORALL x)(EQUAL (h2 x)
;;                                             (if (test2 x)
;;                                                 (base2 x)
;;                                                 (h2 (step2 x))))))
;;                      ((FORALL x)(EQUAL (g2 x)
;;                                        (h2 x))))))

;; That is, whenever g2 and h2 are functions that satisfy the hypthesis
;; of Conjunct 2, they also satisfy the conclusion.

;; Let g2 and h2 be arbitrary functions satisfying the hypothesis of
;; Conjunct 2.

(encapsulate
 (((g2 *) => *)
  ((h2 *) => *))

 (local (defun g2 (x)
	  (f2 x)))

 (local (defun h2 (x)
	  (f2 x)))

 (defthm
   g2-def
   (equal (g2 x)
	  (if (test2 x)
	      (base2 x)
	      (g2 (step2 x))))
   :rule-classes nil)

 (defthm
   h2-def
   (equal (h2 x)
	  (if (test2 x)
	      (base2 x)
	      (h2 (step2 x))))
   :rule-classes nil)
 ) ;; end encasulate

;; Now, ensure that ACL2 can conclude the conclusion of Conjunct 2,
;; namely that the functions g2 and h2 are equal, whenever the
;; hypothesis of conjunct 2 holds. This is done with a SKIP-PROOFS!

(skip-proofs
 (defthm
   g2=h2
   (equal (g2 x)
	  (h2 x))
   :rule-classes nil))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; WARNING: This use of skip-proofs will render ACL2 unsound.
;; This is because the purported theorem g2=h2 does NOT logically
;; follow from the two constrained axioms g2-def and h2-def.
;; [See below for a ``proof'' of NIL. Search for (defun k ...)]

;; However, the current proof would be sound in any circumstances
;; where g2=h2 does logically follow. For example, since g1=h1 is
;; a theorem, as shown above, this proof (with g1 replacing g2 and
;; h1 replacing h2) shows that the recursion in the definition of
;; f1 (and g1 & h1) always terminates.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Prove the conclusion of THEOREM 2.
;; That is, prove the recursion always halts
;; Prove ((FORALL x)((EXISTS n)(test2 (step2n x n))))

;; At this point the proof closely follows the proof, given by
;; J and Pete, in their DEFPUN work, that tail recursive definitions
;; are always satisfied by at least one total ACL2 function.

(defun
  step2n (x n)
  (if (zp n)
      x
      (step2n (step2 x)(- n 1))))

(defchoose
  nbr-step2 (n)(x)
  (test2 (step2n x n)))

(defun
  f2n (x n)
  (declare (xargs :measure (nfix n)))
  (if (or (zp n) (test2 x))
      (base2 x)
      (f2n (step2 x)(- n 1))))

(defun
  g2a (x)
  (if (test2 (step2n x (nbr-step2 x)))
      (f2n x (nbr-step2 x))
      nil))

(defun
  h2a (x)
  (if (test2 (step2n x (nbr-step2 x)))
      (f2n x (nbr-step2 x))
      t))

;; This encapsulate merely hides some tedious details of the proof.
(encapsulate
 nil

 (local
  (defthm
    test2-nbr-step2
    (implies (test2 x)
	     (test2 (step2n x (nbr-step2 x))))
    :hints (("Goal"
	     :use (:instance
		   nbr-step2
		   (n 0))))))

 (local
  (defthm
    test2-g2a-def
    (implies (test2 x)
	     (equal (g2a x)(base2 x)))))

 (local
  (defthm
    test2-h2a-def
    (implies (test2 x)
	     (equal (h2a x)(base2 x)))))

 (local
  (defthm
    open-step2n
    (implies (and (integerp n)
		  (> n 0))
	     (equal (step2n x n)
		    (step2n (step2 x)(- n 1))))))

 (local
  (defthm +1-1
    (equal (+ -1 +1 x) (fix x))))

 (local
  (defthm
    step2-step2n-nbr-step2
    (implies (test2 (step2n (step2 x)(nbr-step2 (step2 x))))
	     (test2 (step2n x (nbr-step2 x))))
    :hints (("Goal"
	     :use (:instance
		   nbr-step2
		   (n (+ 1 (nfix (nbr-step2 (step2 x))))))))
    :rule-classes :forward-chaining))

 (local
  (defthm
    not-test2-nbr-step2
    (implies (not (test2 x))
	     (iff (test2 (step2n (step2 x)(nbr-step2 (step2 x))))
		  (test2 (step2n x (nbr-step2 x)))))
    :hints (("Subgoal 2"
	     :use (:instance
		   nbr-step2
		   (x (step2 x))
		   (n (+ -1 (nbr-step2 x))))))))

 (local
  (defthm
    f2n-step2
    (implies (and (test2 (step2n x n))
		  (test2 (step2n x m)))
	     (equal (f2n x n)(f2n x m)))
    :rule-classes nil))

 (defthm
   g2a-g2-def
   (equal (g2a x)
	  (if (test2 x)
	      (base2 x)
	      (g2a (step2 x))))
   :hints (("Subgoal 1"
	    :expand (f2n x (nbr-step2 x)))
	   ("Subgoal 1.2"
	    :use (:instance
		  f2n-step2
		  (x (step2 x))
		  (n (+ -1 (nbr-step2 x)))
		  (m (nbr-step2 (step2 x))))))
   :rule-classes nil)

 (defthm
   h2a-h2-def
   (equal (h2a x)
	  (if (test2 x)
	      (base2 x)
	      (h2a (step2 x))))
   :hints (("Subgoal 1"
	    :expand (f2n x (nbr-step2 x)))
	   ("Subgoal 1.2"
	    :use (:instance
		  f2n-step2
		  (x (step2 x))
		  (n (+ -1 (nbr-step2 x)))
		  (m (nbr-step2 (step2 x))))))
   :rule-classes nil)
 ) ;; end encapsulate

(defthm
  g2a=h2a
  (equal (g2a x)
	 (h2a x))
  :rule-classes nil
  :hints (("Goal"
	   :by (:functional-instance
		g2=h2
		(g2 g2a)
		(h2 h2a)))
	  ("Subgoal 2"
	   :by h2a-h2-def)
	  ("Subgoal 1"
	   :by g2a-g2-def)))

(defthm
  recursion-halts
  (test2 (step2n x (nbr-step2 x)))
  :hints (("Goal"
	   :use g2a=h2a)))

(defun-sk
  exists-n-recursion-halts (x)
  (exists n (test2 (step2n x n))))

(defthm
  exist-n-recursion-halts-thm
  (exists-n-recursion-halts x)
  :hints (("Goal"
	   :use (:instance
		 exists-n-recursion-halts-suff
		 (n (nbr-step2 x))))))

;; This concludes the proof of THEOREM 2.
;; = = = = = = = = = = = = = = = = = = = =
;; The following example shows that the above SKIP-PROOFS
;; renders ACL2 unsound!

(defpun
  k (x)
  (if (zp x)
      0
      (k (+ 1 x))))

(defun
  k-step-n (x n)
  (if (zp n)
      x
      (k-step-n (+ 1 x)(- n 1))))

(defun-sk
  exists-n-recursion-halts-k (x)
  (exists n (zp (k-step-n x n))))

(defthm
  exist-n-recursion-halts-k-thm
  (exists-n-recursion-halts-k x)
  :rule-classes nil
  :hints (("Goal"
	   :by (:functional-instance
		exist-n-recursion-halts-thm
		(test2 zp)
		(base2 (lambda (x) 0))
		(step2 (lambda (x)(+ 1 x)))
		(step2n k-step-n)
		(f2 k)
		(exists-n-recursion-halts
		 exists-n-recursion-halts-k)
		(exists-n-recursion-halts-witness
		 exists-n-recursion-halts-k-witness)))))

(defthm
  k-never-halts-on-non-zp
  (implies (not (zp x))
	   (not (zp (k-step-n x n))))
  :rule-classes nil)

(thm
 nil
 :hints (("Goal"
	  :use ((:instance
		 exist-n-recursion-halts-k-thm
		 (x 1))
		(:instance
		 k-never-halts-on-non-zp
		 (x 1)
		 (n (exists-n-recursion-halts-k-witness 1)))))))

;; Summary
;; Form:  ( THM ...)
;; Rules: ((:COMPOUND-RECOGNIZER ACL2::ZP-COMPOUND-RECOGNIZER)
;;         (:DEFINITION EXISTS-N-RECURSION-HALTS-K)
;;         (:DEFINITION NOT)
;;         (:EXECUTABLE-COUNTERPART NOT)
;;         (:EXECUTABLE-COUNTERPART ZP)
;;         (:TYPE-PRESCRIPTION K-STEP-N))
;; Warnings:  None
;; Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

;; Proof succeeded.
|#
;; The above example demonstrates that the application of THEOREM 2
;; via FUNCTIONAL INSTANTIATION is NOT to be trusted. However, by
;; carefully following the proof of THEOREM 2, consistent results can
;; be obtained. This is illustrated by showing that the tail recursion
;; in the definition of f1 always terminates.
;; -------------------------------------------------------------------------
;; COROLLARY 2. The tail recursion in the definition of f1,

;;              (defun
;;                f1 (x)
;;                (if (test1 x)
;;                    (base1 x)
;;                    (f1 (step1 x)))),

;; always terminates.

;; That is,
;; For all inputs x, there is an n such that (test1 (step1n x n)) is not NIL.

;; The ``proof'' given above for THEOREM 2 is carefully followed, replacing
;; f2 with f1, g2 with g1, h2 with h1, step2 with step1, etc.
;; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;; PROOF OF COROLLARY 2.

;; Prove the recursion always halts in f1.
;; That is, prove ((FORALL x)((EXISTS n)(test1 (step1n x n))))

;; At this point the proof closely follows the proof, given by
;; J and Pete, in their DEFPUN work, that tail recursive definitions
;; are always satisfied by at least one total ACL2 function.

(defun
  step1n (x n)
  (if (zp n)
      x
      (step1n (step1 x)(- n 1))))

(defchoose
  nbr-step1 (n)(x)
  (test1 (step1n x n)))

(defun
  f1n (x n)
  (declare (xargs :measure (nfix n)))
  (if (or (zp n) (test1 x))
      (base1 x)
      (f1n (step1 x)(- n 1))))

(defun
  g1a (x)
  (if (test1 (step1n x (nbr-step1 x)))
      (f1n x (nbr-step1 x))
      nil))

(defun
  h1a (x)
  (if (test1 (step1n x (nbr-step1 x)))
      (f1n x (nbr-step1 x))
      t))

;; This encapsulate merely hides some tedious details of the proof.
(encapsulate
 nil

 (local
  (defthm
    test1-nbr-step1
    (implies (test1 x)
	     (test1 (step1n x (nbr-step1 x))))
    :hints (("Goal"
	     :use (:instance
		   nbr-step1
		   (n 0))))))

 (local
  (defthm
    test1-g1a-def
    (implies (test1 x)
	     (equal (g1a x)(base1 x)))))

 (local
  (defthm
    test1-h1a-def
    (implies (test1 x)
	     (equal (h1a x)(base1 x)))))

 (local
  (defthm
    open-step1n
    (implies (and (integerp n)
		  (> n 0))
	     (equal (step1n x n)
		    (step1n (step1 x)(- n 1))))))

 (local
  (defthm +1-1
    (equal (+ -1 +1 x) (fix x))))

 (local
  (defthm
    step1-step1n-nbr-step1
    (implies (test1 (step1n (step1 x)(nbr-step1 (step1 x))))
	     (test1 (step1n x (nbr-step1 x))))
    :hints (("Goal"
	     :use (:instance
		   nbr-step1
		   (n (+ 1 (nfix (nbr-step1 (step1 x))))))))
    :rule-classes :forward-chaining))

 (local
  (defthm
    not-test1-nbr-step1
    (implies (not (test1 x))
	     (iff (test1 (step1n (step1 x)(nbr-step1 (step1 x))))
		  (test1 (step1n x (nbr-step1 x)))))
    :hints (("Subgoal 2"
	     :use (:instance
		   nbr-step1
		   (x (step1 x))
		   (n (+ -1 (nbr-step1 x))))))))

 (local
  (defthm
    f1n-step1
    (implies (and (test1 (step1n x n))
		  (test1 (step1n x m)))
	     (equal (f1n x n)(f1n x m)))
    :rule-classes nil))

 (defthm
   g1a-g1-def
   (equal (g1a x)
	  (if (test1 x)
	      (base1 x)
	      (g1a (step1 x))))
   :hints (("Subgoal 1"
	    :expand (f1n x (nbr-step1 x)))
	   ("Subgoal 1.2"
	    :use (:instance
		  f1n-step1
		  (x (step1 x))
		  (n (+ -1 (nbr-step1 x)))
		  (m (nbr-step1 (step1 x))))))
   :rule-classes nil)

 (defthm
   h1a-h1-def
   (equal (h1a x)
	  (if (test1 x)
	      (base1 x)
	      (h1a (step1 x))))
   :hints (("Subgoal 1"
	    :expand (f1n x (nbr-step1 x)))
	   ("Subgoal 1.2"
	    :use (:instance
		  f1n-step1
		  (x (step1 x))
		  (n (+ -1 (nbr-step1 x)))
		  (m (nbr-step1 (step1 x))))))
   :rule-classes nil)
 ) ;; end encapsulate

(defthm
  g1a=h1a
  (equal (g1a x)
	 (h1a x))
  :rule-classes nil
  :hints (("Goal"
	   :by (:functional-instance
		g1=h1
		(g1 g1a)
		(h1 h1a)))
	  ("Subgoal 2"
	   :by h1a-h1-def)
	  ("Subgoal 1"
	   :by g1a-g1-def)))

(defthm
  recursion-halts-f1
  (test1 (step1n x (nbr-step1 x)))
  :hints (("Goal"
	   :use g1a=h1a)))

(defun-sk
  exists-n-recursion-halts-f1 (x)
  (exists n (test1 (step1n x n))))

(defthm
  exist-n-recursion-halts-f1-thm
  (exists-n-recursion-halts-f1 x)
  :hints (("Goal"
	   :use (:instance
		 exists-n-recursion-halts-f1-suff
		 (n (nbr-step1 x))))))

;; This concludes the proof of COROLLARY 2.
;; -------------------------------------------------------------------------
;; Let test3, base3, and step3 be unary functions.

;; Let (step3n x n) be the result of applying step3 n times with initial input x.
;; That is,

;; (defun
;;   step3n (x n)
;;   (if (zp n)
;;       x
;;       (step3n (step3 x)(- n 1))))

;; The tail recursion in the proposed definition

;; (defun
;;   f3 (x)
;;   (if (test3 x)
;;       (base3 x)
;;       (f3 (step3 x))))

;; is said to always terminate provided the following holds.

;; For all inputs x, there is an n such that (test3 (step3n x n)) is not NIL.

;; The tail recursion in the proposed definition of f3 is said to satisfy
;; the meaure conjecture for nonnegative-integer-valued measure im provided
;; the following goals are true.

;; (AND (integerp (im x))               ; Goal 1
;;      (>= (im x) 0)                   ; Goal 2
;;      (IMPLIES (NOT (test3 x))        ; Goal 3
;;               (< (im (step3 x))
;;                  (im x))).

;; THEOREM 3. If the tail recursion proposed in the definition of f3 always
;;            terminates, then the tail recursion satisfies the measure
;;            conjecture for some nonnegative-integer-valued measure m.

;;             That is, (IMPLIES ((FORALL x)
;;                                ((EXISTS n)(test3 (step3n x n))))
;;                               ((EXISTS FUNCTION im)
;;                                ((FORALL x)(AND (integerp (im x))
;;                                                (>= (im x) 0)
;;                                                (IMPLIES (NOT (test3 x))
;;                                                         (< (im (step3 x))
;;                                                            (im x)))))))
;; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;; PROOF OF THEOREM 3.

;; Assume the hypothesis of THEOREM 3.
;; That is, assume

;;           ((FORALL x)
;;            ((EXISTS n)(test3 (step3n x n))))

;; Replace this assumption with the result of Skolemizing the assumption.

;; ((EXISTS FUNCTION n)
;;  ((FORALL x)(test3 (step3n x (n x)))))

;; Let test3, step3, and n be functions satisfying the given hypothesis.

(encapsulate
 (((test3 *) => *)
  ((step3 *) => *)
  ((n     *) => *))

 (local (defun test3 (x)
	  (zp x)))

 (local (defun step3 (x)
	  (- x 1)))

 (defun
   step3n (x n)
   (if (zp n)
       x
       (step3n (step3 x)(- n 1))))

 (local (defun n (x)
	  (if (zp x)
	      0
	      x)))

 (defthm
   recursion-halts-f3
   (test3 (step3n x (n x))))
 ) ;; end encapsulate

;; Prove the conclusion of THEOREM 3.
;; That is, prove the following

;; ((EXISTS FUNCTION im)
;;  ((FORALL x)(AND (integerp (im x))
;;                  (>= (im x) 0)
;;                  (IMPLIES (NOT (test3 x))
;;                           (< (im (step3 x))
;;                              (im x)))))))

(defun
  n1 (x)
  (nfix (n x)))

(defthm
  recursion-halts-f3-a
  (test3 (step3n x (n1 x)))
  :hints (("Goal"
	   :in-theory (disable recursion-halts-f3)
	   :use recursion-halts-f3)))

(in-theory (disable n1))

(defthm
  n1-0-test3
  (implies (equal (n1 x) 0)
	   (test3 x))
  :hints (("Goal"
	   :in-theory (disable recursion-halts-f3-a)
	   :use recursion-halts-f3-a)))

(defun
  im-loop (x k)
  (declare (xargs :measure (let ((k (nfix k)))
			     (cond ((>= k (n1 x))
				    0)
				   ((test3 (step3n x k))
				    0)
				   (t (- (n1 x) k))))))
  (let ((k (nfix k)))
    (cond ((>= k (n1 x))
	   (n1 x))
	  ((test3 (step3n x k))
	   k)
	  (t (im-loop x (+ 1 k))))))

(defthm
  test3-step3n-im-loop
  (test3 (step3n x (im-loop x k))))

(defthm
  im-loop-0-test3
  (implies (equal (im-loop x k) 0)
	   (test3 x)))

(defthm
  im-loop-is-least
  (implies (and (integerp k)
		(>= k 0)
		(integerp i)
		(<= k i)
		(< i (im-loop x k)))
	   (not (test3 (step3n x i)))))

(defun
  im (x)
  (im-loop x 0))

(defthm
  test3-step3n-im
  (test3 (step3n x (im x))))

(defthm
  im-is-least
  (implies (and (integerp i)
		(<= 0 i)
		(< i (im x)))
	   (not (test3 (step3n x i))))
  :hints (("Goal"
	   :in-theory (disable im-loop-is-least)
	   :use (:instance
		 im-loop-is-least
		 (k 0)))))

(defthm
  pos-im
  (implies (not (test3 x))
	   (> (im x) 0))
  :rule-classes (:rewrite :linear))

(in-theory (disable im))

(defthm
  im-decreases-step3
  (implies (not (test3 x))
	   (< (im (step3 x))
	      (im x)))
  :rule-classes (:rewrite :linear)
  :hints (("Goal"
	   :in-theory (disable test3-step3n-im
			       im-is-least)
	   :use (test3-step3n-im
		 (:instance
		  im-is-least
		  (x (step3 x))
		  (i (- (im x) 1)))))))

(defthm
  im-is-measure
  (AND (integerp (im x))
       (>= (im x) 0)
       (IMPLIES (NOT (test3 x))
		(< (im (step3 x))
		   (im x))))
  :rule-classes nil)

;; This concludes the proof of THEOREM 3.
;; -------------------------------------------------------------------------
;; Use the measure im to get ACL2 to accept the proposed definition of f3

;; (defun
;;   f3 (x)
;;   (if (test3 x)
;;       (base3 x)
;;       (f3 (step3 x))))

;; Let base3 be an arbitrary unary function.

(defstub
  base3 (*) => *)

(defun
  f3 (x)
  (declare (xargs :measure (im x)))
  (if (test3 x)
      (base3 x)
      (f3 (step3 x))))
;; -------------------------------------------------------------------------
#|
;; Let test4, base4, and step4 be unary functions.
;; Let (a) and (b) be constants.

;; Let (step4n x n) be the result of applying step4 n times with initial input x.
;; That is,

;; (defun
;;   step4n (x n)
;;   (if (zp n)
;;       x
;;       (step4n (step4 x)(- n 1))))

;; The tail recursion in the proposed definition

;; (defun
;;   f4 (x)
;;   (if (test4 x)
;;       (base4 x)
;;       (f4 (step4 x))))

;; is said to terminate on input (a) provided the following holds.

;; There is an n such that (test4 (step4n (a) n)) is not NIL.

;; THEOREM 4. If ACL2 can prove (EQUAL (f4 (a))(b)) from the defining
;;            axiom for the tail recursion defining f4, then the
;;            recursion terminates on input (a).

;;            That is, (IMPLIES
;;                      (((FORALL x)
;;                        (EQUAL (f4 x)
;;                               (if (test4 x)
;;                                   (base4 x)
;;                                   (f4 (step4 x))))) |= (EQUAL (f4 (a))(b)))
;;                      ((EXISTS n)(test4 (step4n (a) n))))
;; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;; PROOF OF THEOREM 4.

;; Assume the hypothesis of THEOREM 4.
;; That is, assume

;; (EQUAL (f4 (a))(b)) is a logical consequence of the defining tail
;; recursive axiom for f4

;;    ((FORALL x)
;;     (EQUAL (f4 x)
;;            (if (test4 x)
;;                (base4 x)
;;                (f4 (step4 x)))))

;; Assume there is a function, called f4, with the desired definition.

(encapsulate
 (((test4 *) => *)
  ((base4 *) => *)
  ((step4 *) => *)
  ((f4 *)    => *))

 (local (defun test4 (x)
	  (zp x)))

 (local (defun base4 (x)
	  (declare (ignore x))
	  0))

 (local (defun step4 (x)
	  (- x 1)))

 (local (defun f4 (x)
	  (if (test4 x)
	      (base4 x)
	      (f4 (step4 x)))))

 (defthm
   f4-def
   (equal (f4 x)
	  (if (test4 x)
	      (base4 x)
	      (f4 (step4 x))))
   :rule-classes :definition)
 );; end encapsulate

;; Now, ensure that ACL2 can conclude the ``logical consequence'',
;; namely that (EQUAL (f4 (a))(b)).  This is done with a SKIP-PROOFS!

(defstub
  a () => *)

(defstub
  b () => *)

(skip-proofs
 (defthm
   f4-a=b
   (equal (f4 (a))
	  (b))
   :rule-classes nil))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; WARNING: This use of skip-proofs will render ACL2 unsound.
;; This is because the purported theorem f4-a=b is NOT really a
;; logical consequence of the constrained axiom f4-def.
;; [See below for a ``proof'' of NIL. Search for (defun k1 ...)]

;; However, the current proof would be sound in any circumstances
;; where f4-a=b does logically follow. For example, see the
;; application in the WyoM1 Correctness Without a Clock book, in
;; the file WyoM1-correct.lisp, that relates a correctness result
;; for a ``clockless'' tail recursive formal intepreter, used to
;; model the stack machine WyoM1, to the same result for a ``clocked''
;; version of a formal intepreter of WyoM1.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Prove the conclusion of THEOREM 4.
;; That is, prove the recursion halts for input (a).

;;  ((EXISTS n)(test4 (step4n (a) n)))

;; At this point the proof closely follows the proof, given by
;; J and Pete, in their DEFPUN work, that tail recursive definitions
;; are always satisfied by at least one total ACL2 function.

(defun
  step4n (x n)
  (if (zp n)
      x
      (step4n (step4 x)(- n 1))))

(defchoose
  nbr-step4 (n)(x)
  (test4 (step4n x n)))

(defun
  f4n (x n)
  (declare (xargs :measure (nfix n)))
  (if (or (zp n) (test4 x))
      (base4 x)
      (f4n (step4 x)(- n 1))))

(defun
  f4a (x)
  (if (test4 (step4n x (nbr-step4 x)))
      (f4n x (nbr-step4 x))
      (if (equal (b) nil)
	  t
	  nil)))

;; This encapsulate merely hides some tedious details of the proof.
(encapsulate
 nil

 (local
  (defthm
    test4-nbr-step4
    (implies (test4 x)
	     (test4 (step4n x (nbr-step4 x))))
    :hints (("Goal"
	     :use (:instance
		   nbr-step4
		   (n 0))))))

 (local
  (defthm
    test4-f4a-def
    (implies (test4 x)
	     (equal (f4a x)(base4 x)))))

 (local
  (defthm
    open-step4n
    (implies (and (integerp n)
		  (> n 0))
	     (equal (step4n x n)
		    (step4n (step4 x)(- n 1))))))

 (local
  (defthm +1-1
    (equal (+ -1 +1 x) (fix x))))

 (local
  (defthm
    step4-step4n-nbr-step4
    (implies (test4 (step4n (step4 x)(nbr-step4 (step4 x))))
	     (test4 (step4n x (nbr-step4 x))))
    :hints (("Goal"
	     :use (:instance
		   nbr-step4
		   (n (+ 1 (nfix (nbr-step4 (step4 x))))))))
    :rule-classes :forward-chaining))

 (local
  (defthm
    not-test4-nbr-step4
    (implies (not (test4 x))
	     (iff (test4 (step4n (step4 x)(nbr-step4 (step4 x))))
		  (test4 (step4n x (nbr-step4 x)))))
    :hints (("Subgoal 2"
	     :use (:instance
		   nbr-step4
		   (x (step4 x))
		   (n (+ -1 (nbr-step4 x))))))))

 (local
  (defthm
    f4n-step4
    (implies (and (test4 (step4n x n))
		  (test4 (step4n x m)))
	     (equal (f4n x n)(f4n x m)))
    :rule-classes nil))

 (defthm
   f4a-f4-def
   (equal (f4a x)
	  (if (test4 x)
	      (base4 x)
	      (f4a (step4 x))))
   :hints (("Subgoal 3"
	    :expand (f4n x (nbr-step4 x)))
	   ("Subgoal 3.2"
	    :use (:instance
		  f4n-step4
		  (x (step4 x))
		  (n (+ -1 (nbr-step4 x)))
		  (m (nbr-step4 (step4 x))))))
   :rule-classes nil)
 ) ;; end encapsulate

(defthm
  f4a-a=b
  (equal (f4a (a))
	 (b))
  :rule-classes nil
  :hints (("Goal"
	   :by (:functional-instance
		f4-a=b
		(f4 f4a)))
	  ("Goal'"
	   :by f4a-f4-def)))

(defthm
  recursion-halts
  (test4 (step4n (a)(nbr-step4 (a))))
  :hints (("Goal"
	   :use f4a-a=b)))

(defun-sk
  exists-n-recursion-halts ()
  (exists n (test4 (step4n (a) n))))

(defthm
  exist-n-recursion-halts-thm
  (exists-n-recursion-halts)
  :hints (("Goal"
	   :use (:instance
		 exists-n-recursion-halts-suff
		 (n (nbr-step4 (a)))))))

;; This concludes the proof of THEOREM 4.
;; = = = = = = = = = = = = = = = = = = = =
;; The following example shows that the above SKIP-PROOFS
;; renders ACL2 unsound!

(defpun
  k1 (x)
  (if (zp x)
      0
      (k1 (+ 1 x))))

(defun
  k1-step-n (x n)
  (if (zp n)
      x
      (k1-step-n (+ 1 x)(- n 1))))

(defun-sk
  exists-n-recursion-halts-k1 ()
  (exists n (zp (k1-step-n 1 n))))

(defthm
  exist-n-recursion-halts-k1-thm
  (exists-n-recursion-halts-k1)
  :rule-classes nil
  :hints (("Goal"
	   :in-theory (disable exists-n-recursion-halts-k1)
	   :by (:functional-instance
		exist-n-recursion-halts-thm
		(test4 zp)
		(base4 (lambda (x) 0))
		(step4 (lambda (x)(+ 1 x)))
		(step4n k1-step-n)
		(f4 k1)
		(a (lambda () 1))
		(exists-n-recursion-halts
		 exists-n-recursion-halts-k1)
		(exists-n-recursion-halts-witness
		 exists-n-recursion-halts-k1-witness)))
	  ("Subgoal 3"
	   :in-theory (enable exists-n-recursion-halts-k1))))

(defthm
  k1-never-halts-on-non-zp
  (implies (not (zp x))
	   (not (zp (k1-step-n x n))))
  :rule-classes nil)

(thm
 nil
 :hints (("Goal"
	  :use (exist-n-recursion-halts-k1-thm
		(:instance
		 k1-never-halts-on-non-zp
		 (x 1)
		 (n (exists-n-recursion-halts-k1-witness)))))))

;; Summary
;; Form:  ( THM ...)
;; Rules: ((:DEFINITION EXISTS-N-RECURSION-HALTS-K1)
;;         (:DEFINITION NOT)
;;         (:EXECUTABLE-COUNTERPART NOT)
;;         (:EXECUTABLE-COUNTERPART ZP))
;; Warnings:  None
;; Time:  0.01 seconds (prove: 0.00, print: 0.01, other: 0.00)

;; Proof succeeded.
|#
;; The above example demonstrates that the application of THEOREM 4
;; via FUNCTIONAL INSTANTIATION is NOT to be trusted. However, by
;; carefully following the proof of THEOREM 4, consistent results can
;; be obtained. This is illustrated by showing how to relate
;; corrrectness results obtained using an interpreter without a clock
;; to the same results using an intepreter with a clock. See the
;; WyoM1 Correctness Without a Clock book in the file
;; WyoM1-correct.lisp