summaryrefslogtreecommitdiff
path: root/books/workshops/2004/davis/support/map.lisp
blob: c8e038e3b623db720f5d314531117d91b3af021c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
; Fully Ordered Finite Sets, Version 0.9
; Copyright (C) 2003, 2004 Kookamara LLC
;
; Contact:
;
;   Kookamara LLC
;   11410 Windermere Meadows
;   Austin, TX 78759, USA
;   http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
;
; map.lisp
;
; This is an optional extension of the sets library, and is not included by
; default when you run (include-book "sets").
;
;
; Mappings Between Sets.
;
; We create the macro map-function, which introduces the following functions
; for any arbitrary transformation function.
;
;      map<function>
;      map-list<function>
;
; In addition to introducing these functions, a large rewriting strategy is
; developed for reasoning about the new mapping functions.
;
;
; Introductory Examples.
;
; Here are some simple examples.  These transformation functions have only a
; single argument, and are guarded to operate on any inputs.
;
;     (SET::map-function (integerp x))
;       - (SET::map<integerp> '(1 2 3)) = (t)
;       - (SET::map-list<integerp> '(1 a 2 b)) = (t nil t nil)
;
;     (defun square (x)
;       (declare (xargs :guard t))
;       (* (rfix x) (rfix x)))
;
;     (SET::map-function (square x))
;       - (SET::map<square> '(1 2 3)) = (1 4 9)
;       - (SET::map<square> '(a b c)) = (0)
;
; Note that you cannot use macros here.  For example, you cannot map
; real/rationalp, because it is not a function.
;
;
; Controlling Packages.
;
; As you can see, the new map<f> functions are added to the SETS package by
; default.  If you would like them to be in a new place, you can use the
; :in-package-of argument to map-function.  For example, since defthm is in the
; ACL2 package, we can run:
;
;     (SET::map-function (square x)
;       :in-package-of defthm)
;
; And map<square> will be created in the ACL2 package instead of the sets
; package.
;
;
; Multi-Argument Transformation Functions.
;
; You can also introduce transformations with multiple arguments.  As an
; example, we introduce the function square-then-add, which first squares its
; input and then adds some offset to it.
;
;     (defun square-then-add (input offset)
;       (declare (xargs :guard t))
;       (+ (* (rfix input) (rfix input))
;          (rfix offset)))
;
;     (SET::map-function (square-then-add input offset)
;        :in-package-of defthm)
;
;     (map<square-then-add> '(1 2 3) 5) => (6 9 14)
;
;
; Supporting Guards.
;
; We can support transformation functions that require guards by sending extra
; arguments to the map-function macro.  As an example, we consider what it
; would require to write a mapping function for the function below.
;
;   (defun plus (x y)
;     (declare (xargs :guard (and (integerp x) (rationalp y))))
;     (+ x y))
;
;   (quantify-predicate (integerp x))   ; see quantify.lisp for explanation
;
;   (map-function (plus arg1 arg2)
;     :set-guard ((all<integerp> ?set))        ; set's name must be ?set
;     :list-guard ((all-list<integerp> ?list)) ; list's name must be ?list
;     :element-guard ((integerp a))            ; element's name must be a
;     :arg-guard ((rationalp arg2)))           ; extra arg names specified above

(in-package "SET")
(include-book "quantify")
(set-verify-guards-eagerness 2)


; The need for the following theorems is depressing and distressing.
; I haven't figured out a way around them yet.  Maybe they need to be
; added into the main sets books, but they seem to only be an issue
; here.

(defthm map-subset-helper
  (implies (and (not (empty x))
		(in (head x) y))
	   (equal (subset (tail x) y)
		  (subset x y)))
  :hints(("Goal" :expand (subset x y))))

(defthm map-subset-helper-2
  (implies (and (not (empty x))
		(not (in (head x) y)))
	   (not (subset x y))))


; We will map an arbitrary transformation function across the set.  We
; don't assume anything about transform.

(encapsulate
  (((transform *) => *))
  (local (defun transform (x) x)))


; Now we introduce our mapping functions.  We allow the transform to
; be mapped across a list or a set.  Under the hood, we use MBE to
; ensure that we first transform every element of the set, and then
; mergesort the results.  This gives O(n) + O(n log n) performance
; intead of the O(n^2) required for repeated insertion.  We introduce
; these functions as a constant, so we can rewrite it later to
; actually create maps.

(defconst *map-functions* '(

  (defun map-list (x)
    (declare (xargs :guard (true-listp x)))
    (if (endp x)
	nil
      (cons (transform (car X))
	    (map-list (cdr X)))))

  (defun map (X)
    (declare (xargs :guard (setp X)))
    (declare (xargs :verify-guards nil))
    (mbe :logic (if (empty X)
		    nil
		  (insert (transform (head X))
			  (map (tail X))))
	 :exec (mergesort (map-list X))))

; A crucial component of our reasoning is the notion of the inverse of
; the transform.  We define the relation (inversep a b), which is true
; if and only if a is an inverse of b under transform -- that is,
; (inversep a b) is true when (transform a) = b.

  (defun inversep (a b)
    (declare (xargs :guard t))
    (equal (transform a) b))

))

(INSTANCE::instance *map-functions*)
(instance-*map-functions*)


; We now quantify over the predicate inversep, allowing us to talk
; about the existence of inverses in sets.

(quantify-predicate (inversep a b))



; Again we begin introducing theorems as a constant, so that we can
; instantiate concrete theories of mapping by rewriting.

(defconst *map-theorems* '(

  (defthm map-setp
    (setp (map X)))

  (defthm map-sfix
    (equal (map (sfix X))
	   (map X)))


; The ordered sets library works really well when you can provide a
; concise statement about membership for your new functions.  Here, we
; use the idea of inverses in order to explain what it means to be a
; member in a map.  Basically, (in a (map X)) is exactly equal to
; (exists<inversep> X a), i.e., if there is an inverse of a in x.  We
; then manually apply our "exists elimination" to make this theorem a
; little more direct.

  (defthm map-in
    (equal (in a (map X))
	   (not (all<not-inversep> X a))))


; With this notion of membership in play, we can now use the
; properties of all<not-inversep> in order to prove many interesting
; theorems about mappings through standard membership arguments.

  (defthm map-subset
    (implies (subset X Y)
	     (subset (map X) (map Y))))

  (defthm map-insert
    (equal (map (insert a X))
	   (insert (transform a) (map X))))

  (defthm map-delete
    (subset (delete (transform a) (map X))
	    (map (delete a X))))

  (defthm map-union
    (equal (map (union X Y))
	   (union (map X) (map Y))))

  (defthm map-intersect
    (subset (map (intersect X Y))
	    (intersect (map X) (map Y))))

  (defthm map-difference
    (subset (difference (map X) (map Y))
	    (map (difference X Y))))

  (defthm map-cardinality
    (<= (cardinality (map X))
	(cardinality X))
    :rule-classes :linear)



; We now provide some theorems about mapping over lists.  These are
; somewhat nice in and of themselves, but also allow us to prove our
; mbe equivalence so that our mapping operations are more efficient.
; To begin, we prove the characteristic list membership theorem for
; mapping over lists.

  (defthm map-list-in-list
    (equal (in-list a (map-list X))
	   (exists-list<inversep> X a)))

  (defthm map-mergesort
    (equal (map (mergesort X))
	   (mergesort (map-list X))))



; And finally we prove this theorem, which will be useful for
; verifying the guards of map.

  (defthm map-mbe-equivalence
    (implies (setp X)
	     (equal (mergesort (map-list X))
		    (map X))))


; We finish up our theory with some more, basic theorems about
; mapping over lists.

  (defthm map-list-cons
    (equal (map-list (cons a x))
	   (cons (transform a)
		 (map-list x))))

  (defthm map-list-append
    (equal (map-list (append x y))
	   (append (map-list x)
		   (map-list y))))

  (defthm map-list-nth
    (implies (and (integerp n)
		  (<= 0 n)
		  (< n (len x)))
	     (equal (nth n (map-list x))
		    (transform (nth n x)))))

  (defthm map-list-revappend
    (equal (map-list (revappend x acc))
	   (revappend (map-list x)
		      (map-list acc))))

  (defthm map-list-reverse
    (equal (map-list (reverse x))
	   (reverse (map-list x))))

))

(INSTANCE::instance *map-theorems*)
(instance-*map-theorems*)

(verify-guards map)



; This is a nice generic theory, but to be useful, we will need to be
; able to instantiate concrete theories based on it.  We do this with
; the following function, for which we introduce a corresponding
; macro.

(defun map-function-fn (function in-package
				 set-guard
				 list-guard
				 element-guard
				 arg-guard)

  (declare (xargs :mode :program))

  (let* ((name          (car function))
	 (extra-args    (cddr function))
	 (wrap          (app "<" (app (symbol-name name) ">")))

	 ;; First we build up all the symbols that we will use.

	 (map<f>                   (mksym (app "map" wrap) in-package))
	 (map-list<f>              (mksym (app "map-list" wrap) in-package))
	 (inversep                 (app "inversep" wrap))
	 (ipw                      (app "<" (app inversep ">")))
	 (not-ipw                  (app "<not-" (app inversep ">")))
	 (inversep<f>              (mksym inversep in-package))

	 (all<inversep<f>>     (mksym (app "all" ipw) in-package))
	 (exists<inversep<f>>  (mksym (app "exists" ipw) in-package))
	 (find<inversep<f>>    (mksym (app "find" ipw) in-package))
	 (filter<inversep<f>>  (mksym (app "filter" ipw) in-package))
	 (all-list<inversep<f>>     (mksym (app "all-list" ipw) in-package))
	 (exists-list<inversep<f>>  (mksym (app "exists-list" ipw) in-package))
	 (find-list<inversep<f>>    (mksym (app "find-list" ipw) in-package))
	 (filter-list<inversep<f>>  (mksym (app "filter-list" ipw) in-package))

	 (all<not-inversep<f>>     (mksym (app "all" not-ipw) in-package))
	 (exists<not-inversep<f>>  (mksym (app "exists" not-ipw) in-package))
	 (find<not-inversep<f>>    (mksym (app "find" not-ipw) in-package))
	 (filter<not-inversep<f>>  (mksym (app "filter" not-ipw) in-package))
	 (all-list<not-inversep<f>>     (mksym (app "all-list" not-ipw) in-package))
	 (exists-list<not-inversep<f>>  (mksym (app "exists-list" not-ipw) in-package))
	 (find-list<not-inversep<f>>    (mksym (app "find-list" not-ipw) in-package))
	 (filter-list<not-inversep<f>>  (mksym (app "filter-list" not-ipw) in-package))


	 (subs `(((transform ?x) (,name ?x ,@extra-args))
		 ((map ?x) (,map<f> ?x ,@extra-args))
		 ((map-list ?x) (,map-list<f> ?x ,@extra-args))
		 ((inversep ?a ?b) (,inversep<f> ?a ?b ,@extra-args))

		 ((all<inversep> ?a ?b)    (,all<inversep<f>> ?a ?b ,@extra-args))
		 ((exists<inversep> ?a ?b) (,exists<inversep<f>> ?a ?b ,@extra-args))
		 ((find<inversep> ?a ?b)   (,find<inversep<f>> ?a ?b ,@extra-args))
		 ((filter<inversep> ?a ?b) (,filter<inversep<f>> ?a ?b ,@extra-args))

		 ((all-list<inversep> ?a ?b)    (,all-list<inversep<f>> ?a ?b ,@extra-args))
		 ((exists-list<inversep> ?a ?b) (,exists-list<inversep<f>> ?a ?b ,@extra-args))
		 ((find-list<inversep> ?a ?b)   (,find-list<inversep<f>> ?a ?b ,@extra-args))
		 ((filter-list<inversep> ?a ?b) (,filter-list<inversep<f>> ?a ?b ,@extra-args))

		 ((all<not-inversep> ?a ?b)    (,all<not-inversep<f>> ?a ?b ,@extra-args))
		 ((exists<not-inversep> ?a ?b) (,exists<not-inversep<f>> ?a ?b ,@extra-args))
		 ((find<not-inversep> ?a ?b)   (,find<not-inversep<f>> ?a ?b ,@extra-args))
		 ((filter<not-inversep> ?a ?b) (,filter<not-inversep<f>> ?a ?b ,@extra-args))

		 ((all-list<not-inversep> ?a ?b)    (,all-list<not-inversep<f>> ?a ?b ,@extra-args))
		 ((exists-list<not-inversep> ?a ?b) (,exists-list<not-inversep<f>> ?a ?b ,@extra-args))
		 ((find-list<not-inversep> ?a ?b)   (,find-list<not-inversep<f>> ?a ?b ,@extra-args))
		 ((filter-list<not-inversep> ?a ?b) (,filter-list<not-inversep<f>> ?a ?b ,@extra-args))
	 ))

	 (theory<f>         (mksym (app "map-theory" wrap) in-package))
	 (suffix            (mksym wrap in-package))
	 (thm-names         (INSTANCE::defthm-names *map-theorems*))
	 (thm-name-map      (INSTANCE::create-new-names thm-names suffix))
	 (theory<f>-defthms (sublis thm-name-map thm-names))
	 )

  `(encapsulate ()

		(instance-*map-functions*
		 :subs ,(list* `((declare (xargs :guard (setp ?set)))
				 (declare (xargs :guard (and (setp ?set)
							     ,@set-guard
							     ,@arg-guard))))
			       `((declare (xargs :guard (true-listp ?list)))
				 (declare (xargs :guard (and (true-listp ?list)
							     ,@list-guard
							     ,@arg-guard))))
			       `((declare (xargs :guard t))
				 (declare (xargs :guard (and ,@element-guard
							     ,@arg-guard))))
			       subs)
		 :suffix ,name)

		(quantify-predicate (,inversep<f> a b ,@extra-args)
		 :in-package-of ,in-package
		 :set-guard ,set-guard
		 :list-guard ,list-guard
		 :arg-guard ,arg-guard)

		(instance-*map-theorems*
		 :subs ,subs
		 :suffix ,(mksym wrap in-package))

		(verify-guards ,map<f>)

		(deftheory ,theory<f>
		  (union-theories
		   (theory ',(mksym (app "theory" ipw) in-package))
		   '(,map<f> ,map-list<f> ,inversep<f>
	             ,@theory<f>-defthms)))

		)))


(defmacro map-function (function &key in-package-of
				      set-guard
				      list-guard
				      element-guard
				      arg-guard)
  (map-function-fn function
		   (if in-package-of in-package-of 'in)
		   (standardize-to-package "?SET" '?set set-guard)
		   (standardize-to-package "?LIST" '?list list-guard)
		   (standardize-to-package "A" 'a element-guard)
		   arg-guard
		   ))


(deftheory generic-map-theory
  (union-theories (theory 'theory<inversep>)
		  `(,@(INSTANCE::defthm-names *map-theorems*)
		      map
		      map-list
		      inversep)))

(in-theory (disable generic-map-theory))