summaryrefslogtreecommitdiff
path: root/test/av1_inv_txfm2d_test.cc
blob: 461e7ebcdc8909720b70a51695776136ba6933f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <vector>

#include "config/av1_rtcd.h"

#include "aom_ports/aom_timer.h"
#include "av1/common/av1_inv_txfm1d_cfg.h"
#include "av1/common/scan.h"
#include "test/acm_random.h"
#include "test/av1_txfm_test.h"
#include "test/util.h"

using libaom_test::ACMRandom;
using libaom_test::InvTxfm2dFunc;
using libaom_test::LbdInvTxfm2dFunc;
using libaom_test::bd;
using libaom_test::compute_avg_abs_error;
using libaom_test::input_base;

using ::testing::Combine;
using ::testing::Range;
using ::testing::Values;

using std::vector;

namespace {

// AV1InvTxfm2dParam argument list:
// tx_type_, tx_size_, max_error_, max_avg_error_
typedef ::testing::tuple<TX_TYPE, TX_SIZE, int, double> AV1InvTxfm2dParam;

class AV1InvTxfm2d : public ::testing::TestWithParam<AV1InvTxfm2dParam> {
 public:
  virtual void SetUp() {
    tx_type_ = GET_PARAM(0);
    tx_size_ = GET_PARAM(1);
    max_error_ = GET_PARAM(2);
    max_avg_error_ = GET_PARAM(3);
  }

  void RunRoundtripCheck() {
    int tx_w = tx_size_wide[tx_size_];
    int tx_h = tx_size_high[tx_size_];
    int txfm2d_size = tx_w * tx_h;
    const FwdTxfm2dFunc fwd_txfm_func = libaom_test::fwd_txfm_func_ls[tx_size_];
    const InvTxfm2dFunc inv_txfm_func = libaom_test::inv_txfm_func_ls[tx_size_];
    double avg_abs_error = 0;
    ACMRandom rnd(ACMRandom::DeterministicSeed());

    const int count = 500;

    for (int ci = 0; ci < count; ci++) {
      DECLARE_ALIGNED(16, int16_t, input[64 * 64]) = { 0 };
      ASSERT_LE(txfm2d_size, NELEMENTS(input));

      for (int ni = 0; ni < txfm2d_size; ++ni) {
        if (ci == 0) {
          int extreme_input = input_base - 1;
          input[ni] = extreme_input;  // extreme case
        } else {
          input[ni] = rnd.Rand16() % input_base;
        }
      }

      DECLARE_ALIGNED(16, uint16_t, expected[64 * 64]) = { 0 };
      ASSERT_LE(txfm2d_size, NELEMENTS(expected));
      if (TxfmUsesApproximation()) {
        // Compare reference forward HT + inverse HT vs forward HT + inverse HT.
        double ref_input[64 * 64];
        ASSERT_LE(txfm2d_size, NELEMENTS(ref_input));
        for (int ni = 0; ni < txfm2d_size; ++ni) {
          ref_input[ni] = input[ni];
        }
        double ref_coeffs[64 * 64] = { 0 };
        ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs));
        ASSERT_EQ(tx_type_, DCT_DCT);
        libaom_test::reference_hybrid_2d(ref_input, ref_coeffs, tx_type_,
                                         tx_size_);
        DECLARE_ALIGNED(16, int32_t, ref_coeffs_int[64 * 64]) = { 0 };
        ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs_int));
        for (int ni = 0; ni < txfm2d_size; ++ni) {
          ref_coeffs_int[ni] = (int32_t)round(ref_coeffs[ni]);
        }
        inv_txfm_func(ref_coeffs_int, expected, tx_w, tx_type_, bd);
      } else {
        // Compare original input vs forward HT + inverse HT.
        for (int ni = 0; ni < txfm2d_size; ++ni) {
          expected[ni] = input[ni];
        }
      }

      DECLARE_ALIGNED(16, int32_t, coeffs[64 * 64]) = { 0 };
      ASSERT_LE(txfm2d_size, NELEMENTS(coeffs));
      fwd_txfm_func(input, coeffs, tx_w, tx_type_, bd);

      DECLARE_ALIGNED(16, uint16_t, actual[64 * 64]) = { 0 };
      ASSERT_LE(txfm2d_size, NELEMENTS(actual));
      inv_txfm_func(coeffs, actual, tx_w, tx_type_, bd);

      double actual_max_error = 0;
      for (int ni = 0; ni < txfm2d_size; ++ni) {
        const double this_error = abs(expected[ni] - actual[ni]);
        actual_max_error = AOMMAX(actual_max_error, this_error);
      }
      EXPECT_GE(max_error_, actual_max_error)
          << " tx_w: " << tx_w << " tx_h " << tx_h << " tx_type: " << tx_type_;
      if (actual_max_error > max_error_) {  // exit early.
        break;
      }
      avg_abs_error += compute_avg_abs_error<uint16_t, uint16_t>(
          expected, actual, txfm2d_size);
    }

    avg_abs_error /= count;
    EXPECT_GE(max_avg_error_, avg_abs_error)
        << " tx_w: " << tx_w << " tx_h " << tx_h << " tx_type: " << tx_type_;
  }

 private:
  bool TxfmUsesApproximation() {
    if (tx_size_wide[tx_size_] == 64 || tx_size_high[tx_size_] == 64) {
      return true;
    }
    return false;
  }

  int max_error_;
  double max_avg_error_;
  TX_TYPE tx_type_;
  TX_SIZE tx_size_;
};

static int max_error_ls[TX_SIZES_ALL] = {
  2,  // 4x4 transform
  2,  // 8x8 transform
  2,  // 16x16 transform
  4,  // 32x32 transform
  3,  // 64x64 transform
  2,  // 4x8 transform
  2,  // 8x4 transform
  2,  // 8x16 transform
  2,  // 16x8 transform
  3,  // 16x32 transform
  3,  // 32x16 transform
  5,  // 32x64 transform
  5,  // 64x32 transform
  2,  // 4x16 transform
  2,  // 16x4 transform
  2,  // 8x32 transform
  2,  // 32x8 transform
  3,  // 16x64 transform
  3,  // 64x16 transform
};

static double avg_error_ls[TX_SIZES_ALL] = {
  0.002,  // 4x4 transform
  0.05,   // 8x8 transform
  0.07,   // 16x16 transform
  0.4,    // 32x32 transform
  0.3,    // 64x64 transform
  0.02,   // 4x8 transform
  0.02,   // 8x4 transform
  0.04,   // 8x16 transform
  0.07,   // 16x8 transform
  0.4,    // 16x32 transform
  0.5,    // 32x16 transform
  0.38,   // 32x64 transform
  0.39,   // 64x32 transform
  0.2,    // 4x16 transform
  0.2,    // 16x4 transform
  0.2,    // 8x32 transform
  0.2,    // 32x8 transform
  0.38,   // 16x64 transform
  0.38,   // 64x16 transform
};

vector<AV1InvTxfm2dParam> GetInvTxfm2dParamList() {
  vector<AV1InvTxfm2dParam> param_list;
  for (int s = 0; s < TX_SIZES; ++s) {
    const int max_error = max_error_ls[s];
    const double avg_error = avg_error_ls[s];
    for (int t = 0; t < TX_TYPES; ++t) {
      const TX_TYPE tx_type = static_cast<TX_TYPE>(t);
      const TX_SIZE tx_size = static_cast<TX_SIZE>(s);
      if (libaom_test::IsTxSizeTypeValid(tx_size, tx_type)) {
        param_list.push_back(
            AV1InvTxfm2dParam(tx_type, tx_size, max_error, avg_error));
      }
    }
  }
  return param_list;
}

INSTANTIATE_TEST_CASE_P(C, AV1InvTxfm2d,
                        ::testing::ValuesIn(GetInvTxfm2dParamList()));

TEST_P(AV1InvTxfm2d, RunRoundtripCheck) { RunRoundtripCheck(); }

TEST(AV1InvTxfm2d, CfgTest) {
  for (int bd_idx = 0; bd_idx < BD_NUM; ++bd_idx) {
    int bd = libaom_test::bd_arr[bd_idx];
    int8_t low_range = libaom_test::low_range_arr[bd_idx];
    int8_t high_range = libaom_test::high_range_arr[bd_idx];
    for (int tx_size = 0; tx_size < TX_SIZES_ALL; ++tx_size) {
      for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
        if (libaom_test::IsTxSizeTypeValid(static_cast<TX_SIZE>(tx_size),
                                           static_cast<TX_TYPE>(tx_type)) ==
            false) {
          continue;
        }
        TXFM_2D_FLIP_CFG cfg;
        av1_get_inv_txfm_cfg(static_cast<TX_TYPE>(tx_type),
                             static_cast<TX_SIZE>(tx_size), &cfg);
        int8_t stage_range_col[MAX_TXFM_STAGE_NUM];
        int8_t stage_range_row[MAX_TXFM_STAGE_NUM];
        av1_gen_inv_stage_range(stage_range_col, stage_range_row, &cfg,
                                (TX_SIZE)tx_size, bd);
        libaom_test::txfm_stage_range_check(stage_range_col, cfg.stage_num_col,
                                            cfg.cos_bit_col, low_range,
                                            high_range);
        libaom_test::txfm_stage_range_check(stage_range_row, cfg.stage_num_row,
                                            cfg.cos_bit_row, low_range,
                                            high_range);
      }
    }
  }
}

typedef ::testing::tuple<const LbdInvTxfm2dFunc> AV1LbdInvTxfm2dParam;
class AV1LbdInvTxfm2d : public ::testing::TestWithParam<AV1LbdInvTxfm2dParam> {
 public:
  virtual void SetUp() { target_func_ = GET_PARAM(0); }
  void RunAV1InvTxfm2dTest(TX_TYPE tx_type, TX_SIZE tx_size, int run_times);

 private:
  LbdInvTxfm2dFunc target_func_;
};

void AV1LbdInvTxfm2d::RunAV1InvTxfm2dTest(TX_TYPE tx_type, TX_SIZE tx_size,
                                          int run_times) {
  FwdTxfm2dFunc fwd_func_ = libaom_test::fwd_txfm_func_ls[tx_size];
  InvTxfm2dFunc ref_func_ = libaom_test::inv_txfm_func_ls[tx_size];
  if (fwd_func_ == NULL || ref_func_ == NULL || target_func_ == NULL) {
    return;
  }
  const int bd = 8;
  const int BLK_WIDTH = 64;
  const int BLK_SIZE = BLK_WIDTH * BLK_WIDTH;
  DECLARE_ALIGNED(16, int16_t, input[BLK_SIZE]) = { 0 };
  DECLARE_ALIGNED(32, int32_t, inv_input[BLK_SIZE]) = { 0 };
  DECLARE_ALIGNED(16, uint8_t, output[BLK_SIZE]) = { 0 };
  DECLARE_ALIGNED(16, uint16_t, ref_output[BLK_SIZE]) = { 0 };
  int stride = BLK_WIDTH;
  int rows = tx_size_high[tx_size];
  int cols = tx_size_wide[tx_size];
  const int rows_nonezero = AOMMIN(32, rows);
  const int cols_nonezero = AOMMIN(32, cols);
  run_times /= (rows * cols);
  run_times = AOMMAX(1, run_times);
  const SCAN_ORDER *scan_order = get_default_scan(tx_size, tx_type);
  const int16_t *scan = scan_order->scan;
  const int16_t eobmax = rows_nonezero * cols_nonezero;
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  int randTimes = run_times == 1 ? (eobmax + 500) : 1;
  for (int cnt = 0; cnt < randTimes; ++cnt) {
    const int16_t max_in = (1 << (bd)) - 1;
    for (int r = 0; r < BLK_WIDTH; ++r) {
      for (int c = 0; c < BLK_WIDTH; ++c) {
        input[r * cols + c] = (cnt == 0) ? max_in : rnd.Rand8Extremes();
        output[r * stride + c] = (cnt == 0) ? 128 : rnd.Rand8();
        ref_output[r * stride + c] = output[r * stride + c];
      }
    }
    fwd_func_(input, inv_input, stride, tx_type, bd);

    // produce eob input by setting high freq coeffs to zero
    const int eob = AOMMIN(cnt + 1, eobmax);
    for (int i = eob; i < eobmax; i++) {
      inv_input[scan[i]] = 0;
    }

    aom_usec_timer timer;
    aom_usec_timer_start(&timer);
    for (int i = 0; i < run_times; ++i) {
      ref_func_(inv_input, ref_output, stride, tx_type, bd);
    }
    aom_usec_timer_mark(&timer);
    const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer));
    aom_usec_timer_start(&timer);
    for (int i = 0; i < run_times; ++i) {
      target_func_(inv_input, output, stride, tx_type, tx_size, eob);
    }
    aom_usec_timer_mark(&timer);
    const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer));
    if (run_times > 10) {
      printf("txfm[%d] %3dx%-3d:%7.2f/%7.2fns", tx_type, cols, rows, time1,
             time2);
      printf("(%3.2f)\n", time1 / time2);
    }
    for (int r = 0; r < rows; ++r) {
      for (int c = 0; c < cols; ++c) {
        uint8_t ref_value = static_cast<uint8_t>(ref_output[r * stride + c]);
        ASSERT_EQ(ref_value, output[r * stride + c])
            << "[" << r << "," << c << "] " << cnt
            << " tx_size: " << static_cast<int>(tx_size)
            << " tx_type: " << tx_type << " eob " << eob;
      }
    }
  }
}

TEST_P(AV1LbdInvTxfm2d, match) {
  for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) {
    for (int i = 0; i < (int)TX_TYPES; ++i) {
      if (libaom_test::IsTxSizeTypeValid(static_cast<TX_SIZE>(j),
                                         static_cast<TX_TYPE>(i))) {
        RunAV1InvTxfm2dTest(static_cast<TX_TYPE>(i), static_cast<TX_SIZE>(j),
                            1);
      }
    }
  }
}

TEST_P(AV1LbdInvTxfm2d, DISABLED_Speed) {
  for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) {
    for (int i = 0; i < (int)TX_TYPES; ++i) {
      if (libaom_test::IsTxSizeTypeValid(static_cast<TX_SIZE>(j),
                                         static_cast<TX_TYPE>(i))) {
        RunAV1InvTxfm2dTest(static_cast<TX_TYPE>(i), static_cast<TX_SIZE>(j),
                            10000000);
      }
    }
  }
}

#if HAVE_SSSE3
#if defined(_MSC_VER) || defined(__SSSE3__)
#include "av1/common/x86/av1_inv_txfm_ssse3.h"
INSTANTIATE_TEST_CASE_P(SSSE3, AV1LbdInvTxfm2d,
                        ::testing::Values(av1_lowbd_inv_txfm2d_add_ssse3));
#endif  // _MSC_VER || __SSSE3__
#endif  // HAVE_SSSE3

#if HAVE_AVX2
extern "C" void av1_lowbd_inv_txfm2d_add_avx2(const int32_t *input,
                                              uint8_t *output, int stride,
                                              TX_TYPE tx_type, TX_SIZE tx_size,
                                              int eob);

INSTANTIATE_TEST_CASE_P(AVX2, AV1LbdInvTxfm2d,
                        ::testing::Values(av1_lowbd_inv_txfm2d_add_avx2));
#endif  // HAVE_AVX2

}  // namespace