summaryrefslogtreecommitdiff
path: root/src/pitch/pitchyinfft.c
blob: 98de63c7e4700aa861244ccb3dc734fb80dec250 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/*
  Copyright (C) 2003-2013 Paul Brossier <piem@aubio.org>

  This file is part of aubio.

  aubio is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  aubio is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with aubio.  If not, see <http://www.gnu.org/licenses/>.

*/

#include "aubio_priv.h"
#include "fvec.h"
#include "cvec.h"
#include "mathutils.h"
#include "spectral/fft.h"
#include "pitch/pitchyinfft.h"

/** pitch yinfft structure */
struct _aubio_pitchyinfft_t
{
  fvec_t *win;        /**< temporal weighting window */
  fvec_t *winput;     /**< windowed spectrum */
  fvec_t *sqrmag;     /**< square difference function */
  fvec_t *weight;     /**< spectral weighting window (psychoacoustic model) */
  fvec_t *fftout;     /**< Fourier transform output */
  aubio_fft_t *fft;   /**< fft object to compute square difference function */
  fvec_t *yinfft;     /**< Yin function */
  smpl_t tol;         /**< Yin tolerance */
  smpl_t confidence;  /**< confidence */
  uint_t short_period; /** shortest period under which to check for octave error */
};

static const smpl_t freqs[] = {
     0.,    20.,    25.,   31.5,    40.,    50.,    63.,    80.,   100.,   125.,
   160.,   200.,   250.,   315.,   400.,   500.,   630.,   800.,  1000.,  1250.,
  1600.,  2000.,  2500.,  3150.,  4000.,  5000.,  6300.,  8000.,  9000., 10000.,
 12500., 15000., 20000., 25100
};

static const smpl_t weight[] = {
  -75.8,  -70.1,  -60.8,  -52.1,  -44.2,  -37.5,  -31.3,  -25.6,  -20.9,  -16.5,
  -12.6,  -9.60,  -7.00,  -4.70,  -3.00,  -1.80,  -0.80,  -0.20,  -0.00,   0.50,
   1.60,   3.20,   5.40,   7.80,   8.10,   5.30,  -2.40,  -11.1,  -12.8,  -12.2,
  -7.40,  -17.8,  -17.8,  -17.8
};

aubio_pitchyinfft_t *
new_aubio_pitchyinfft (uint_t samplerate, uint_t bufsize)
{
  uint_t i = 0, j = 1;
  smpl_t freq = 0, a0 = 0, a1 = 0, f0 = 0, f1 = 0;
  aubio_pitchyinfft_t *p = AUBIO_NEW (aubio_pitchyinfft_t);
  p->winput = new_fvec (bufsize);
  p->fft = new_aubio_fft (bufsize);
  p->fftout = new_fvec (bufsize);
  p->sqrmag = new_fvec (bufsize);
  p->yinfft = new_fvec (bufsize / 2 + 1);
  p->tol = 0.85;
  p->win = new_aubio_window ("hanningz", bufsize);
  p->weight = new_fvec (bufsize / 2 + 1);
  for (i = 0; i < p->weight->length; i++) {
    freq = (smpl_t) i / (smpl_t) bufsize *(smpl_t) samplerate;
    while (freq > freqs[j]) {
      j += 1;
    }
    a0 = weight[j - 1];
    f0 = freqs[j - 1];
    a1 = weight[j];
    f1 = freqs[j];
    if (f0 == f1) {           // just in case
      p->weight->data[i] = a0;
    } else if (f0 == 0) {     // y = ax+b
      p->weight->data[i] = (a1 - a0) / f1 * freq + a0;
    } else {
      p->weight->data[i] = (a1 - a0) / (f1 - f0) * freq +
          (a0 - (a1 - a0) / (f1 / f0 - 1.));
    }
    while (freq > freqs[j]) {
      j += 1;
    }
    //AUBIO_DBG("%f\n",p->weight->data[i]);
    p->weight->data[i] = DB2LIN (p->weight->data[i]);
    //p->weight->data[i] = SQRT(DB2LIN(p->weight->data[i]));
  }
  // check for octave errors above 1300 Hz
  p->short_period = (uint_t)ROUND(samplerate / 1300.);
  return p;
}

void
aubio_pitchyinfft_do (aubio_pitchyinfft_t * p, const fvec_t * input, fvec_t * output)
{
  uint_t tau, l;
  uint_t length = p->fftout->length;
  uint_t halfperiod;
  fvec_t *fftout = p->fftout;
  fvec_t *yin = p->yinfft;
  smpl_t tmp = 0., sum = 0.;
  // window the input
  fvec_weighted_copy(input, p->win, p->winput);
  // get the real / imag parts of its fft
  aubio_fft_do_complex (p->fft, p->winput, fftout);
  // get the squared magnitude spectrum, applying some weight
  p->sqrmag->data[0] = SQR(fftout->data[0]);
  p->sqrmag->data[0] *= p->weight->data[0];
  for (l = 1; l < length / 2; l++) {
    p->sqrmag->data[l] = SQR(fftout->data[l]) + SQR(fftout->data[length - l]);
    p->sqrmag->data[l] *= p->weight->data[l];
    p->sqrmag->data[length - l] = p->sqrmag->data[l];
  }
  p->sqrmag->data[length / 2] = SQR(fftout->data[length / 2]);
  p->sqrmag->data[length / 2] *= p->weight->data[length / 2];
  // get sum of weighted squared mags
  for (l = 0; l < length / 2 + 1; l++) {
    sum += p->sqrmag->data[l];
  }
  sum *= 2.;
  // get the real / imag parts of the fft of the squared magnitude
  aubio_fft_do_complex (p->fft, p->sqrmag, fftout);
  yin->data[0] = 1.;
  for (tau = 1; tau < yin->length; tau++) {
    // compute the square differences
    yin->data[tau] = sum - fftout->data[tau];
    // and the cumulative mean normalized difference function
    tmp += yin->data[tau];
    if (tmp != 0) {
      yin->data[tau] *= tau / tmp;
    } else {
      yin->data[tau] = 1.;
    }
  }
  // find best candidates
  tau = fvec_min_elem (yin);
  if (yin->data[tau] < p->tol) {
    // no interpolation, directly return the period as an integer
    //output->data[0] = tau;
    //return;

    // 3 point quadratic interpolation
    //return fvec_quadratic_peak_pos (yin,tau,1);
    /* additional check for (unlikely) octave doubling in higher frequencies */
    if (tau > p->short_period) {
      output->data[0] = fvec_quadratic_peak_pos (yin, tau);
    } else {
      /* should compare the minimum value of each interpolated peaks */
      halfperiod = FLOOR (tau / 2 + .5);
      if (yin->data[halfperiod] < p->tol)
        output->data[0] = fvec_quadratic_peak_pos (yin, halfperiod);
      else
        output->data[0] = fvec_quadratic_peak_pos (yin, tau);
    }
  } else {
    output->data[0] = 0.;
  }
}

void
del_aubio_pitchyinfft (aubio_pitchyinfft_t * p)
{
  del_fvec (p->win);
  del_aubio_fft (p->fft);
  del_fvec (p->yinfft);
  del_fvec (p->sqrmag);
  del_fvec (p->fftout);
  del_fvec (p->winput);
  del_fvec (p->weight);
  AUBIO_FREE (p);
}

smpl_t
aubio_pitchyinfft_get_confidence (aubio_pitchyinfft_t * o) {
  o->confidence = 1. - fvec_min (o->yinfft);
  return o->confidence;
}

uint_t
aubio_pitchyinfft_set_tolerance (aubio_pitchyinfft_t * p, smpl_t tol)
{
  p->tol = tol;
  return 0;
}

smpl_t
aubio_pitchyinfft_get_tolerance (aubio_pitchyinfft_t * p)
{
  return p->tol;
}