summaryrefslogtreecommitdiff
path: root/addons/tutorial/src/main/java/tutorial/clustering/NaiveAgglomerativeHierarchicalClustering1.java
blob: 1535ef9c184401edbbc805b58be5784671c1c8a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
package tutorial.clustering;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import gnu.trove.map.TIntObjectMap;
import gnu.trove.map.hash.TIntObjectHashMap;

import java.util.Arrays;

import de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm;
import de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.SLINK;
import de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction.ExtractFlatClusteringFromHierarchy;
import de.lmu.ifi.dbs.elki.data.Cluster;
import de.lmu.ifi.dbs.elki.data.Clustering;
import de.lmu.ifi.dbs.elki.data.model.Model;
import de.lmu.ifi.dbs.elki.data.type.TypeInformation;
import de.lmu.ifi.dbs.elki.data.type.TypeUtil;
import de.lmu.ifi.dbs.elki.database.Database;
import de.lmu.ifi.dbs.elki.database.ids.ArrayDBIDs;
import de.lmu.ifi.dbs.elki.database.ids.ArrayModifiableDBIDs;
import de.lmu.ifi.dbs.elki.database.ids.DBIDArrayIter;
import de.lmu.ifi.dbs.elki.database.ids.DBIDUtil;
import de.lmu.ifi.dbs.elki.database.ids.DBIDs;
import de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs;
import de.lmu.ifi.dbs.elki.database.query.distance.DistanceQuery;
import de.lmu.ifi.dbs.elki.database.relation.Relation;
import de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction;
import de.lmu.ifi.dbs.elki.logging.Logging;
import de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress;
import de.lmu.ifi.dbs.elki.result.Result;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.constraints.CommonConstraints;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.IntParameter;

/**
 * This tutorial will step you through implementing a well known clustering
 * algorithm, agglomerative hierarchical clustering, in multiple steps.
 * 
 * This is the first step, where we implement it with single linkage only, and
 * extract a fixed number of clusters. The follow up variants will be made more
 * flexible.
 * 
 * This is the naive O(n^3) algorithm. See {@link SLINK} for a much faster
 * algorithm (however, only for single-linkage).
 * 
 * @author Erich Schubert
 * 
 * @param <O> Object type
 */
public class NaiveAgglomerativeHierarchicalClustering1<O> extends AbstractDistanceBasedAlgorithm<O, Result> {
  /**
   * Class logger
   */
  private static final Logging LOG = Logging.getLogger(NaiveAgglomerativeHierarchicalClustering1.class);

  /**
   * Threshold, how many clusters to extract.
   */
  int numclusters;

  /**
   * Constructor.
   * 
   * @param distanceFunction Distance function to use
   * @param numclusters Number of clusters
   */
  public NaiveAgglomerativeHierarchicalClustering1(DistanceFunction<? super O> distanceFunction, int numclusters) {
    super(distanceFunction);
    this.numclusters = numclusters;
  }

  /**
   * Run the algorithm
   * 
   * @param db Database
   * @param relation Relation
   * @return Clustering hierarchy
   */
  public Result run(Database db, Relation<O> relation) {
    DistanceQuery<O> dq = db.getDistanceQuery(relation, getDistanceFunction());
    ArrayDBIDs ids = DBIDUtil.ensureArray(relation.getDBIDs());
    final int size = ids.size();

    LOG.verbose("Notice: SLINK is a much faster algorithm for single-linkage clustering!");

    // Compute the initial distance matrix.
    double[][] matrix = new double[size][size];
    DBIDArrayIter ix = ids.iter(), iy = ids.iter();
    for(int x = 0; ix.valid(); x++, ix.advance()) {
      iy.seek(0);
      for(int y = 0; y < x; y++, iy.advance()) {
        final double dist = dq.distance(ix, iy);
        matrix[x][y] = dist;
        matrix[y][x] = dist;
      }
    }

    // Initialize space for result:
    double[] height = new double[size];
    Arrays.fill(height, Double.POSITIVE_INFINITY);
    // Parent node, to track merges
    // have every object point to itself initially
    ArrayModifiableDBIDs parent = DBIDUtil.newArray(ids);
    // Active clusters, when not trivial.
    TIntObjectMap<ModifiableDBIDs> clusters = new TIntObjectHashMap<>();

    // Repeat until everything merged, except the desired number of clusters:
    final int stop = size - numclusters;
    FiniteProgress prog = LOG.isVerbose() ? new FiniteProgress("Agglomerative clustering", stop, LOG) : null;
    for(int i = 0; i < stop; i++) {
      double min = Double.POSITIVE_INFINITY;
      int minx = -1, miny = -1;
      for(int x = 0; x < size; x++) {
        if(height[x] < Double.POSITIVE_INFINITY) {
          continue;
        }
        for(int y = 0; y < x; y++) {
          if(height[y] < Double.POSITIVE_INFINITY) {
            continue;
          }
          if(matrix[x][y] < min) {
            min = matrix[x][y];
            minx = x;
            miny = y;
          }
        }
      }
      assert (minx >= 0 && miny >= 0);
      // Avoid allocating memory, by reusing existing iterators:
      ix.seek(minx);
      iy.seek(miny);
      // Perform merge in data structure: x -> y
      // Since y < x, prefer keeping y, dropping x.
      height[minx] = min;
      parent.set(minx, iy);
      // Merge into cluster
      ModifiableDBIDs cx = clusters.get(minx);
      ModifiableDBIDs cy = clusters.get(miny);
      if(cy == null) {
        cy = DBIDUtil.newHashSet();
        cy.add(iy);
      }
      if(cx == null) {
        cy.add(ix);
      }
      else {
        cy.addDBIDs(cx);
        clusters.remove(minx);
      }
      clusters.put(miny, cy);
      // Update distance matrix for y:
      for(int j = 0; j < size; j++) {
        matrix[j][miny] = Math.min(matrix[j][minx], matrix[j][miny]);
        matrix[miny][j] = Math.min(matrix[minx][j], matrix[miny][j]);
      }
      LOG.incrementProcessed(prog);
    }
    LOG.ensureCompleted(prog);

    // Build the clustering result
    final Clustering<Model> dendrogram = new Clustering<>("Hierarchical-Clustering", "hierarchical-clustering");
    for(int x = 0; x < size; x++) {
      if(height[x] < Double.POSITIVE_INFINITY) {
        DBIDs cids = clusters.get(x);
        if(cids == null) {
          ix.seek(x);
          cids = DBIDUtil.deref(ix);
        }
        Cluster<Model> cluster = new Cluster<>("Cluster", cids);
        dendrogram.addToplevelCluster(cluster);
      }
    }
    return dendrogram;
  }

  @Override
  public TypeInformation[] getInputTypeRestriction() {
    // The input relation must match our distance function:
    return TypeUtil.array(getDistanceFunction().getInputTypeRestriction());
  }

  @Override
  protected Logging getLogger() {
    return LOG;
  }

  /**
   * Parameterization class
   * 
   * @author Erich Schubert
   * 
   * @apiviz.exclude
   * 
   * @param <O> Object type
   */
  public static class Parameterizer<O> extends AbstractDistanceBasedAlgorithm.Parameterizer<O> {
    /**
     * Desired number of clusters.
     */
    int numclusters = 0;

    @Override
    protected void makeOptions(Parameterization config) {
      super.makeOptions(config);
      IntParameter numclustersP = new IntParameter(ExtractFlatClusteringFromHierarchy.Parameterizer.MINCLUSTERS_ID);
      numclustersP.addConstraint(CommonConstraints.GREATER_EQUAL_ONE_INT);
      if(config.grab(numclustersP)) {
        numclusters = numclustersP.intValue();
      }
    }

    @Override
    protected NaiveAgglomerativeHierarchicalClustering1<O> makeInstance() {
      return new NaiveAgglomerativeHierarchicalClustering1<>(distanceFunction, numclusters);
    }
  }
}