summaryrefslogtreecommitdiff
path: root/elki/src/main/java/de/lmu/ifi/dbs/elki/algorithm/clustering/NaiveMeanShiftClustering.java
blob: b6b43047cd3fff95d0a51aeebfcb5a22c19922ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
package de.lmu.ifi.dbs.elki.algorithm.clustering;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
import java.util.ArrayList;

import de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm;
import de.lmu.ifi.dbs.elki.data.Cluster;
import de.lmu.ifi.dbs.elki.data.Clustering;
import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.model.MeanModel;
import de.lmu.ifi.dbs.elki.data.type.TypeInformation;
import de.lmu.ifi.dbs.elki.data.type.TypeUtil;
import de.lmu.ifi.dbs.elki.database.Database;
import de.lmu.ifi.dbs.elki.database.ids.ArrayModifiableDBIDs;
import de.lmu.ifi.dbs.elki.database.ids.DBIDIter;
import de.lmu.ifi.dbs.elki.database.ids.DBIDUtil;
import de.lmu.ifi.dbs.elki.database.ids.DoubleDBIDList;
import de.lmu.ifi.dbs.elki.database.ids.DoubleDBIDListIter;
import de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs;
import de.lmu.ifi.dbs.elki.database.query.distance.DistanceQuery;
import de.lmu.ifi.dbs.elki.database.query.range.RangeQuery;
import de.lmu.ifi.dbs.elki.database.relation.Relation;
import de.lmu.ifi.dbs.elki.database.relation.RelationUtil;
import de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction;
import de.lmu.ifi.dbs.elki.logging.Logging;
import de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress;
import de.lmu.ifi.dbs.elki.math.linearalgebra.Centroid;
import de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.EpanechnikovKernelDensityFunction;
import de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.KernelDensityFunction;
import de.lmu.ifi.dbs.elki.utilities.documentation.Reference;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.OptionID;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.DoubleParameter;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.ObjectParameter;
import de.lmu.ifi.dbs.elki.utilities.pairs.Pair;

/**
 * Mean-shift based clustering algorithm. Naive implementation: there does not
 * seem to be "the" mean-shift clustering algorithm, but it is a general
 * concept. For the naive implementation, mean-shift is applied to all objects
 * until they converge to other. This implementation is quite naive, and various
 * optimizations can be made.
 * 
 * It also is not really parameter-free: the kernel needs to be specified,
 * including a radius/bandwidth.
 * 
 * By using range queries, the algorithm does benefit from index structures!
 * 
 * TODO: add methods to automatically choose the bandwidth?
 * 
 * <p>
 * Reference:<br />
 * Y. Cheng<br />
 * Mean shift, mode seeking, and clustering<br />
 * IEEE Transactions on Pattern Analysis and Machine Intelligence 17-8
 * </p>
 * 
 * @author Erich Schubert
 * @since 0.5.5
 * 
 * @param <V> Vector type
 */
@Reference(authors = "Y. Cheng", title = "Mean shift, mode seeking, and clustering", booktitle = "IEEE Transactions on Pattern Analysis and Machine Intelligence 17-8", url = "http://dx.doi.org/10.1109/34.400568")
public class NaiveMeanShiftClustering<V extends NumberVector> extends AbstractDistanceBasedAlgorithm<V, Clustering<MeanModel>> implements ClusteringAlgorithm<Clustering<MeanModel>> {
  /**
   * Class logger.
   */
  private static final Logging LOG = Logging.getLogger(NaiveMeanShiftClustering.class);

  /**
   * Density estimation kernel.
   */
  KernelDensityFunction kernel = EpanechnikovKernelDensityFunction.KERNEL;

  /**
   * Range of the kernel.
   */
  double bandwidth;

  /**
   * Maximum number of iterations.
   */
  static final int MAXITER = 1000;

  /**
   * Constructor.
   * 
   * @param distanceFunction Distance function
   * @param kernel Kernel function
   * @param range Kernel radius
   */
  public NaiveMeanShiftClustering(DistanceFunction<? super V> distanceFunction, KernelDensityFunction kernel, double range) {
    super(distanceFunction);
    this.kernel = kernel;
    this.bandwidth = range;
  }

  /**
   * Run the mean-shift clustering algorithm.
   * 
   * @param database Database
   * @param relation Data relation
   * @return Clustering result
   */
  public Clustering<MeanModel> run(Database database, Relation<V> relation) {
    final DistanceQuery<V> distq = database.getDistanceQuery(relation, getDistanceFunction());
    final RangeQuery<V> rangeq = database.getRangeQuery(distq);
    final int dim = RelationUtil.dimensionality(relation);

    // Stopping threshold
    final double threshold = bandwidth * 1E-10;

    // Result store:
    ArrayList<Pair<V, ModifiableDBIDs>> clusters = new ArrayList<>();

    ModifiableDBIDs noise = DBIDUtil.newArray();

    FiniteProgress prog = LOG.isVerbose() ? new FiniteProgress("Mean-shift clustering", relation.size(), LOG) : null;

    for(DBIDIter iter = relation.iterDBIDs(); iter.valid(); iter.advance()) {
      // Initial position:
      V position = relation.get(iter);
      iterations: for(int j = 1; j <= MAXITER; j++) {
        // Compute new position:
        V newvec = null;
        {
          DoubleDBIDList neigh = rangeq.getRangeForObject(position, bandwidth);
          boolean okay = (neigh.size() > 1) || (neigh.size() >= 1 && j > 1);
          if(okay) {
            Centroid newpos = new Centroid(dim);
            for(DoubleDBIDListIter niter = neigh.iter(); niter.valid(); niter.advance()) {
              final double weight = kernel.density(niter.doubleValue() / bandwidth);
              newpos.put(relation.get(niter), weight);
            }
            newvec = newpos.toVector(relation);
            // TODO: detect 0 weight!
          }
          if(!okay) {
            noise.add(iter);
            break iterations;
          }
        }
        // Test if we are close to one of the known clusters:
        double bestd = Double.POSITIVE_INFINITY;
        Pair<V, ModifiableDBIDs> bestp = null;
        for(Pair<V, ModifiableDBIDs> pair : clusters) {
          final double merged = distq.distance(newvec, pair.first);
          if(merged < bestd) {
            bestd = merged;
            bestp = pair;
          }
        }
        // Check for convergence:
        double delta = distq.distance(position, newvec);
        if(bestd < 10 * threshold || bestd * 2 < delta) {
          bestp.second.add(iter);
          break iterations;
        }
        if(j == MAXITER) {
          LOG.warning("No convergence after " + MAXITER + " iterations. Distance: " + delta);
        }
        if(Double.isNaN(delta)) {
          LOG.warning("Encountered NaN distance. Invalid center vector? " + newvec.toString());
          break iterations;
        }
        if(j == MAXITER || delta < threshold) {
          if(LOG.isDebuggingFine()) {
            LOG.debugFine("New cluster:" + newvec + " delta: " + delta + " threshold: " + threshold + " bestd: " + bestd);
          }
          ArrayModifiableDBIDs cids = DBIDUtil.newArray();
          cids.add(iter);
          clusters.add(new Pair<V, ModifiableDBIDs>(newvec, cids));
          break iterations;
        }
        position = newvec;
      }
      LOG.incrementProcessed(prog);
    }
    LOG.ensureCompleted(prog);

    ArrayList<Cluster<MeanModel>> cs = new ArrayList<>(clusters.size());
    for(Pair<V, ModifiableDBIDs> pair : clusters) {
      cs.add(new Cluster<>(pair.second, new MeanModel(pair.first.getColumnVector())));
    }
    if(noise.size() > 0) {
      cs.add(new Cluster<MeanModel>(noise, true));
    }
    Clustering<MeanModel> c = new Clustering<>("Mean-shift Clustering", "mean-shift-clustering", cs);
    return c;
  }

  @Override
  public TypeInformation[] getInputTypeRestriction() {
    return TypeUtil.array(TypeUtil.NUMBER_VECTOR_FIELD);
  }

  @Override
  protected Logging getLogger() {
    return LOG;
  }

  /**
   * Parameterizer.
   * 
   * @author Erich Schubert
   * 
   * @apiviz.exclude
   * 
   * @param <V> Vector type
   */
  public static class Parameterizer<V extends NumberVector> extends AbstractDistanceBasedAlgorithm.Parameterizer<V> {
    /**
     * Parameter for kernel function.
     */
    public static final OptionID KERNEL_ID = new OptionID("meanshift.kernel", "Kernel function to use with mean-shift clustering.");

    /**
     * Parameter for kernel radius/range/bandwidth.
     */
    public static final OptionID RANGE_ID = new OptionID("meanshift.kernel-bandwidth", "Range of the kernel to use (aka: radius, bandwidth).");

    /**
     * Kernel function.
     */
    KernelDensityFunction kernel = EpanechnikovKernelDensityFunction.KERNEL;

    /**
     * Kernel radius.
     */
    double range;

    @Override
    protected void makeOptions(Parameterization config) {
      super.makeOptions(config);
      ObjectParameter<KernelDensityFunction> kernelP = new ObjectParameter<>(KERNEL_ID, KernelDensityFunction.class, EpanechnikovKernelDensityFunction.class);
      if(config.grab(kernelP)) {
        kernel = kernelP.instantiateClass(config);
      }
      DoubleParameter rangeP = new DoubleParameter(RANGE_ID);
      if(config.grab(rangeP)) {
        range = rangeP.getValue();
      }
    }

    @Override
    protected NaiveMeanShiftClustering<V> makeInstance() {
      return new NaiveMeanShiftClustering<>(distanceFunction, kernel, range);
    }
  }
}