summaryrefslogtreecommitdiff
path: root/elki/src/main/java/de/lmu/ifi/dbs/elki/algorithm/clustering/gdbscan/FourCNeighborPredicate.java
blob: 71b4cf66b4e7dfc731b0e5abcbf8b0a034f425c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
package de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.FourC;
import de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.PreDeConNeighborPredicate.PreDeConModel;
import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.type.SimpleTypeInformation;
import de.lmu.ifi.dbs.elki.database.Database;
import de.lmu.ifi.dbs.elki.database.QueryUtil;
import de.lmu.ifi.dbs.elki.database.datastore.DataStore;
import de.lmu.ifi.dbs.elki.database.ids.DBIDIter;
import de.lmu.ifi.dbs.elki.database.ids.DBIDRef;
import de.lmu.ifi.dbs.elki.database.ids.DBIDUtil;
import de.lmu.ifi.dbs.elki.database.ids.DBIDs;
import de.lmu.ifi.dbs.elki.database.ids.DoubleDBIDList;
import de.lmu.ifi.dbs.elki.database.ids.HashSetModifiableDBIDs;
import de.lmu.ifi.dbs.elki.database.query.distance.DistanceQuery;
import de.lmu.ifi.dbs.elki.database.query.range.RangeQuery;
import de.lmu.ifi.dbs.elki.database.relation.Relation;
import de.lmu.ifi.dbs.elki.database.relation.RelationUtil;
import de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.EuclideanDistanceFunction;
import de.lmu.ifi.dbs.elki.logging.Logging;
import de.lmu.ifi.dbs.elki.math.MeanVariance;
import de.lmu.ifi.dbs.elki.math.linearalgebra.Matrix;
import de.lmu.ifi.dbs.elki.math.linearalgebra.Vector;
import de.lmu.ifi.dbs.elki.math.linearalgebra.pca.LimitEigenPairFilter;
import de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAFilteredResult;
import de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAFilteredRunner;
import de.lmu.ifi.dbs.elki.math.linearalgebra.pca.StandardCovarianceMatrixBuilder;
import de.lmu.ifi.dbs.elki.utilities.documentation.Reference;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizer;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;

/**
 * 4C identifies local subgroups of data objects sharing a uniform correlation.
 * The algorithm is based on a combination of PCA and density-based clustering
 * (DBSCAN).
 * <p>
 * Reference: Christian Böhm, Karin Kailing, Peer Kröger, Arthur Zimek:
 * Computing Clusters of Correlation Connected Objects. <br>
 * In Proc. ACM SIGMOD Int. Conf. on Management of Data, Paris, France, 2004.
 * </p>
 * 
 * @author Arthur Zimek
 * @author Erich Schubert
 * @since 0.7.0
 * 
 * @param <V> the type of NumberVector handled by this Algorithm
 */
@Reference(authors = "C. Böhm, K. Kailing, P. Kröger, A. Zimek", //
title = "Computing Clusters of Correlation Connected Objects", //
booktitle = "Proc. ACM SIGMOD Int. Conf. on Management of Data, Paris, France, 2004, 455-466", //
url = "http://dx.doi.org/10.1145/1007568.1007620")
public class FourCNeighborPredicate<V extends NumberVector> extends AbstractRangeQueryNeighborPredicate<V, PreDeConNeighborPredicate.PreDeConModel> {
  /**
   * The logger for this class.
   */
  private static final Logging LOG = Logging.getLogger(FourCNeighborPredicate.class);

  /**
   * 4C settings class.
   */
  private FourC.Settings settings;

  /**
   * Tool to help with parameterization.
   */
  private MeanVariance mvSize = new MeanVariance(),
      mvSize2 = new MeanVariance(), mvCorDim = new MeanVariance();

  /**
   * The Filtered PCA Runner
   */
  private PCAFilteredRunner pca;

  /**
   * Constructor.
   * 
   * @param settings 4C settings
   */
  public FourCNeighborPredicate(FourC.Settings settings) {
    super(settings.epsilon, EuclideanDistanceFunction.STATIC);
    this.settings = settings;
    this.pca = new PCAFilteredRunner(new StandardCovarianceMatrixBuilder(), new LimitEigenPairFilter(settings.delta, settings.absolute), settings.kappa, 1);
  }

  @SuppressWarnings("unchecked")
  @Override
  public <T> NeighborPredicate.Instance<T> instantiate(Database database, SimpleTypeInformation<?> type) {
    DistanceQuery<V> dq = QueryUtil.getDistanceQuery(database, distFunc);
    Relation<V> relation = (Relation<V>) dq.getRelation();
    RangeQuery<V> rq = database.getRangeQuery(dq);
    mvSize.reset();
    mvSize2.reset();
    mvCorDim.reset();
    DataStore<PreDeConModel> storage = preprocess(PreDeConModel.class, relation, rq);
    if(LOG.isVerbose()) {
      LOG.verbose("Average neighborhood size: " + mvSize.toString());
      LOG.verbose("Average correlation dimensionality: " + mvCorDim.toString());
      LOG.verbose("Average correlated neighborhood size: " + mvSize2.toString());
      final int dim = RelationUtil.dimensionality(relation);
      if(mvSize.getMean() < 5 * dim) {
        LOG.verbose("The epsilon parameter may be chosen too small.");
      }
      else if(mvSize.getMean() > .5 * relation.size()) {
        LOG.verbose("The epsilon parameter may be chosen too large.");
      }
      else if(mvSize2.getMean() < 10) {
        LOG.verbose("The epsilon parameter may be chosen too large, or delta too small.");
      }
      else if(mvSize2.getMean() < settings.minpts) {
        LOG.verbose("The minPts parameter may be chosen too large.");
      }
      else {
        LOG.verbose("As a first guess, you can try minPts < " + ((int) mvSize2.getMean()) //
            + ", but you will need to experiment with these parameters and epsilon.");
      }
    }
    return (NeighborPredicate.Instance<T>) new Instance(dq.getRelation().getDBIDs(), storage);
  }

  @Override
  protected PreDeConModel computeLocalModel(DBIDRef id, DoubleDBIDList neighbors, Relation<V> relation) {
    mvSize.put(neighbors.size());
    PCAFilteredResult pcares = pca.processIds(neighbors, relation);
    int cordim = pcares.getCorrelationDimension();
    Matrix m_hat = pcares.similarityMatrix();

    Vector obj = relation.get(id).getColumnVector();

    // To save computing the square root below.
    double sqeps = settings.epsilon * settings.epsilon;

    HashSetModifiableDBIDs survivors = DBIDUtil.newHashSet(neighbors.size());
    for(DBIDIter iter = neighbors.iter(); iter.valid(); iter.advance()) {
      // Compute weighted / projected distance:
      Vector diff = relation.get(iter).getColumnVector().minusEquals(obj);
      double dist = diff.transposeTimesTimes(m_hat, diff);
      if(dist <= sqeps) {
        survivors.add(iter);
      }
    }
    if(cordim <= settings.lambda) {
      mvSize2.put(survivors.size());
    }
    mvCorDim.put(cordim);

    return new PreDeConModel(cordim, survivors);
  }

  @Override
  Logging getLogger() {
    return LOG;
  }

  @Override
  public SimpleTypeInformation<?>[] getOutputType() {
    return new SimpleTypeInformation[] { new SimpleTypeInformation<>(PreDeConModel.class) };
  }

  /**
   * Instance for a particular data set.
   * 
   * @author Erich Schubert
   */
  public static class Instance extends AbstractRangeQueryNeighborPredicate.Instance<PreDeConModel, PreDeConModel> {
    /**
     * Constructor.
     * 
     * @param ids IDs this is defined for.
     * @param storage Stored models
     */
    public Instance(DBIDs ids, DataStore<PreDeConModel> storage) {
      super(ids, storage);
    }

    @Override
    public PreDeConModel getNeighbors(DBIDRef reference) {
      final PreDeConModel asymmetric = storage.get(reference);
      // Check for mutual preference reachability:
      HashSetModifiableDBIDs ids = DBIDUtil.newHashSet(asymmetric.ids.size());
      for(DBIDIter neighbor = asymmetric.ids.iter(); neighbor.valid(); neighbor.advance()) {
        if(storage.get(neighbor).ids.contains(reference)) {
          ids.add(neighbor);
        }
      }
      return new PreDeConModel(asymmetric.pdim, ids);
    }

    @Override
    public DBIDIter iterDBIDs(PreDeConModel neighbors) {
      return neighbors.ids.iter();
    }
  }

  /**
   * Parameterization class.
   * 
   * @author Erich Schubert
   * 
   * @apiviz.exclude
   */
  public static class Parameterizer<O extends NumberVector> extends AbstractParameterizer {
    /**
     * 4C settings.
     */
    protected FourC.Settings settings;

    @Override
    protected void makeOptions(Parameterization config) {
      settings = config.tryInstantiate(FourC.Settings.class);
    }

    @Override
    protected FourCNeighborPredicate<O> makeInstance() {
      return new FourCNeighborPredicate<>(settings);
    }
  }
}