summaryrefslogtreecommitdiff
path: root/elki/src/main/java/de/lmu/ifi/dbs/elki/algorithm/clustering/onedimensional/KNNKernelDensityMinimaClustering.java
blob: 4b2d5b8a5eef8727870cfb59678c2ab12badd070 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
package de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm;
import de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm;
import de.lmu.ifi.dbs.elki.data.Cluster;
import de.lmu.ifi.dbs.elki.data.Clustering;
import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.VectorUtil;
import de.lmu.ifi.dbs.elki.data.model.ClusterModel;
import de.lmu.ifi.dbs.elki.data.type.TypeInformation;
import de.lmu.ifi.dbs.elki.data.type.TypeUtil;
import de.lmu.ifi.dbs.elki.data.type.VectorFieldTypeInformation;
import de.lmu.ifi.dbs.elki.database.datastore.DataStoreFactory;
import de.lmu.ifi.dbs.elki.database.datastore.DataStoreUtil;
import de.lmu.ifi.dbs.elki.database.datastore.WritableDoubleDataStore;
import de.lmu.ifi.dbs.elki.database.ids.ArrayModifiableDBIDs;
import de.lmu.ifi.dbs.elki.database.ids.DBIDArrayIter;
import de.lmu.ifi.dbs.elki.database.ids.DBIDUtil;
import de.lmu.ifi.dbs.elki.database.relation.Relation;
import de.lmu.ifi.dbs.elki.logging.Logging;
import de.lmu.ifi.dbs.elki.logging.progress.StepProgress;
import de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.EpanechnikovKernelDensityFunction;
import de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.KernelDensityFunction;
import de.lmu.ifi.dbs.elki.utilities.datastructures.QuickSelect;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizer;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.OptionID;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.constraints.CommonConstraints;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.EnumParameter;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.IntParameter;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.ObjectParameter;

/**
 * Cluster one-dimensional data by splitting the data set on local minima after
 * performing kernel density estimation.
 * 
 * @author Erich Schubert
 * @since 0.6.0
 */
public class KNNKernelDensityMinimaClustering<V extends NumberVector> extends AbstractAlgorithm<Clustering<ClusterModel>> implements ClusteringAlgorithm<Clustering<ClusterModel>> {
  /**
   * Class logger.
   */
  private static final Logging LOG = Logging.getLogger(KNNKernelDensityMinimaClustering.class);

  /**
   * Estimation mode.
   * 
   * @apiviz.exclude
   */
  public static enum Mode {
    BALLOON, // Balloon estimator
    SAMPLE, // Sample-point estimator
  }

  /**
   * Dimension to use for clustering.
   */
  protected int dim;

  /**
   * Kernel density function.
   */
  protected KernelDensityFunction kernel;

  /**
   * Estimation modes.
   */
  protected Mode mode;

  /**
   * Number of neighbors to use for bandwidth.
   */
  protected int k;

  /**
   * Window width, for local minima criterions.
   */
  protected int minwindow;

  /**
   * Constructor.
   * 
   * @param dim Dimension to use for clustering
   * @param kernel Kernel function
   * @param mode Bandwidth mode
   * @param k Number of neighbors
   * @param minwindow Window size for comparison
   */
  public KNNKernelDensityMinimaClustering(int dim, KernelDensityFunction kernel, Mode mode, int k, int minwindow) {
    super();
    this.dim = dim;
    this.kernel = kernel;
    this.mode = mode;
    this.k = k;
    this.minwindow = minwindow;
  }

  /**
   * Run the clustering algorithm on a data relation.
   * 
   * @param relation Relation
   * @return Clustering result
   */
  public Clustering<ClusterModel> run(Relation<V> relation) {
    ArrayModifiableDBIDs ids = DBIDUtil.newArray(relation.getDBIDs());
    final int size = ids.size();

    // Sort by the sole dimension
    ids.sort(new VectorUtil.SortDBIDsBySingleDimension(relation, dim));

    // Density storage.
    WritableDoubleDataStore density = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, 0.);

    DBIDArrayIter iter = ids.iter(), iter2 = ids.iter();

    StepProgress sprog = LOG.isVerbose() ? new StepProgress("Clustering steps", 2) : null;

    LOG.beginStep(sprog, 1, "Kernel density estimation.");
    {
      double[] scratch = new double[2 * k];
      iter.seek(0);
      for(int i = 0; i < size; i++, iter.advance()) {
        // Current value.
        final double curv = relation.get(iter).doubleValue(dim);

        final int pre = Math.max(i - k, 0), prek = i - pre;
        final int pos = Math.min(i + k, size - 1), posk = pos - i;
        iter2.seek(pre);
        for(int j = 0; j < prek; j++, iter2.advance()) {
          scratch[j] = curv - relation.get(iter2).doubleValue(dim);
        }
        assert (iter2.getOffset() == i);
        iter2.advance();
        for(int j = 0; j < posk; j++, iter2.advance()) {
          scratch[prek + j] = relation.get(iter2).doubleValue(dim) - curv;
        }

        assert (prek + posk >= k);
        double kdist = QuickSelect.quickSelect(scratch, 0, prek + posk, k);
        switch(mode){
        case BALLOON: {
          double dens = 0.;
          if(kdist > 0.) {
            for(int j = 0; j < prek + posk; j++) {
              dens += kernel.density(scratch[j] / kdist);
            }
          }
          else {
            dens = Double.POSITIVE_INFINITY;
          }
          assert (iter.getOffset() == i);
          density.putDouble(iter, dens);
          break;
        }
        case SAMPLE: {
          if(kdist > 0.) {
            iter2.seek(pre);
            for(int j = 0; j < prek; j++, iter2.advance()) {
              double delta = curv - relation.get(iter2).doubleValue(dim);
              density.putDouble(iter2, density.doubleValue(iter2) + kernel.density(delta / kdist));
            }
            assert (iter2.getOffset() == i);
            iter2.advance();
            for(int j = 0; j < posk; j++, iter2.advance()) {
              double delta = relation.get(iter2).doubleValue(dim) - curv;
              density.putDouble(iter2, density.doubleValue(iter2) + kernel.density(delta / kdist));
            }
          }
          else {
            iter2.seek(pre);
            for(int j = 0; j < prek; j++, iter2.advance()) {
              double delta = curv - relation.get(iter2).doubleValue(dim);
              if(!(delta > 0.)) {
                density.putDouble(iter2, Double.POSITIVE_INFINITY);
              }
            }
            assert (iter2.getOffset() == i);
            iter2.advance();
            for(int j = 0; j < posk; j++, iter2.advance()) {
              double delta = relation.get(iter2).doubleValue(dim) - curv;
              if(!(delta > 0.)) {
                density.putDouble(iter2, Double.POSITIVE_INFINITY);
              }
            }
          }
          break;
        }
        default:
          throw new UnsupportedOperationException("Unknown mode specified.");
        }
      }
    }

    LOG.beginStep(sprog, 2, "Local minima detection.");
    Clustering<ClusterModel> clustering = new Clustering<>("onedimensional-kde-clustering", "One-Dimensional clustering using kernel density estimation.");
    {
      double[] scratch = new double[2 * minwindow + 1];
      int begin = 0;
      int halfw = (minwindow + 1) >> 1;
      iter.seek(0);
      // Fill initial buffer.
      for(int i = 0; i < size; i++, iter.advance()) {
        final int m = i % scratch.length, t = (i - minwindow - 1) % scratch.length;
        scratch[m] = density.doubleValue(iter);
        if(i > scratch.length) {
          double min = Double.POSITIVE_INFINITY;
          for(int j = 0; j < scratch.length; j++) {
            if(j != t && scratch[j] < min) {
              min = scratch[j];
            }
          }
          // Local minimum:
          if(scratch[t] < min) {
            int end = i - minwindow + 1;
            { // Test on which side the kNN is
              iter2.seek(end);
              double curv = relation.get(iter2).doubleValue(dim);
              iter2.seek(end - halfw);
              double left = relation.get(iter2).doubleValue(dim) - curv;
              iter2.seek(end + halfw);
              double right = curv - relation.get(iter2).doubleValue(dim);
              if(left < right) {
                end++;
              }
            }
            iter2.seek(begin);
            ArrayModifiableDBIDs cids = DBIDUtil.newArray(end - begin);
            for(int j = 0; j < end - begin; j++, iter2.advance()) {
              cids.add(iter2);
            }
            clustering.addToplevelCluster(new Cluster<>(cids, ClusterModel.CLUSTER));
            begin = end;
          }
        }
      }
      // Extract last cluster
      int end = size;
      iter2.seek(begin);
      ArrayModifiableDBIDs cids = DBIDUtil.newArray(end - begin);
      for(int j = 0; j < end - begin; j++, iter2.advance()) {
        cids.add(iter2);
      }
      clustering.addToplevelCluster(new Cluster<>(cids, ClusterModel.CLUSTER));
    }

    LOG.ensureCompleted(sprog);
    return clustering;
  }

  @Override
  public TypeInformation[] getInputTypeRestriction() {
    return TypeUtil.array(VectorFieldTypeInformation.typeRequest(NumberVector.class, dim + 1, Integer.MAX_VALUE));
  }

  @Override
  protected Logging getLogger() {
    return LOG;
  }

  /**
   * Parameterization class.
   * 
   * @author Erich Schubert
   * 
   * @apiviz.exclude
   */
  public static class Parameterizer<V extends NumberVector> extends AbstractParameterizer {
    /**
     * Dimension to use for clustering.
     */
    public static final OptionID DIM_ID = new OptionID("kernelcluster.dim", "Dimension to use for clustering. For one-dimensional data, use 0.");

    /**
     * Kernel function.
     */
    public static final OptionID KERNEL_ID = new OptionID("kernelcluster.kernel", "Kernel function for density estimation.");

    /**
     * KDE mode.
     */
    public static final OptionID MODE_ID = new OptionID("kernelcluster.mode", "Kernel density estimation mode (baloon estimator vs. sample point estimator).");

    /**
     * Number of neighbors for bandwidth estimation.
     */
    public static final OptionID K_ID = new OptionID("kernelcluster.knn", "Number of nearest neighbors to use for bandwidth estimation.");

    /**
     * Half window width to find local minima.
     */
    public static final OptionID WINDOW_ID = new OptionID("kernelcluster.window", "Half width of sliding window to find local minima.");

    /**
     * Dimension to use for clustering.
     */
    protected int dim;

    /**
     * Kernel density function.
     */
    protected KernelDensityFunction kernel;

    /**
     * Estimation modes.
     */
    protected Mode mode;

    /**
     * Number of neighbors to use for bandwidth.
     */
    protected int k;

    /**
     * Window width, for local minima criterions.
     */
    protected int minwindow;

    @Override
    protected void makeOptions(Parameterization config) {
      super.makeOptions(config);
      IntParameter dimP = new IntParameter(DIM_ID, 0);
      dimP.addConstraint(CommonConstraints.GREATER_EQUAL_ZERO_INT);
      if(config.grab(dimP)) {
        dim = dimP.intValue();
      }

      ObjectParameter<KernelDensityFunction> kernelP = new ObjectParameter<>(KERNEL_ID, KernelDensityFunction.class, EpanechnikovKernelDensityFunction.class);
      if(config.grab(kernelP)) {
        kernel = kernelP.instantiateClass(config);
      }

      EnumParameter<Mode> modeP = new EnumParameter<>(MODE_ID, Mode.class, Mode.BALLOON);
      if(config.grab(modeP)) {
        mode = modeP.getValue();
      }

      IntParameter kP = new IntParameter(K_ID);
      kP.addConstraint(CommonConstraints.GREATER_EQUAL_ONE_INT);
      if(config.grab(kP)) {
        k = kP.intValue();
      }

      IntParameter windowP = new IntParameter(WINDOW_ID);
      windowP.addConstraint(CommonConstraints.GREATER_EQUAL_ONE_INT);
      if(config.grab(windowP)) {
        minwindow = windowP.intValue();
      }
    }

    @Override
    protected KNNKernelDensityMinimaClustering<V> makeInstance() {
      return new KNNKernelDensityMinimaClustering<>(dim, kernel, mode, k, minwindow);
    }
  }
}