summaryrefslogtreecommitdiff
path: root/elki/src/main/java/de/lmu/ifi/dbs/elki/algorithm/clustering/optics/FastOPTICS.java
blob: 9ec79b298cbd2e5b6cac1d6319355ac817cbf4b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
package de.lmu.ifi.dbs.elki.algorithm.clustering.optics;

/*
 Copyright (C) 2015
 Johannes Schneider, ABB Research,Switzerland, johannes.schneider@alumni.ethz.ch

 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

import de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm;
import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.type.TypeInformation;
import de.lmu.ifi.dbs.elki.data.type.TypeUtil;
import de.lmu.ifi.dbs.elki.database.Database;
import de.lmu.ifi.dbs.elki.database.datastore.DataStore;
import de.lmu.ifi.dbs.elki.database.datastore.DataStoreFactory;
import de.lmu.ifi.dbs.elki.database.datastore.DataStoreUtil;
import de.lmu.ifi.dbs.elki.database.datastore.DoubleDataStore;
import de.lmu.ifi.dbs.elki.database.datastore.WritableDoubleDataStore;
import de.lmu.ifi.dbs.elki.database.ids.DBID;
import de.lmu.ifi.dbs.elki.database.ids.DBIDIter;
import de.lmu.ifi.dbs.elki.database.ids.DBIDUtil;
import de.lmu.ifi.dbs.elki.database.ids.DBIDs;
import de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs;
import de.lmu.ifi.dbs.elki.database.query.distance.DistanceQuery;
import de.lmu.ifi.dbs.elki.database.relation.Relation;
import de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.EuclideanDistanceFunction;
import de.lmu.ifi.dbs.elki.index.preprocessed.fastoptics.RandomProjectedNeighborsAndDensities;
import de.lmu.ifi.dbs.elki.logging.Logging;
import de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress;
import de.lmu.ifi.dbs.elki.utilities.ClassGenericsUtil;
import de.lmu.ifi.dbs.elki.utilities.datastructures.heap.UpdatableHeap;
import de.lmu.ifi.dbs.elki.utilities.documentation.Reference;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizer;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.constraints.CommonConstraints;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.IntParameter;

/**
 * FastOPTICS algorithm (Fast approximation of OPTICS)
 *
 * Note that this is <em>not</em> FOPTICS as in "Fuzzy OPTICS"!
 *
 * Reference:
 * <p>
 * J. Schneider and M. Vlachos<br />
 * Fast parameterless density-based clustering via random projections<br />
 * Proc. 22nd ACM international conference on Conference on Information &
 * Knowledge Management (CIKM)
 * </p>
 *
 * This is based on the original code provided by Johannes Schneider, with
 * ELKIfications and optimizations by Erich Schubert.
 *
 * @author Johannes Schneider
 * @author Erich Schubert
 *
 * @apiviz.composedOf RandomProjectedNeighborsAndDensities
 */
@Reference(authors = "J. Schneider and M. Vlachos", //
title = "Fast parameterless density-based clustering via random projections", //
booktitle = "Proc. 22nd ACM international conference on Conference on Information & Knowledge Management (CIKM)", //
url = "http://dx.doi.org/10.1145/2505515.2505590")
public class FastOPTICS<V extends NumberVector> extends AbstractAlgorithm<ClusterOrder> implements OPTICSTypeAlgorithm {
  /**
   * Class logger.
   */
  private static final Logging LOG = Logging.getLogger(FastOPTICS.class);

  /**
   * undefined value for (reachability/average) distance
   */
  public static final double UNDEFINED_DISTANCE = -0.1f;

  /**
   * Result: output order of points
   */
  ClusterOrder order;

  /**
   * Result: reachability distances
   */
  WritableDoubleDataStore reachDist;

  /**
   * processed points
   */
  ModifiableDBIDs processed;

  /**
   * neighbors of a point
   */
  DataStore<? extends DBIDs> neighs;

  /**
   * Inverse Densities correspond to average distances in point set of
   * projections
   */
  DoubleDataStore inverseDensities;

  /**
   * MinPts parameter.
   */
  int minPts;

  /**
   * Index.
   */
  RandomProjectedNeighborsAndDensities<V> index;

  /**
   * Constructor.
   *
   * @param minpts Minimum number of neighbors.
   * @param index Index
   */
  public FastOPTICS(int minpts, RandomProjectedNeighborsAndDensities<V> index) {
    super();
    this.minPts = minpts;
    this.index = index;
  }

  /**
   * Run the algorithm.
   *
   * @param db Database
   * @param rel Relation
   */
  public ClusterOrder run(Database db, Relation<V> rel) {
    DBIDs ids = rel.getDBIDs();
    DistanceQuery<V> dq = db.getDistanceQuery(rel, EuclideanDistanceFunction.STATIC);

    // initialize points used and reachability distance
    reachDist = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, UNDEFINED_DISTANCE);

    // compute projections, density estimates and neighborhoods
    index.computeSetsBounds(rel, minPts, ids); // project points
    inverseDensities = index.computeAverageDistInSet(); // compute densities
    neighs = index.getNeighs(); // get neighbors of points

    // compute ordering as for OPTICS
    FiniteProgress prog = LOG.isVerbose() ? new FiniteProgress("OPTICS clustering.", ids.size(), LOG) : null;
    processed = DBIDUtil.newHashSet(ids.size());
    order = new ClusterOrder(ids, "FastOPTICS Cluster Order", "fast-optics");
    for(DBIDIter it = ids.iter(); it.valid(); it.advance()) {
      if(!processed.contains(it)) {
        expandClusterOrder(DBIDUtil.deref(it), order, dq, prog);
      }
    }
    index.logStatistics();
    LOG.ensureCompleted(prog);
    return order;
  }

  /**
   * OPTICS algorithm for processing a point, but with different density
   * estimates
   *
   * @param ipt Point
   * @param order Cluster order (output)
   * @param dq Distance query
   * @param prog Progress for logging.
   */
  protected void expandClusterOrder(DBID ipt, ClusterOrder order, DistanceQuery<V> dq, FiniteProgress prog) {
    UpdatableHeap<OPTICSHeapEntry> heap = new UpdatableHeap<>();
    heap.add(new OPTICSHeapEntry(ipt, null, 1e6f));
    while(!heap.isEmpty()) {
      final OPTICSHeapEntry current = heap.poll();
      DBID currPt = current.objectID;
      order.add(currPt, current.reachability, current.predecessorID);
      processed.add(currPt);
      double coredist = inverseDensities.doubleValue(currPt);
      for(DBIDIter it = neighs.get(currPt).iter(); it.valid(); it.advance()) {
        if(processed.contains(it)) {
          continue;
        }
        double nrdist = dq.distance(currPt, it);
        if(coredist > nrdist) {
          nrdist = coredist;
        }
        if(reachDist.doubleValue(it) == UNDEFINED_DISTANCE) {
          reachDist.put(it, nrdist);
        }
        else if(nrdist < reachDist.doubleValue(it)) {
          reachDist.put(it, nrdist);
        }
        heap.add(new OPTICSHeapEntry(DBIDUtil.deref(it), currPt, nrdist));
      }
      LOG.incrementProcessed(prog);
    }
  }

  @Override
  public int getMinPts() {
    return minPts;
  }

  @Override
  public TypeInformation[] getInputTypeRestriction() {
    return TypeUtil.array(EuclideanDistanceFunction.STATIC.getInputTypeRestriction());
  }

  @Override
  protected Logging getLogger() {
    return LOG;
  }

  /**
   * Parameterization class.
   *
   * @author Erich Schubert
   *
   * @apiviz.exclude
   *
   * @param <V> Vector type
   */
  public static class Parameterizer<V extends NumberVector> extends AbstractParameterizer {
    /**
     * Minimum number of neighbors for density estimation.
     */
    int minpts;

    /**
     * Random projection index.
     */
    RandomProjectedNeighborsAndDensities<V> index;

    @Override
    protected void makeOptions(Parameterization config) {
      super.makeOptions(config);
      IntParameter minptsP = new IntParameter(AbstractOPTICS.Parameterizer.MINPTS_ID) //
      .addConstraint(CommonConstraints.GREATER_EQUAL_ONE_INT);
      if(config.grab(minptsP)) {
        minpts = minptsP.intValue();
      }
      Class<RandomProjectedNeighborsAndDensities<V>> clz = ClassGenericsUtil.uglyCastIntoSubclass(RandomProjectedNeighborsAndDensities.class);
      index = config.tryInstantiate(clz);
    }

    @Override
    protected FastOPTICS<V> makeInstance() {
      return new FastOPTICS<V>(minpts, index);
    }
  }
}