summaryrefslogtreecommitdiff
path: root/elki/src/main/java/de/lmu/ifi/dbs/elki/algorithm/outlier/lof/COF.java
blob: 87019ae6a1e800d6ed5f0d836bbc4d37ddc3b309 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
package de.lmu.ifi.dbs.elki.algorithm.outlier.lof;

/*
 This file is part of ELKI:
 Environment for Developing KDD-Applications Supported by Index-Structures

 Copyright (C) 2015
 Ludwig-Maximilians-Universität München
 Lehr- und Forschungseinheit für Datenbanksysteme
 ELKI Development Team

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
import de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm;
import de.lmu.ifi.dbs.elki.algorithm.outlier.OutlierAlgorithm;
import de.lmu.ifi.dbs.elki.data.type.TypeInformation;
import de.lmu.ifi.dbs.elki.data.type.TypeUtil;
import de.lmu.ifi.dbs.elki.database.Database;
import de.lmu.ifi.dbs.elki.database.datastore.DataStoreFactory;
import de.lmu.ifi.dbs.elki.database.datastore.DataStoreUtil;
import de.lmu.ifi.dbs.elki.database.datastore.DoubleDataStore;
import de.lmu.ifi.dbs.elki.database.datastore.WritableDoubleDataStore;
import de.lmu.ifi.dbs.elki.database.ids.DBIDIter;
import de.lmu.ifi.dbs.elki.database.ids.DBIDUtil;
import de.lmu.ifi.dbs.elki.database.ids.DBIDs;
import de.lmu.ifi.dbs.elki.database.ids.DoubleDBIDListIter;
import de.lmu.ifi.dbs.elki.database.ids.KNNList;
import de.lmu.ifi.dbs.elki.database.query.distance.DistanceQuery;
import de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery;
import de.lmu.ifi.dbs.elki.database.relation.DoubleRelation;
import de.lmu.ifi.dbs.elki.database.relation.MaterializedDoubleRelation;
import de.lmu.ifi.dbs.elki.database.relation.Relation;
import de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction;
import de.lmu.ifi.dbs.elki.logging.Logging;
import de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress;
import de.lmu.ifi.dbs.elki.logging.progress.StepProgress;
import de.lmu.ifi.dbs.elki.math.DoubleMinMax;
import de.lmu.ifi.dbs.elki.result.outlier.OutlierResult;
import de.lmu.ifi.dbs.elki.result.outlier.OutlierScoreMeta;
import de.lmu.ifi.dbs.elki.result.outlier.QuotientOutlierScoreMeta;
import de.lmu.ifi.dbs.elki.utilities.DatabaseUtil;
import de.lmu.ifi.dbs.elki.utilities.documentation.Reference;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.OptionID;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.constraints.CommonConstraints;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.IntParameter;

/**
 * Connectivity-based outlier factor (COF).
 *
 * Reference:
 * <p>
 * J. Tang, Z. Chen, A. W. C. Fu, D. W. Cheung<br />
 * Enhancing effectiveness of outlier detections for low density patterns.<br />
 * In Advances in Knowledge Discovery and Data Mining.
 * </p>
 *
 * @author Erich Schubert
 *
 * @param <O> Object type
 */
@Reference(authors = "J. Tang, Z. Chen, A. W. C. Fu, D. W. Cheung", //
title = "Enhancing effectiveness of outlier detections for low density patterns", //
booktitle = "In Advances in Knowledge Discovery and Data Mining", //
url = "http://dx.doi.org/10.1007/3-540-47887-6_53")
public class COF<O> extends AbstractDistanceBasedAlgorithm<O, OutlierResult> implements OutlierAlgorithm {
  /**
   * The logger for this class.
   */
  private static final Logging LOG = Logging.getLogger(COF.class);

  /**
   * The number of neighbors to query (including the query point!)
   */
  protected int k;

  /**
   * Constructor.
   *
   * @param k the number of neighbors to use for comparison (excluding the query
   *        point)
   * @param distanceFunction the neighborhood distance function
   */
  public COF(int k, DistanceFunction<? super O> distanceFunction) {
    super(distanceFunction);
    this.k = k + 1; // + query point
  }

  /**
   * Runs the COF algorithm on the given database.
   *
   * @param database Database to query
   * @param relation Data to process
   * @return COF outlier result
   */
  public OutlierResult run(Database database, Relation<O> relation) {
    StepProgress stepprog = LOG.isVerbose() ? new StepProgress("COF", 3) : null;
    DistanceQuery<O> dq = database.getDistanceQuery(relation, getDistanceFunction());
    LOG.beginStep(stepprog, 1, "Materializing COF neighborhoods.");
    KNNQuery<O> knnq = DatabaseUtil.precomputedKNNQuery(database, relation, dq, k);
    DBIDs ids = relation.getDBIDs();

    LOG.beginStep(stepprog, 2, "Computing Average Chaining Distances.");
    WritableDoubleDataStore acds = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP);
    computeAverageChainingDistances(knnq, dq, ids, acds);

    // compute COF_SCORE of each db object
    LOG.beginStep(stepprog, 3, "Computing Connectivity-based Outlier Factors.");
    WritableDoubleDataStore cofs = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_DB);
    // track the maximum value for normalization.
    DoubleMinMax cofminmax = new DoubleMinMax();
    computeCOFScores(knnq, ids, acds, cofs, cofminmax);

    LOG.setCompleted(stepprog);

    // Build result representation.
    DoubleRelation scoreResult = new MaterializedDoubleRelation("Connectivity-Based Outlier Factor", "cof-outlier", cofs, ids);
    OutlierScoreMeta scoreMeta = new QuotientOutlierScoreMeta(cofminmax.getMin(), cofminmax.getMax(), 0.0, Double.POSITIVE_INFINITY, 1.0);
    return new OutlierResult(scoreMeta, scoreResult);
  }

  /**
   * Computes the average chaining distance, the average length of a path
   * through the given set of points to each target. The authors of COF decided
   * to approximate this value using a weighted mean that assumes every object
   * is reached from the previous point (but actually every point could be best
   * reachable from the first, in which case this does not make much sense.)
   *
   * TODO: can we accelerate this by using the kNN of the neighbors?
   *
   * @param knnq KNN query
   * @param dq Distance query
   * @param ids IDs to process
   * @param acds Storage for average chaining distances
   */
  protected void computeAverageChainingDistances(KNNQuery<O> knnq, DistanceQuery<O> dq, DBIDs ids, WritableDoubleDataStore acds) {
    FiniteProgress lrdsProgress = LOG.isVerbose() ? new FiniteProgress("Computing average chaining distances", ids.size(), LOG) : null;

    // Compute the chaining distances.
    // We do <i>not</i> bother to materialize the chaining order.
    for(DBIDIter iter = ids.iter(); iter.valid(); iter.advance()) {
      final KNNList neighbors = knnq.getKNNForDBID(iter, k);
      final int r = neighbors.size();
      DoubleDBIDListIter it1 = neighbors.iter(), it2 = neighbors.iter();
      // Store the current lowest reachability.
      final double[] mindists = new double[r];
      for(int i = 0; it1.valid(); it1.advance(), ++i) {
        mindists[i] = DBIDUtil.equal(it1, iter) ? Double.NaN : it1.doubleValue();
      }

      double acsum = 0.;
      for(int j = ((r < k) ? r : k) - 1; j > 0; --j) {
        // Find the minimum:
        int minpos = -1;
        double mindist = Double.NaN;
        for(int i = 0; i < mindists.length; ++i) {
          double curdist = mindists[i];
          // Both values could be NaN, deliberately.
          if(curdist == curdist && !(curdist > mindist)) {
            minpos = i;
            mindist = curdist;
          }
        }
        acsum += mindist * j; // Weighted sum, decreasing weights
        mindists[minpos] = Double.NaN;
        it1.seek(minpos);
        // Update distances
        it2.seek(0);
        for(int i = 0; it2.valid(); it2.advance(), ++i) {
          final double curdist = mindists[i];
          if(curdist != curdist) {
            continue; // NaN = processed!
          }
          double newdist = dq.distance(it1, it2);
          if(newdist < curdist) {
            mindists[i] = newdist;
          }
        }
      }
      acds.putDouble(iter, acsum / (r * 0.5 * (r - 1.)));
      LOG.incrementProcessed(lrdsProgress);
    }
    LOG.ensureCompleted(lrdsProgress);
  }

  /**
   * Compute Connectivity outlier factors.
   *
   * @param knnq KNN query
   * @param ids IDs to process
   * @param acds Average chaining distances
   * @param cofs Connectivity outlier factor storage
   * @param cofminmax Score minimum/maximum tracker
   */
  private void computeCOFScores(KNNQuery<O> knnq, DBIDs ids, DoubleDataStore acds, WritableDoubleDataStore cofs, DoubleMinMax cofminmax) {
    FiniteProgress progressCOFs = LOG.isVerbose() ? new FiniteProgress("COF for objects", ids.size(), LOG) : null;
    for(DBIDIter iter = ids.iter(); iter.valid(); iter.advance()) {
      final KNNList neighbors = knnq.getKNNForDBID(iter, k);
      // Aggregate the average chaining distances of all neighbors:
      double sum = 0.;
      for(DBIDIter neighbor = neighbors.iter(); neighbor.valid(); neighbor.advance()) {
        // skip the point itself
        if(DBIDUtil.equal(neighbor, iter)) {
          continue;
        }
        sum += acds.doubleValue(neighbor);
      }
      final double cof = (sum > 0.) ? (acds.doubleValue(iter) * k / sum) : (acds.doubleValue(iter) > 0. ? Double.POSITIVE_INFINITY : 1.);
      cofs.putDouble(iter, cof);
      // update minimum and maximum
      cofminmax.put(cof);

      LOG.incrementProcessed(progressCOFs);
    }
    LOG.ensureCompleted(progressCOFs);
  }

  @Override
  public TypeInformation[] getInputTypeRestriction() {
    return TypeUtil.array(getDistanceFunction().getInputTypeRestriction());
  }

  @Override
  protected Logging getLogger() {
    return LOG;
  }

  /**
   * Parameterization class.
   *
   * @author Erich Schubert
   *
   * @apiviz.exclude
   *
   * @param <O> Object type
   */
  public static class Parameterizer<O> extends AbstractDistanceBasedAlgorithm.Parameterizer<O> {
    /**
     * Parameter to specify the neighborhood size for COF. This does not include
     * the query object.
     */
    public static final OptionID K_ID = new OptionID("cof.k", "The number of neighbors (not including the query object) to use for computing the COF score.");

    /**
     * The neighborhood size to use.
     */
    protected int k;

    @Override
    protected void makeOptions(Parameterization config) {
      super.makeOptions(config);

      final IntParameter pK = new IntParameter(K_ID) //
      .addConstraint(CommonConstraints.GREATER_EQUAL_ONE_INT);
      if(config.grab(pK)) {
        k = pK.intValue();
      }
    }

    @Override
    protected COF<O> makeInstance() {
      return new COF<>(k, distanceFunction);
    }
  }
}